Ocean Circulation and Climate: a 21St Century Perspective
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Fluctuations of the Florida Current!
BULLETIN OF MARINE SCIENCE OF THE GULF AND CARIBBEAN VOLUME 1 1952 NUMBER 4 THE FLUCTUATIONS OF THE FLORIDA CURRENT! ILMO HELA The Marine Laboratory, University of Miami ABSTRACT Correlations between the annual variations of the drift current of the Straits of Florida, of sea-level, and of the wind stress data are established. The annual march of the sea-level difference between Cat Cay and Miami Beach is computed. It is shown to have a close relation to the annual march of the average charted drift current in the Straits of Florida. The relatively few observations used for these computations are nevertheless shown to be representative. In order to extend the use of the sea-level data, the connection between the S-N component of the mean wind stress in the area of the Florida Straits and the mean sea-level of the same section is studied and a relatively close connection is found. Thus it is shown that, after a proper correction due to the variations of the local wind stress, the sea-level observations at Miami Beach may be used as an index of the year by year fluctuations in the Florida Current. INTRODUCTION Since the northeast trades and westerlies, from which the Gulf Stream system obtains its energy, fluctuate in position and velocity with the different seasons of the year, and probably to some extent from year to year, it is generally assumed that this system of water currents similarly fluctuates in strength. The considerable theoretical and practical importance of an accurate knowledge of these fluctua- tions is well known to oceanographers. -
The Mean Flow Field of the Tropical Atlantic Ocean
Deep-Sea Research II 46 (1999) 279—303 The mean flow field of the tropical Atlantic Ocean Lothar Stramma*, Friedrich Schott Institut fu( r Meereskunde, an der Universita( t Kiel, Du( sternbrooker Weg 20, 24105 Kiel, Germany Received 26 August 1997; received in revised form 31 July 1998 Abstract The mean horizontal flow field of the tropical Atlantic Ocean is described between 20°N and 20°S from observations and literature results for three layers of the upper ocean, Tropical Surface Water, Central Water, and Antarctic Intermediate Water. Compared to the subtropical gyres the tropical circulation shows several zonal current and countercurrent bands of smaller meridional and vertical extent. The wind-driven Ekman layer in the upper tens of meters of the ocean masks at some places the flow structure of the Tropical Surface Water layer as is the case for the Angola Gyre in the eastern tropical South Atlantic. Although there are regions with a strong seasonal cycle of the Tropical Surface Water circulation, such as the North Equatorial Countercurrent, large regions of the tropics do not show a significant seasonal cycle. In the Central Water layer below, the eastward North and South Equatorial undercurrents appear imbedded in the westward-flowing South Equatorial Current. The Antarcic Intermediate Water layer contains several zonal current bands south of 3°N, but only weak flow exists north of 3°N. The sparse available data suggest that the Equatorial Intermediate Current as well as the Southern and Northern Intermediate Countercurrents extend zonally across the entire equatorial basin. Due to the convergence of northern and southern water masses, the western tropical Atlantic north of the equator is an important site for the mixture of water masses, but more work is needed to better understand the role of the various zonal under- and countercur- rents in cross-equatorial water mass transfer. -
3 Atmospheric Motion
Final PDF to printer CHAPTER 3 Atmospheric Motion MOTION OF THE EARTH’S ATMOSPHERE has a great influence on human lives by controlling climate, rainfall, weather patterns, and long-range transportation. It is driven largely by differences in insolation, with influences from other factors, including topography, land-sea interfaces, and especially rotation of the planet. These factors control motion at local scales, like between a mountain and valley, at larger scales encompassing major storm systems, and at global scales, determining the prevailing wind directions for the broader planet. All of these circulations are governed by similar physical principles, which explain wind, weather patterns, and climate. Broad-scale patterns of atmospheric circulation are shown here for the Northern Hemisphere. Examine all the components on this figure and think about what you know about each. Do you recognize some of the features and names? Two features on this figure are identified with the term “jet stream.” You may have heard this term watching the nightly weather report or from a captain on a cross-country airline flight. What is a jet stream and what effect does it have on weather and flying? Prominent labels of H and L represent areas with relatively higher and lower air pressure, respectively. What is air pressure and why do some areas have higher or lower pressure than other areas? Distinctive wind patterns, shown by white arrows, are associated with the areas of high and low pressure. The winds are flowing outward and in a clockwise direction from the high, but inward and in a counterclockwise direction from the low. -
Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
- 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]]. -
Climate and Atmospheric Circulation of Mars
Climate and QuickTime™ and a YUV420 codec decompressor are needed to see this picture. Atmospheric Circulation of Mars: Introduction and Context Peter L Read Atmospheric, Oceanic & Planetary Physics, University of Oxford Motivating questions • Overview and phenomenology – Planetary parameters and ‘geography’ of Mars – Zonal mean circulations as a function of season – CO2 condensation cycle • Form and style of Martian atmospheric circulation? • Key processes affecting Martian climate? • The Martian climate and circulation in context…..comparative planetary circulation regimes? Books? • D. G. Andrews - Intro….. • J. T. Houghton - The Physics of Atmospheres (CUP) ALSO • I. N. James - Introduction to Circulating Atmospheres (CUP) • P. L. Read & S. R. Lewis - The Martian Climate Revisited (Springer-Praxis) Ground-based observations Percival Lowell Lowell Observatory (Arizona) [Image source: Wikimedia Commons] Mars from Hubble Space Telescope Mars Pathfinder (1997) Mars Exploration Rovers (2004) Orbiting spacecraft: Mars Reconnaissance Orbiter (NASA) Image credits: NASA/JPL/Caltech Mars Express orbiter (ESA) • Stereo imaging • Infrared sounding/mapping • UV/visible/radio occultation • Subsurface radar • Magnetic field and particle environment MGS/TES Atmospheric mapping From: Smith et al. (2000) J. Geophys. Res., 106, 23929 DATA ASSIMILATION Spacecraft Retrieved atmospheric parameters ( p,T,dust...) - incomplete coverage - noisy data..... Assimilation algorithm Global 3D analysis - sequential estimation - global coverage - 4Dvar .....? - continuous in time - all variables...... General Circulation Model - continuous 3D simulation - complete self-consistent Physics - all variables........ - time-dependent circulation LMD-Oxford/OU-IAA European Mars Climate model • Global numerical model of Martian atmospheric circulation (cf Met Office, NCEP, ECMWF…) • High resolution dynamics – Typically T31 (3.75o x 3.75o) – Most recently up to T170 (512 x 256) – 32 vertical levels stretched to ~120 km alt. -
The Evolution and Demise of North Brazil Current Rings*
VOLUME 36 JOURNAL OF PHYSICAL OCEANOGRAPHY JULY 2006 The Evolution and Demise of North Brazil Current Rings* DAVID M. FRATANTONI Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts PHILIP L. RICHARDSON Department of Physical Oceanography, Woods Hole Oceeanographic Institution, and Associated Scientists at Woods Hole, Woods Hole, Massachusetts (Manuscript received 27 May 2004, in final form 26 October 2005) ABSTRACT Subsurface float and surface drifter observations illustrate the structure, evolution, and eventual demise of 10 North Brazil Current (NBC) rings as they approached and collided with the Lesser Antilles in the western tropical Atlantic Ocean. Upon encountering the shoaling topography east of the Lesser Antilles, most of the rings were deflected abruptly northward and several were observed to completely engulf the island of Barbados. The near-surface and subthermocline layers of two rings were observed to cleave or separate upon encountering shoaling bathymetry between Tobago and Barbados, with the resulting por- tions each retaining an independent and coherent ringlike vortical circulation. Surface drifters and shallow (250 m) subsurface floats that looped within NBC rings were more likely to enter the Caribbean through the passages of the Lesser Antilles than were deeper (500 or 900 m) floats, indicating that the regional bathymetry preferentially inhibits transport of intermediate-depth ring components. No evidence was found for the wholesale passage of rings through the island chain. 1. Introduction ration from the NBC, anticyclonic rings with azimuthal speeds approaching 100 cm sϪ1 move northwestward a. Background toward the Caribbean Sea on a course parallel to the The North Brazil Current (NBC) is an intense west- South American coastline (Johns et al. -
Annual Cycle and Variability of the North Brazil Current
