The Water Masses and Currents of the Oceans Within Anygiven Region, the Character of the Water Massesdepends Mainly Upon Three F

Total Page:16

File Type:pdf, Size:1020Kb

The Water Masses and Currents of the Oceans Within Anygiven Region, the Character of the Water Massesdepends Mainly Upon Three F . CHAPTERXV The Water Masses and Currents of the Oceans `.m. mm.. ms .......m .......m* ....m..*.. m.....* ....................mm... *. .. ........ .......m..m. ..... ........ Within anygiven region, the character of the water masses depends mainly upon three fac$ors—the latitude of the region, the degree of isolation, and the types of currents-the relative importance of which will be brought out in the course of the discussion. It is rational to deal first with the simpler conditions and gradually to enter upon the more complicated. This can be done by first dis- cussing the Antarctic Ocean, where the latitude effect is easily explained, where the waters are in free communication with those of the major oceans, and where the system of prevailing currents is unusually clear- cut. After a description of conditions within the Antarctic Ocean we shall consider the Atlantic, Indian, and Pacific Oceans, the adjacent seas of these oceans, and in conclusion we shall discuss the deep-water circulation between the large ocean basins. The Antarctic Circumpolar Ocean BOUNDARIESANDGENERALCHARACTERISTICSOF WATER MASSES. It is difficult to assign a northern boundary to the Antarctic Ocean because it is in open communication with the three major oceans: the Atlantic, the Indian, and the Pacific Oceans. In some instances the antarctic waters are dealt with as parts of the adjacent oceans and are designated the Atlantic Antarctic Ocean, or the Indian or Pacific Ant- arctic Ocean, whereas in other instances the antarctic waters must be considered an integral part of all oceans. The latter case, for instance, applies when dealing with the deep-water circulation, which is of such a nature that the intercommunication between dif?erent regions must be taken into account. The antarctic waters, on the other hand, can be discussed without entering upon details of the conditions in neighboring oceans, in which case one has to establish oceanographic boundaries between the Antarctic Ocean and the neighboring areas. On the basis of observations of surface temperatures only, it is possible to divide the Antarctic Ocean into two separate regions and to establish its approximate northern boundary. Near the Antarctic Continent the surface temperature is low, but with increasing distance from the coasts it increasesslowly until a region is reached within which an increase of two or three degrees takes place in a very short distance. 605 606 THE WATER MASSES AND CURRENTSOF THE OCEANS This region of sudden increase of surface temperature is one at which part of the surface water sinks, and is called the Antarctic Convergence, which has been found to exist all around the Antarctic Continent. Proceeding further to the north, the surface temperature again rises Fig. 158. Locationsof theAntarcticandSubtropicalConvergence. Locations of theverticalsectionsshownin figures159and160,andlimitbetweenwesterlyand easterlywinds(dashedline). Lightshading:depthslessthan3000m. slowly until a second region of rapid increase is encountered at the Sub- tropical Convergence,which also has been traced all around the earth except in the eastern South Pacific, where its location is not established, The area extending from the Antarctic Continent to the Antarctic Convergence is called the antarcticregion and the area between the two convergence is called the subantarcticmglon. From the oceanographic point of view it is logical to consider an Antarctic Ocean extending from the Antarctic Continent to the Subtropical Convergence except in the eastern South Pacific, where an arbitrary limit has to be selected. THE WATER MASSES AND CURRENTSOF1’HE OCEANS 607 Figure 158shows the location of the two convergences according to the results of the D&xweryExpedition (Deacon, 1937a). Thel~pation ~ of the Antarctic Convergence is, in part, dependent upon the distribution of land and sea and upon the bottom topography. The southward displacement of the Antarctic Convergence to the south of Australia and New Zealand can probably be ascribed to the relative narrowness of the passage between these regions and Antarctica, and the similar displacement off South America can be attributed to the southerly location of Drake’s Passage separating South America from Graham Land. The bends of the Antarctic Convergence are to a great