Oceanography by Pavan K
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thermohaline Circulation (From Britannica)
Thermohaline circulation (from Britannica) The general circulation of the oceans consists primarily of the wind-driven currents. These, however, are superimposed on the much more sluggish circulation driven by horizontal differences in temperature and salinity—namely, the thermohaline circulation. The thermohaline circulation reaches down to the seafloor and is often referred to as the deep, or abyssal, ocean circulation. Measuring seawater temperature and salinity distribution is the chief method of studying the deep-flow patterns. Other properties also are examined; for example, the concentrations of oxygen, carbon-14, and such synthetically produced compounds as chlorofluorocarbons are measured to obtain resident times and spreading rates of deep water. In some areas of the ocean, generally during the winter season, cooling or net evaporation causes surface water to become dense enough to sink. Convection penetrates to a level where the density of the sinking water matches that of the surrounding water. It then spreads slowly into the rest of the ocean. Other water must replace the surface water that sinks. This sets up the thermohaline circulation. The basic thermohaline circulation is one of sinking of cold water in the polar regions, chiefly in the northern North Atlantic and near Antarctica. These dense water masses spread into the full extent of the ocean and gradually upwell to feed a slow return flow to the sinking regions. A theory for the thermohaline circulation pattern was proposed by Stommel and Arnold Arons in 1960. In the Northern Hemisphere, the primary region of deep water formation is the North Atlantic; minor amounts of deep water are formed in the Red Sea and Persian Gulf. -
Multidecadal and NA0 Related Variability in a Numerical Model of the North Atlantic Circulation
Multidecadal and NA0 related variability in a numerical model of the North Atlantic circulation Multidekadische und NA0 bezogene Variabilitäin einem numerischen Modell des Nordatlantiks Jennifer P. Brauch Ber. Polarforsch. Meeresforsch. 478 (2004) ISSN 1618 - 3193 Jennifer P. Brauch UVic Climate Modelling Research Group PO Box 3055, Victoria, BC, V8W 3P6, Canada http://climate.uvic.ca/ [email protected] Die vorliegende Arbeit ist die inhaltlich unverändert Fassung einer Dis- sertation, die 2003 im Fachbereich Physik/Elektrotechnik der Universitä Bremen vorgelegt wurde. Sie ist in elektronischer Form erhältlic unter http://elib.suub.uni-brernen.de/. Contents Zusammenfassung iii Abstract V 1 Introduction 1 2 Background 5 2.1 Main Characteristics of the Arctic and North Atlantic Ocean .... 5 2.1.1 Bathymetry ............................ 5 2.1.2 Major currents .......................... 7 2.1.3 Hydrography ........................... 8 2.1.4 Seaice ............................... 11 2.1.5 Convection ............................ 12 2.2 Variability ................................. 13 2.2.1 NA0 ................................ 13 2.2.2 Variability in the Arctic Mediterranean ............ 17 2.2.3 GSA ................................19 2.2.4 Oscillations in ocean models .................. 20 3 Model description 3.1 Ocean model ................................ 3.1.1 Equations ............................. 3.1.2 Setup ................................ 3.2 Sea Ice model ............................... 3.2.1 Equations ............................ -
A Persistent Norwegian Atlantic Current Through the Pleistocene Glacials
A persistent Norwegian Atlantic Current through the Pleistocene glacials Newton, A. M. W., Huuse, M., & Brocklehurst, S. H. (2018). A persistent Norwegian Atlantic Current through the Pleistocene glacials. Geophysical Research Letters. https://doi.org/10.1029/2018GL077819 Published in: Geophysical Research Letters Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2018 the authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:01. Oct. 2021 Geophysical Research Letters RESEARCH LETTER A Persistent Norwegian Atlantic Current Through 10.1029/2018GL077819 the Pleistocene Glacials Key Points: A. M. W. Newton1,2,3 , M. Huuse1,2 , and S. -
Surface Currents Near the Greater and Lesser Antilles
SURFACE CURRENTS NEAR THE GREATER AND LESSER ANTILLES by C.P. DUNCAN rl, S.G. SCHLADOW1'1 and W.G. WILLIAMS SUMMARY The surface flow around the Greater and Lesser Antilles is shown to differ considerably from the widely accepted current system composed of the Caribbean Current and Antilles Current. The most prominent features deduced from dynamic topography are a flow from the north into the Caribbean near Puerto Rico and a permanent eastward-flowing counter-current in the Caribbean itself between Puerto Rico and Venezuela. Noticeably absent is the Antilles Current. A satellite-tracked buoy substantiates the slow southward flow into the Caribbean and the absence of the Antilles Current. INTRODUCTION Pilot Charts for the North Atlantic and the Caribbean