JANUARY 1998 JOHNS ET AL. 103 Annual Cycle and Variability of the North Brazil Current W. E. J OHNS AND T. N . L EE Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida R. C. BEARDSLEY,J.CANDELA, AND R. LIMEBURNER Woods Hole Oceanographic Institution, Woods Hole, Massachusetts B. CASTRO Instituto Oceanogra®co Universidade SaÄo Paulo, SaÄo Paulo, Brazil (Manuscript received 18 October 1996, in ®nal form 5 June 1997) ABSTRACT Current meter observations from an array of three subsurface moorings located on the Brazil continental slope near 48N are used to describe the annual cycle and low-frequency variability of the North Brazil Current (NBC). The moored array was deployed from September 1989 to January 1991, with further extension of the shallowest mooring, located over the 500-m isobath near the axis of the NBC, through September 1991. Moored current measurements were also obtained over the adjacent shelf for a limited time between February and May 1990. The NBC has a large annual cycle at this latitude, ranging from a maximum transport of 36 Sv (Sv [ 106 m3 s21) in July±August to a minimum of 13 Sv in April±May, with an annual mean transport of approximately 26 Sv. The mean transport is dominated by ¯ow in the upper 150 m, and the seasonal cycle is contained almost entirely in the top 300 m. Transport over the continental shelf is 3±5 Sv and appears to be fairly constant throughout the year, based on the available current meter records and shipboard ADCP surveys. The NBC transport cycle is in good agreement with linear wind-driven models and appears to be in near-equilibrium with remote wind stress curl forcing across the tropical Atlantic for much of the year. -
History of Frontal Concepts Tn Meteorology
HISTORY OF FRONTAL CONCEPTS TN METEOROLOGY: THE ACCEPTANCE OF THE NORWEGIAN THEORY by Gardner Perry III Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June, 1961 Signature of'Author . ~ . ........ Department of Humangties, May 17, 1959 Certified by . v/ .-- '-- -T * ~ . ..... Thesis Supervisor Accepted by Chairman0 0 e 0 o mmite0 0 Chairman, Departmental Committee on Theses II ACKNOWLEDGMENTS The research for and the development of this thesis could not have been nearly as complete as it is without the assistance of innumerable persons; to any that I may have momentarily forgotten, my sincerest apologies. Conversations with Professors Giorgio de Santilw lana and Huston Smith provided many helpful and stimulat- ing thoughts. Professor Frederick Sanders injected thought pro- voking and clarifying comments at precisely the correct moments. This contribution has proven invaluable. The personnel of the following libraries were most cooperative with my many requests for assistance: Human- ities Library (M.I.T.), Science Library (M.I.T.), Engineer- ing Library (M.I.T.), Gordon MacKay Library (Harvard), and the Weather Bureau Library (Suitland, Md.). Also, the American Meteorological Society and Mr. David Ludlum were helpful in suggesting sources of material. In getting through the myriad of minor technical details Professor Roy Lamson and Mrs. Blender were indis-. pensable. And finally, whatever typing that I could not find time to do my wife, Mary, has willingly done. ABSTRACT The frontal concept, as developed by the Norwegian Meteorologists, is the foundation of modern synoptic mete- orology. The Norwegian theory, when presented, was rapidly accepted by the world's meteorologists, even though its several precursors had been rejected or Ignored. -
Climate & Currents Introduction
Introduction to Climate and Currents Wind is air moving across the surface of the Earth. Ultimately all winds are generated by unequal heating of the Earth by the sun. Because the sun is millions of miles away from the earth, the rays of light and heat from the sun that reach the surface of the Earth are parallel to one another. But the Earth is round, and only at the equator does energy from the sun fall on a flat surface at a right angle to the sun. At the poles solar radiation fall on surfaces that curve sharply away from the sun. To demonstrate this, shine a flashlight on a flat surface so that the beam of light is perpendicular (at a right angle) to the surface. Draw a circle around the spot of light. Now tilt the flat surface so that it is at a 45o angle to the flashlight. Now the spot of light shining on the surface is oblong, not round, and it is now almost two times larger that the first spot. The spot of light is also dimmer now because the light of the flashlight beam is spread over a larger area than before. This same principle applies to the Earth and sun. The equator will always receive more energy from the sun than will comparable areas north or south of the equator. Also, the surface of the Earth directly beneath the sun at high noon also receives more energy than do areas to the east or west. Thus the Earth’s surface along the equator is always warmer than are the polar regions, and it is always warmer at noon than at dawn and dusk. -
Accurately Monitoring the Florida Current with Motionally Induced