extent related to the bottom topography. On the western side of the submarine ridges, the more conspicuous of which are indicated in the figure by the 3000-m contour, the convergence is deflected to the north, and on the eastern side to the south. The reason for this relation to the bottom topography was explained when dealing with the currents (p. 466). The location of the Subtropical Convergence is similarly related to the distribution of land and sea, but appears to be less dependent upon the bottom configuration. It is less well defined than the Antarctic Convergence, and instead of referringto a Me of convergence it is, accord- ing to Defant (1938), more correct to refer to a region of convergence. Within the antarctic and subantarctic regions the water masses can be classified according to their temperature-salinity characteristics (p. 141). Such a classification is here conveniently based on a study of the distribution of temperature and salinity in a vertical section running at right angles to the Antarctic Continent. F@ure 159 is taken from Deacon’s discussion (1937a) and shows the distribution of temperature and salinity along a section running south-southwest from Cape Leeuwin, Western Australia, to the ice edge south of Australia in 63041’S. The two convergence are indicated which divide the area into the antarctic and subantarctic regions. Within the antarctic region a surface layer of low temperature and low salinity is present. Below this surface layer one recognizes a transition layer which increases in thickness towards the north and within which the temperature rapidly increases to values higher than 2°, and the salinity gradually increases to values higher than 34.5 O/OO. Below the transition layer one encounters the Antarctic Ciircumpdur Water, the greater mass of which has a salinity a little above 34.70 O/OO and a temperature between 2° and OO. Water of similar characteristics is found within the subantarctic region below a depth of about 2000 m, That is, the deep water within the subantarctic region has the same characteristics as the Antarctic Circumpolar Water which rises towards the surface near the Antarctic Continent. At station 887, close to the continent, a salinity of 34.67 0/00 k met with at a depth Of 200 m, but at station 879 south of the Subtropical Convergence the 608 THE WATER MASSES AND CURRENTSOF THE OCEANS same salinity k found in the deep water below 2000 m. (lose to the Antarctic Continent the temperature of the deepest water is less than O“ and the salinity is less than 34.7 O/OO.Thk cold water represents the Antarctic BottomWater. STC STATION 877 878 1000-“ M. ~ ,5.’:” , /<” . /“ -------- ~—.~--/“ , >.- ,,”- /’ ..-& H- / ../ . .-- __ &------- - . 0 2000 ,,“,~” /’ : ,!:;{:: .1.s ./. /“ a :~fi, ‘,/ ,“ . 1,0/j . ,,~” wo ::~~; ., ,./ . ~w 1,/y,,.,,#,,_ :f.:fi,- - ~~ :;:;:?:: ----~ ---- a- PI:!.:.;.,,.,,,7, “ --------- Fig.159. Distributionof temperatureandsalinityinaverticalsectionfromCape Leeuwin,Australia,to theAntarcticContinent(afterDeacon). Locationof section shownby lineA in fig.158. Within the subantarctic region one can conveniently distinguish between two water massesabove the deep water, the SubantarcticUpper Waterof a uniform temperaturebetween 8° and 9° and of a relatively high salinity, appearing in the salinity section as a tongue extending towards the south, and the AntarcticIntermediateWaterof a temperature between THE WATER MASSES AND CURRENTSOF THE OCEANS 609 3° and 7° and of low salinity, extending towards the north like a tongue that appears to form a continuation of the water in the antarctic layer of transition. The deep water, which is encountered below a depth of about 1500 m, consists of two water masses,the upper deep water which has salinities up to 34.80 O/OO and the lower deep water which is of the same character as the bulk of the Antarctic Circumpolar Water. These different water masses, which will be discussed in greater detail, can be recognized in the southern part of the vertical section of the Atlantic Ocean (fig. 210, p. 748) in which, however, the bottom water extends further north and in which the upper deep water in the subantarctic region has a higher salinity and a higher temperature, THE ANTARCTICSURFACEWATER. In winter the southern half of the antarctic region is covered by a thin layer of nearly homogeneous surface water of a thickness of 100 m or less which has a temperature about freezing point and a salinity that varies between 34.0 and 34.5 O/OOj the highest value being found in the Weddell Sea. At a station occupied by the Deutschtandin the Weddell Sea (lat. 