Sea (Defense Mapping Agency, 1968) show westerly surface currents to the North and South of Puerto Rico. The Caribbean Current is presented as an uninterrupted flow which passes through the Caribbean Sea, Yucatan Straits, Gulf of Mexico, and Florida Straits to become the Gulf Stream. It is joined off the east coast of Florida by the Antilles Current which is shown as flowing westwards along the north coast of Puerto Rico and then north-westerly along the northern edge of the Bahamas (BOISVERT, 1967). These surface currents are depicted as extensions of the North Equatorial Current and the Guyana Current, and as forming part of the subtropical gyre. As might be expected in the absence of a western boundary, the flow is slow-moving, shallow and broad. This interpretation of the surface currents is also presented by WUST (1964) who employs the same set of ship’s drift observations as are used in the Pilot Charts. -
Transport Variability of the Deep Western Boundary Current and The
ARTICLE IN PRESS Deep-Sea Research I 51 (2004) 1397–1415 www.elsevier.com/locate/dsr Transport variabilityof the Deep Western BoundaryCurrent and the Antilles Current off Abaco Island, Bahamas Christopher S. Meinena,Ã, Silvia L. Garzolib, William E. Johnsc, MollyO. Baringer b aCooperative Institute for Marine and Atmospheric Studies, University of Miami, NOAA/AOML/PHOD, 4301 Rickenbacker Causeway, Miami FL 33149, USA bAtlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami FL 33149, USA cRosenstiel School of Marine and Atmospheric Science, University of Miami, Miami FL 33149, USA Received 30 September 2003; received in revised form 6 July2004; accepted 15 July2004 Available online 15 September 2004 Abstract Hydrography is combined with 1-year-long Inverted Echo Sounder (IES) travel-time records and bottom pressure observations to estimate the Deep Western BoundaryCurrent (DWBC) transport east of Abaco Island, the Bahamas (near 26.51N); comparison of the results to a more traditional line of current meter moorings demonstrates that the IESs and pressure gauges, combined with hydrography, can accurately monitor the DWBC transport to within the accuracyof the current meter arrayestimate at this location. Between 800 and 4800 dbar, bounded bytwo IES moorings 82 km apart, the enclosed portion of the DWBC is shown to have a mean southward transport of about 25 Sv (1 Sv ¼ 106 m3 sÀ1) and a standard deviation of 23 Sv. The DWBC transport is primarilybarotropic (where barotropic is defined as the near-bottom velocityrather than the vertical average velocity);geostrophic transports relative to an assumed level of no motion do not accuratelyreflect the actual absolute transport variability(correlation coefficient is 0.30). -
Chapter 7 Arctic Oceanography; the Path of North Atlantic Deep Water
Chapter 7 Arctic oceanography; the path of North Atlantic Deep Water The importance of the Southern Ocean for the formation of the water masses of the world ocean poses the question whether similar conditions are found in the Arctic. We therefore postpone the discussion of the temperate and tropical oceans again and have a look at the oceanography of the Arctic Seas. It does not take much to realize that the impact of the Arctic region on the circulation and water masses of the World Ocean differs substantially from that of the Southern Ocean. The major reason is found in the topography. The Arctic Seas belong to a class of ocean basins known as mediterranean seas (Dietrich et al., 1980). A mediterranean sea is defined as a part of the world ocean which has only limited communication with the major ocean basins (these being the Pacific, Atlantic, and Indian Oceans) and where the circulation is dominated by thermohaline forcing. What this means is that, in contrast to the dynamics of the major ocean basins where most currents are driven by the wind and modified by thermohaline effects, currents in mediterranean seas are driven by temperature and salinity differences (the salinity effect usually dominates) and modified by wind action. The reason for the dominance of thermohaline forcing is the topography: Mediterranean Seas are separated from the major ocean basins by sills, which limit the exchange of deeper waters. Fig. 7.1. Schematic illustration of the circulation in mediterranean seas; (a) with negative precipitation - evaporation balance, (b) with positive precipitation - evaporation balance. -
(Coryphaena Hippurus) in the Northeastern Caribbean