Journal of Marine Research, 45, 843-870, 1987 Accurately monitoring the Florida Current with motion ally induced voltages by Peter Spain) and Thomas B. Sanford) ABSTRACT A new experimental technique for appraising how accurately submarine-cable (subcable) voltages monitor oceanic volume transport is presented and then used to study voltages induced by the northern Florida Current. Until recently, subcable voltages have been largely dismissed as an oceanographic tool because their interpretation can be ambiguous. They depend upon the transport field, the electrical conductance of the environment, and the mutual spatial distribu- tion of these two quantities. To examine how these three factors affect subcable voltages at a particular site, we combine data from two different velocity profilers: XCP and PEGASUS. These instruments provide vertical profiles of velocity, temperature, and motionally induced voltage at several sites across a transect. From this information, we determine if and why subcable voltages track volume transport. We conclude that subcable voltages measured in the northern Florida Straits accurately monitor the Florida Current transport because they are insensitive to the spatial distribution of the flow-a result that stems from a large and rather uniform seabed conductance. Subcable voltages should be reconsidered for oceanic monitoring elsewhere because the validity of their interpretation can now be assessed. 1. Introduction Significant fluctuations in volume transport accompany the seasonal and inter- annual variability of many oceanic phenomena. Some examples include the annual reversal of the Somali Current in response to the transition of the monsoons (Leetmaa et aI., 1980), the interannual movement of the Kuroshio between its bimodal paths (Taft, 1972), and the attenuation of the Pacific equatorial undercurrent during an EI Nino (Firing et al., 1983). -
Lecture 6 Winds: Atmosphere and Ocean Circulation
Lecture 6 Winds: Atmosphere and Ocean Circulation The global atmospheric circulation and its seasonal variability is driven by the uneven solar heating of the Earth’s atmosphere and surface. Solar radiation on a planet at different axial inclinations. The concept of flux density (1/d2, energy/time/area) and the cosine law. Because Earth’s rotation axis is tilted relative to the plane of its orbit around the sun, there is seasonal variability in the geographical distribution of sunshine March 21, vernal equinox December 21, winter solstice June 21, summer solstice September 23, autumnal equinox Zonally averaged components of the annual mean absorbed solar flux, emitted Earth’s infrared flux, and net radiative flux at the top of the atmosphere, derived from satellite observations. + _ _ The geographical distribution of temperature and its seasonal variability closely follows the geographical distribution of sunshine (solar radiation). Temperature plays a direct role in determining the climate of every region. Temperature differences are also key in driving the global atmospheric circulation. Warm air tends to rise because it is light, while cold air tends to sink because it is dense, this sets the atmosphere in motion. The tropical circulation is a good example of this. In addition to understanding how temperature affects the atmospheric circulation, we also need to understand one of the basic forces governing air and water motion on earth: The Coriolis Force. But to understand this effect, we first need to review the concept of angular momentum conservation. Angular momentum conservation means that if a rotating object moves closer to its axis of rotation, it must speed up to conserve angular momentum. -
CHAPTER 3 Transport and Dispersion of Air Pollution
CHAPTER 3 Transport and Dispersion of Air Pollution Lesson Goal Demonstrate an understanding of the meteorological factors that influence wind and turbulence, the relationship of air current stability, and the effect of each of these factors on air pollution transport and dispersion; understand the role of topography and its influence on air pollution, by successfully completing the review questions at the end of the chapter. Lesson Objectives 1. Describe the various methods of air pollution transport and dispersion. 2. Explain how dispersion modeling is used in Air Quality Management (AQM). 3. Identify the four major meteorological factors that affect pollution dispersion. 4. Identify three types of atmospheric stability. 5. Distinguish between two types of turbulence and indicate the cause of each. 6. Identify the four types of topographical features that commonly affect pollutant dispersion. Recommended Reading: Godish, Thad, “The Atmosphere,” “Atmospheric Pollutants,” “Dispersion,” and “Atmospheric Effects,” Air Quality, 3rd Edition, New York: Lewis, 1997, pp. 1-22, 23-70, 71-92, and 93-136. Transport and Dispersion of Air Pollution References Bowne, N.E., “Atmospheric Dispersion,” S. Calvert and H. Englund (Eds.), Handbook of Air Pollution Technology, New York: John Wiley & Sons, Inc., 1984, pp. 859-893. Briggs, G.A. Plume Rise, Washington, D.C.: AEC Critical Review Series, 1969. Byers, H.R., General Meteorology, New York: McGraw-Hill Publishers, 1956. Dobbins, R.A., Atmospheric Motion and Air Pollution, New York: John Wiley & Sons, 1979. Donn, W.L., Meteorology, New York: McGraw-Hill Publishers, 1975. Godish, Thad, Air Quality, New York: Academic Press, 1997, p. 72. Hewson, E. Wendell, “Meteorological Measurements,” A.C.