65032’S, long. 43”00’W) on August 26, 1912 (Brennecke, 1921), a nearly homogeneous layer was found between the surface and a depth of 100 m having a temperature of – 1.83° and a salinity of 34.47 O/OO. With increasing distance from the Antarctic Continent the temperature rises to 0° where the Antarctic Convergence is far south, and to about 1° where this convergence is far north. In summerthe salinity at the surface is decreasedowing to the melting of ice. By far the greater amount of the radiation surplus of the season is used for melting ice, but a small amount is used for raising the tem- perature of the water above freezing point. In the vicinity of the pack ice the surface temperature and salinity vary greatly from one locality to another, because the nearly fresh water produced by melting of ice is not immediately mixed with the surrounding or deeper water. In ice- free areas a more thorough mixing takes place, particularly where strong winds are frequent, and there a well-mixed layer may extend to depths of 55 to 85 m. The temperature of this water is a few degrees above freezing, owing to absorption of heat, but below this warmed layer colder water is found.
Recommended publications
  • The Fluctuations of the Florida Current!
    BULLETIN OF MARINE SCIENCE OF THE GULF AND CARIBBEAN VOLUME 1 1952 NUMBER 4 THE FLUCTUATIONS OF THE FLORIDA CURRENT! ILMO HELA The Marine Laboratory, University of Miami ABSTRACT Correlations between the annual variations of the drift current of the Straits of Florida, of sea-level, and of the wind stress data are established. The annual march of the sea-level difference between Cat Cay and Miami Beach is computed. It is shown to have a close relation to the annual march of the average charted drift current in the Straits of Florida. The relatively few observations used for these computations are nevertheless shown to be representative. In order to extend the use of the sea-level data, the connection between the S-N component of the mean wind stress in the area of the Florida Straits and the mean sea-level of the same section is studied and a relatively close connection is found. Thus it is shown that, after a proper correction due to the variations of the local wind stress, the sea-level observations at Miami Beach may be used as an index of the year by year fluctuations in the Florida Current. INTRODUCTION Since the northeast trades and westerlies, from which the Gulf Stream system obtains its energy, fluctuate in position and velocity with the different seasons of the year, and probably to some extent from year to year, it is generally assumed that this system of water currents similarly fluctuates in strength. The considerable theoretical and practical importance of an accurate knowledge of these fluctua- tions is well known to oceanographers.
    [Show full text]
  • Thermohaline Circulation (From Britannica)
    Thermohaline circulation (from Britannica) The general circulation of the oceans consists primarily of the wind-driven currents. These, however, are superimposed on the much more sluggish circulation driven by horizontal differences in temperature and salinity—namely, the thermohaline circulation. The thermohaline circulation reaches down to the seafloor and is often referred to as the deep, or abyssal, ocean circulation. Measuring seawater temperature and salinity distribution is the chief method of studying the deep-flow patterns. Other properties also are examined; for example, the concentrations of oxygen, carbon-14, and such synthetically produced compounds as chlorofluorocarbons are measured to obtain resident times and spreading rates of deep water. In some areas of the ocean, generally during the winter season, cooling or net evaporation causes surface water to become dense enough to sink. Convection penetrates to a level where the density of the sinking water matches that of the surrounding water. It then spreads slowly into the rest of the ocean. Other water must replace the surface water that sinks. This sets up the thermohaline circulation. The basic thermohaline circulation is one of sinking of cold water in the polar regions, chiefly in the northern North Atlantic and near Antarctica. These dense water masses spread into the full extent of the ocean and gradually upwell to feed a slow return flow to the sinking regions. A theory for the thermohaline circulation pattern was proposed by Stommel and Arnold Arons in 1960. In the Northern Hemisphere, the primary region of deep water formation is the North Atlantic; minor amounts of deep water are formed in the Red Sea and Persian Gulf.