Fisheries Research 175 (2016) 24–34 Contents lists available at ScienceDirect Fisheries Research journal homepage: www.elsevier.com/locate/fishres Movement dynamics of dolphinfish (Coryphaena hippurus) in the northeastern Caribbean Sea: Evidence of seasonal re-entry into domestic and international fisheries throughout the western central Atlantic a,b,∗ a b Wessley Merten , Richard Appeldoorn , Donald Hammond a Department of Marine Sciences, University of Puerto Rico, Mayagüez, PO Box 9000, Mayagüez, PR 00681, United States b Cooperative Science Services LLC, Dolphinfish Research Program, 961 Anchor Road, Charleston, SC 29412, United States a r t i c l e i n f o a b s t r a c t Article history: Distinct spatial variation and fisheries exchange routes for dolphinfish (Coryphaena hippurus) were Received 1 February 2015 resolved relative to the northeastern Caribbean Sea and U.S. east coast using conventional (n = 742; Received in revised form 26 May 2015 mean ± SD cm FL: 70.5 ± 15.2 cm FL) and pop-up satellite archival tags (n = 7; 117.6 ± 11.7 cm FL) Accepted 18 October 2015 from 2008 to 2014. All dolphinfish released in the northeastern Caribbean Sea moved westward ◦ ◦ (274.42 ± 21.06 ), but slower in the tropical Atlantic than Caribbean Sea, with a maximum straight- Keywords: line distance recorded between San Juan, Puerto Rico, and Charleston, South Carolina (1917.49 km); an Dolphinfish 180-day geolocation track was obtained connecting the South Atlantic Bight to the northern limits of Fisheries management Migration the Mona Passage. Two recaptures occurred within the Mona Passage from San Juan, Puerto Rico, and Mark-recapture St. -
An Introduction to the Oceanography, Geology, Biogeography, and Fisheries of the Tropical and Subtropical Western Central Atlantic
click for previous page Introduction 1 An Introduction to the Oceanography, Geology, Biogeography, and Fisheries of the Tropical and Subtropical Western Central Atlantic M.L. Smith, Center for Applied Biodiversity Science, Conservation International, Washington, DC, USA, K.E. Carpenter, Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, USA, R.W. Waller, Center for Applied Biodiversity Science, Conservation International, Washington, DC, USA his identification guide focuses on marine spe- lithospheric units, deep ocean basins separated Tcies occurring in the Western Central Atlantic by relatively shallow sills, and extensive systems Ocean including the Gulf of Mexico and Caribbean of island platforms, offshore banks, and Sea; these waters collectively comprise FAO Fishing continental shelves (Figs 2,3). One consequence Area 31 (Fig. 1). The western parts of this area have of this geography is a fine-grained pattern of often been referred to as the “wider Caribbean Basin” biological diversification that adds up to the or, more recently, as the Intra-Americas Sea (e.g., greatest concentration of rare and endemic Mooers and Maul, 1998). The latter term draws atten- species in the Atlantic Ocean Basin. Of the 987 tion to the fact that marine waters lie at the heart of the fish species treated in detail in these volumes, Americas and that they constitute an American Medi- some 23% are rare or endemic to the study area. terranean that has played a key geopolitical role in the Such a high level of endemism stands in contrast development of the surrounding societies. to the widespread view that marine species characteristically have large geographic ranges In geographic terms, the Western Central and that they might therefore be buffered against Atlantic (WCA) is one of the most complex parts of the extinction. -
Oceans: Submarine Relief and Water Circulation
MODULE - 3 Ocean: Submarine Relief and Water Circulation The domain of the water on the Earth 8 Notes OCEANS: SUBMARINE RELIEF AND WATER CIRCULATION Water is important for life on the earth. It is required for all life processes, such as, cell growth, protein formation, photosynthesis and, absorption of material by plants and animals. There are some living organisms, which can survive without air but none can survive without water. All the water present on the earth makes up the hydrosphere. The water in its liquid state as in rivers, lakes, wells, springs, seas and oceans; in its solid state, in the form of ice and snow, though in its gaseous state the water vapour is a constituent of atmosphere yet it also forms a part of the hydrosphere. Oceans are the largest water bodies in the hydrosphere. In this lesson we will study about ocean basins, their relief, causes and effects of circulation of ocean waters and importance of oceans for man. OBJECTIVES After studying this lesson, you will be able to : identify various oceans and continents on the world map; differentiate the various submarine relief features; analyze the important factors determining the distribution of temperature both horizontally and vertically in oceans; locate the areas of high and low salinity on the world map and give reasons for the variation in the distribution of salinity in ocean waters; state the three types of ocean movements - waves, tides and currents; explain the formation of waves; 136 GEOGRAPHY Ocean: Submarine Relief and Water Circulation MODULE - 3 The domain of the give various factors responsible for the occurrence of tides; water on the Earth establish relationship between the planetary winds and circulation of ocean currents; explain with suitable examples the importance of oceans to mankind with special reference to the significance of continental shelves for human beings . -
2000 Svalbard Workshop Report (PDF 2.5