    [Show full text]
  • Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
    - 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]].
    [Show full text]
  • Multidecadal and NA0 Related Variability in a Numerical Model of the North Atlantic Circulation
    Multidecadal and NA0 related variability in a numerical model of the North Atlantic circulation Multidekadische und NA0 bezogene Variabilitäin einem numerischen Modell des Nordatlantiks Jennifer P. Brauch Ber. Polarforsch. Meeresforsch. 478 (2004) ISSN 1618 - 3193 Jennifer P. Brauch UVic Climate Modelling Research Group PO Box 3055, Victoria, BC, V8W 3P6, Canada http://climate.uvic.ca/ [email protected] Die vorliegende Arbeit ist die inhaltlich unverändert Fassung einer Dis- sertation, die 2003 im Fachbereich Physik/Elektrotechnik der Universitä Bremen vorgelegt wurde. Sie ist in elektronischer Form erhältlic unter http://elib.suub.uni-brernen.de/. Contents Zusammenfassung iii Abstract V 1 Introduction 1 2 Background 5 2.1 Main Characteristics of the Arctic and North Atlantic Ocean .... 5 2.1.1 Bathymetry ............................ 5 2.1.2 Major currents .......................... 7 2.1.3 Hydrography ........................... 8 2.1.4 Seaice ............................... 11 2.1.5 Convection ............................ 12 2.2 Variability ................................. 13 2.2.1 NA0 ................................ 13 2.2.2 Variability in the Arctic Mediterranean ............ 17 2.2.3 GSA ................................19 2.2.4 Oscillations in ocean models .................. 20 3 Model description 3.1 Ocean model ................................ 3.1.1 Equations ............................. 3.1.2 Setup ................................ 3.2 Sea Ice model ............................... 3.2.1 Equations ............................
    [Show full text]
  • Eddy-Driven Recirculation of Atlantic Water in Fram Strait
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Eddy-driven recirculation of Atlantic Water in Fram Strait 10.1002/2016GL068323 Tore Hattermann1,2, Pål Erik Isachsen3,4, Wilken-Jon von Appen2, Jon Albretsen5, and Arild Sundfjord6 Key Points: 1Akvaplan-niva AS, High North Research Centre, Tromsø, Norway, 2Alfred Wegener Institute, Helmholtz Centre for Polar and • fl Seasonally varying eddy-mean ow 3 4 interaction controls recirculation of Marine Research, Bremerhaven, Germany, Norwegian Meteorological Institute, Oslo, Norway, Institute of Geosciences, 5 6 Atlantic Water in Fram Strait University of Oslo, Oslo, Norway, Institute for Marine Research, Bergen, Norway, Norwegian Polar Institute, Tromsø, Norway • The bulk recirculation occurs in a cyclonic gyre around the Molloy Hole at 80 degrees north Abstract Eddy-resolving regional ocean model results in conjunction with synthetic float trajectories and • A colder westward current south of observations provide new insights into the recirculation of the Atlantic Water (AW) in Fram Strait that 79 degrees north relates to the Greenland Sea Gyre, not removing significantly impacts the redistribution of oceanic heat between the Nordic Seas and the Arctic Ocean. The Atlantic Water from the slope current simulations confirm the existence of a cyclonic gyre around the Molloy Hole near 80°N, suggesting that most of the AW within the West Spitsbergen Current recirculates there, while colder AW recirculates in a Supporting Information: westward mean flow south of 79°N that primarily relates to the eastern rim of the Greenland Sea Gyre. The • Supporting Information S1 fraction of waters recirculating in the northern branch roughly doubles during winter, coinciding with a • Movie S1 seasonal increase of eddy activity along the Yermak Plateau slope that also facilitates subduction of AW Correspondence to: beneath the ice edge in this area.