Opportunities for Collaboration Between the United States and Norway in Arctic Research A Workshop Report Arctic Research Consortium of the U.S. (ARCUS) 600 University Avenue, Suite 1 Fairbanks, Alaska, 99709 USA Phone: 907/474-1600 Fax: 907/474-1604 http://www.arcus.org This publication may be cited as: Opportunities for Collaboration Between the United States and Norway in Arctic Research: A Workshop Report. The Arctic Research Consortium of the U.S. (ARCUS), Fairbanks, Alaska, USA. August 2000. 102 pp. This report is published by ARCUS with funding provided by the National Science Founda- tion (NSF) under Cooperative Agreement OPP-9727899. Any opinions, findings, and conclu- sions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF. Table of Contents Executive Summary v Summary of Recommendations viii Chapter 1. Research in Svalbard in a Global Context 1 ii Justification and Process 1 Current Arctic Research in a Global Context 2 Svalbard as a Research Platform 2 Longyearbyen 4 Ny-Ålesund 4 Arctic Research Policy 5 Norwegian Arctic Research Policy 6 U.S. Arctic Research Policy 7 Science Priorities for U.S.-Norwegian Collaboration in Svalbard 7 Multidisciplinary Themes 7 Specific Disciplinary Topics 14 Chapter 2. Research Support Infrastructure 25 Circumpolar Research Infrastructure 25 Svalbard’s Value and Potential 25 Longyearbyen 26 Ny-Ålesund 28 Specific Research Facilities on Svalbard 32 Chapter 3. Recommendations for Investments to Improve Collaborative Opportunities -
Caribbean Current and Eddies As Observed by Surface Drifters
ARTICLE IN PRESS Deep-Sea Research II 52 (2005) 429–463 www.elsevier.com/locate/dsr2 Caribbean Current and eddies as observed bysurface drifters P.L. Richardsonà Department of Physical Oceanography, MS 29, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543, USA Received 19 December 2003; accepted 29 November 2004 Abstract Recent satellite-tracked surface drifter trajectories were analyzed to describe the mean currents and eddies in the 1 Caribbean Sea. The structure of the Caribbean Current and its variabilitywere determined from high-resolution 2- degree maps of the mean velocityand eddykinetic energy.Looping drifter trajectories were used to identifydiscrete cyclones and anticyclones, and their characteristics were described and related to the structure of the mean flow. The translation rate of eddies in different areas was found to be similar to the mean velocityof the local background flow fields, suggesting that the eddies were largelyadvected bythe background flow. Ten energetic anticyclonestranslated westward at 13 cm/s in the Venezuela and Colombia Basins. These anticyclones tended to lie in two bands, centered near 151N and 171N, coinciding with two jets of the Caribbean Current. The northern weaker jet contains water primarilyfrom the North Atlantic; the southern stronger jet contains water from the tropical and South Atlantic. The anticyclones are thought to have formed in the eastern Caribbean from the anticyclonic vorticity derived from North Brazil Current rings. The ring vorticityenters the eastern Caribbean through island passages and is probablyamplified by the anticyclonic shear on the northern side of the jets. Southwest of Cuba a cyclone–anticyclone pair was observed to translate slowly( 2 cm/s) westward into the Yucatan Current. -
Ocean Current Quiz
Ocean Current Quiz o 90 N Landfall 1992, 1994, 1998, 2001,2003 Landfall 2003 o X1 Sitka X7 60 N Subpolar 45N 178E Maine Accident O Gyre X6 Jan.1992 Landfall 2003 o 30 N Subtropical Hawaii Gyre X4 o 0 Indonesia 3 A few months 5 South America after the storm o 2 30 S Australia (late 1992) 60oS o o o o o o o o o o 120 E 150 E 180 150 W 120 W 90 W 60 W 30 W 0 30 E Question 1 In January 1992 a storm swept 29,000 rubber ducks into the North Pacific. Since then the ducks have landed on beaches around the world. Oceanographers use information about the duck 'land-falls' to study ocean currents, but must be careful only to use only reliable reports. Three of the sightings in the map above are unlikely. Which are they? 1. Sitka, Alaska, in 1992 and for years afterwards. 2. Australia: A few months after the accident (late 1992). 3. Indonesia: A few months after the accident. 4. Hawaii: some time in 1994. 5. Peru, South America: A few months after the accident. 6. Maine, U.S East coast: in 2003. 7. Shetland, U.K.: in late 2003. Question 2 What is the name of the ocean gyre where the ducks went round and round for years before landing in Alaska in 1992, 1994, 1998, 2001 and 2003? 1. The Antarctic circumpolar current 2. The Pacific Subpolar Gyre 3. The Pacific Subtropical Gyre 4. The Atlantic Subpolar Gyre Turn over for more questions Sea surface temperature (SST) 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 oC 6 60o N SUBPOLAR 5 GYRE 2 1 30o N NORTH ATLANTIC 3 SUBTROPICAL GYRE 4 o 0 SOUTH ATLANTIC o SUBTROPICAL 30 S GYRE 60o S o o o o o 90 W 60 W 30 W 0 30 E Question 3 The Atlantic has 3 ocean gyres created by the ocean currents.