    [Show full text]
  • Observations of the North Equatorial Current, Mindanao Current, and Kuroshio Current System During the 2006/ 07 El Niño and 2007/08 La Niña
    Journal of Oceanography, Vol. 65, pp. 325 to 333, 2009 Observations of the North Equatorial Current, Mindanao Current, and Kuroshio Current System during the 2006/ 07 El Niño and 2007/08 La Niña 1 2 3 4 YUJI KASHINO *, NORIEVILL ESPAÑA , FADLI SYAMSUDIN , KELVIN J. RICHARDS , 4† 5 1 TOMMY JENSEN , PIERRE DUTRIEUX and AKIO ISHIDA 1Institute of Observational Research for Global Change, Japan Agency for Marine Earth Science and Technology, Natsushima, Yokosuka 237-0061, Japan 2The Marine Science Institute, University of the Philippines, Quezon 1101, Philippines 3Badan Pengkajian Dan Penerapan Teknologi, Jakarta 10340, Indonesia 4International Pacific Research Center, University of Hawaii, Honolulu, HI 96822, U.S.A. 5Department of Oceanography, University of Hawaii, Honolulu, HI 96822, U.S.A. (Received 19 September 2008; in revised form 17 December 2008; accepted 17 December 2008) Two onboard observation campaigns were carried out in the western boundary re- Keywords: gion of the Philippine Sea in December 2006 and January 2008 during the 2006/07 El ⋅ North Equatorial Niño and the 2007/08 La Niña to observe the North Equatorial Current (NEC), Current, ⋅ Mindanao Current (MC), and Kuroshio current system. The NEC and MC measured Mindanao Current, ⋅ in late 2006 under El Niño conditions were stronger than those measured during early Kuroshio, ⋅ 2006/07 El Niño, 2008 under La Niña conditions. The opposite was true for the current speed of the ⋅ 2007/08 La Niña. Kuroshio, which was stronger in early 2008 than in late 2006. The increase in dy- namic height around 8°N, 130°E from December 2006 to January 2008 resulted in a weakening of the NEC and MC.
    [Show full text]
  • A Persistent Norwegian Atlantic Current Through the Pleistocene Glacials
    A persistent Norwegian Atlantic Current through the Pleistocene glacials Newton, A. M. W., Huuse, M., & Brocklehurst, S. H. (2018). A persistent Norwegian Atlantic Current through the Pleistocene glacials. Geophysical Research Letters. https://doi.org/10.1029/2018GL077819 Published in: Geophysical Research Letters Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2018 the authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:01. Oct. 2021 Geophysical Research Letters RESEARCH LETTER A Persistent Norwegian Atlantic Current Through 10.1029/2018GL077819 the Pleistocene Glacials Key Points: A. M. W. Newton1,2,3 , M. Huuse1,2 , and S.
    [Show full text]
  • The East Greenland Current North of Denmark Strait: Part I'
    The East Greenland Current North of Denmark Strait: Part I' K. AAGAARD AND L. K. COACHMAN2 ABSTRACT.Current measurements within the East Greenland Current during winter1965 showed that above thecontinental slope there were large on-shore components of flow, probably representing a westward Ekman transport. The speed did not decrease significantly with depth, indicatingthat the barotropic mode domi- nates the flow. Typical current speeds were10 to 15 cm. sec.-l. The transport of the current during winter exceeds 35 x 106 m.3 sec-1. This is an order of magnitude greater than previous estimates and, although there may be seasonal fluctuations in the transport, it suggests that the East Greenland Current primarily represents a circulation internal to the Greenland and Norwegian seas, rather than outflow from the central Polarbasin. RESUME. Lecourant du Groenland oriental au nord du dbtroit de Danemark. Aucours de l'hiver de 1965, des mesures effectukes danslecourant du Groenland oriental ont montr6 que sur le talus continental, la circulation comporte d'importantes composantes dirigkes vers le rivage, ce qui reprksente probablement un flux vers l'ouest selon le mouvement #Ekman. La vitesse ne diminue pas beau- coup avec laprofondeur, ce qui indique que le mode barotropique domine la circulation. Les vitesses typiques du courant sont de 10 B 15 cm/s-1. Au cows de l'hiver, le debit du courant dkpasse 35 x 106 m3/s-1. Cet ordre de grandeur dkpasse les anciennes estimations et, malgrC les fluctuations saisonnihres possibles, il semble que le courant du Groenland oriental correspond surtout B une circulation interne des mers du Groenland et de Norvhge, plut6t qu'8 un Bmissaire du bassin polaire central.
    [Show full text]
  • Surface Currents Near the Greater and Lesser Antilles
    SURFACE CURRENTS NEAR THE GREATER AND LESSER ANTILLES by C.P. DUNCAN rl, S.G. SCHLADOW1'1 and W.G. WILLIAMS SUMMARY The surface flow around the Greater and Lesser Antilles is shown to differ considerably from the widely accepted current system composed of the Caribbean Current and Antilles Current. The most prominent features deduced from dynamic topography are a flow from the north into the Caribbean near Puerto Rico and a permanent eastward-flowing counter-current in the Caribbean itself between Puerto Rico and Venezuela. Noticeably absent is the Antilles Current. A satellite-tracked buoy substantiates the slow southward flow into the Caribbean and the absence of the Antilles Current. INTRODUCTION Pilot Charts for the North Atlantic and the Caribbean Sea (Defense Mapping Agency, 1968) show westerly surface currents to the North and South of Puerto Rico. The Caribbean Current is presented as an uninterrupted flow which passes through the Caribbean Sea, Yucatan Straits, Gulf of Mexico, and Florida Straits to become the Gulf Stream. It is joined off the east coast of Florida by the Antilles Current which is shown as flowing westwards along the north coast of Puerto Rico and then north-westerly along the northern edge of the Bahamas (BOISVERT, 1967). These surface currents are depicted as extensions of the North Equatorial Current and the Guyana Current, and as forming part of the subtropical gyre. As might be expected in the absence of a western boundary, the flow is slow-moving, shallow and broad. This interpretation of the surface currents is also presented by WUST (1964) who employs the same set of ship’s drift observations as are used in the Pilot Charts.
    [Show full text]
  • The Equatorial Current System
    The Equatorial Current System C. Chen General Physical Oceanography MAR 555 School for Marine Sciences and Technology Umass-Dartmouth 1 Two subtropic gyres: Anticyclonic gyre in the northern subtropic region; Cyclonic gyre in the southern subtropic region Continuous components of these two gyres: • The North Equatorial Current (NEC) flowing westward around 20o N; • The South Equatorial Current (SEC) flowing westward around 0o to 5o S • Between these two equatorial currents is the Equatorial Counter Current (ECC) flowing eastward around 10o N. 2 Westerly wind zone 30o convergence o 20 N Equatorial Current EN Trade 10o divergence Equatorial Counter Current convergence o -10 S. Equatorial Current ES Trade divergence -20o convergence -30o Westerly wind zone 3 N.E.C N.E.C.C S.E.C 0 50 Mixed layer 100 150 Thermoclines 200 25oN 20o 15o 10o 5o 0 5o 10o 15o 20o 25oS 4 Equatorial Undercurrent Sea level East West Wind stress Rest sea level Mixed layer lines Thermoc • At equator, f =0, the current follows the wind direction, and the wind drives the water to move westward; • The water accumulates against the western boundary and cause the sea level rises over there; • The surface pressure gradient pushes the water eastward and cancels the wind-driven westward currents in the mixed layer. 5 Wind-induced Current Pressure-driven Current Equatorial Undercurrent Mixed layer Thermoclines 6 Observational Evidence 7 Urbano et al. (2008), JGR-Ocean, 113, C04041, doi: 10.1029/2007/JC004215 8 Observed Seasonal Variability of the EUC (Urbano et al. 2008) 9 Equatorial Undercurrent in the Pacific Ocean Isotherms in an equatorial plane in the Pacific Ocean (from Philander, 1980) In the Pacific Ocean, it is called “the Cormwell Current}; In the Atlantic Ocean, it is called “the Lomonosov Current” 10 Kessler, W, Progress in Oceanography, 69 (2006) 11 In the equatorial Pacific, when the South-East Trade relaxes or turns to the east, the sea surface slope will “collapse”, causing a flat mixed layer and thermocline.
    [Show full text]
  • Chapter 8 the Pacific Ocean After These Two Lengthy Excursions Into
    Chapter 8 The Pacific Ocean After these two lengthy excursions into polar oceanography we are now ready to test our understanding of ocean dynamics by looking at one of the three major ocean basins. The Pacific Ocean is not everyone's first choice for such an undertaking, mainly because the traditional industrialized nations border the Atlantic Ocean; and as science always follows economics and politics (Tomczak, 1980), the Atlantic Ocean has been investigated in far more detail than any other. However, if we want to take the summary of ocean dynamics and water mass structure developed in our first five chapters as a starting point, the Pacific Ocean is a much more logical candidate, since it comes closest to our hypothetical ocean which formed the basis of Figures 3.1 and 5.5. We therefore accept the lack of observational knowledge, particularly in the South Pacific Ocean, and see how our ideas of ocean dynamics can help us in interpreting what we know. Bottom topography The Pacific Ocean is the largest of all oceans. In the tropics it spans a zonal distance of 20,000 km from Malacca Strait to Panama. Its meridional extent between Bering Strait and Antarctica is over 15,000 km. With all its adjacent seas it covers an area of 178.106 km2 and represents 40% of the surface area of the world ocean, equivalent to the area of all continents. Without its Southern Ocean part the Pacific Ocean still covers 147.106 km2, about twice the area of the Indian Ocean. Fig. 8.1. The inter-oceanic ridge system of the world ocean (heavy line) and major secondary ridges.
    [Show full text]
  • Simulation of Current Dynamics and Disintegration in Drake Passage with the Regional Ocean Modelling System (ROMS)
    Simulation of current dynamics and disintegration in Drake Passage with the Regional Ocean Modelling System (ROMS) OPB205 MODELISATION OF OCEAN CIRCULATION Master Oceanography, first year 2015 – 2016 Project by Maximilian Unterberger, under direction of Mr. Andrea Doglioli (Assistant Professor in Physical Oceanography, Mediterranean Institute of Oceanography) 30 April 2016 OPB205 Maximilian Unterberger Abstract The influences of current dynamics and disintegration on the Drake Passage in the Southern Ocean is expected to be significant. A boundary current that originates in the South Pacific is entering the Drake Passage in the east and disintegrates inside it in a set of anticyclonic eddies. The integration might be essential for the mixing in the passage and the formation of the Circumpolar Deep Water and thus be necessary for the inducement of the Antarctic Circumpolar Current (ACC) which effects the global Meridional Overturning Circulation (MOC). This theory is assembled and further investigated by J. Alexander Brearley et al. (2014). In dependence of their findings, this work focuses on the same dynamic processes in the Drake Passage. With the regional ocean model simulation (ROMS) software, simulations shall give information about the extremely complex regional activities and the possible impact on MOC. Obtained results with ROMS show deep water masses of low salinity and high temperature originated in the east pacific, flowing partly along the Cape horn but mainly entering the passage directly. This indicates the disintegration of Pacific Deep Water. The integrated current is also visible in the passage in form of a major anticyclonic eddy which with similar temperature and salinity properties and an appearance over the whole water column.
    [Show full text]