Synthesis of DNA Origami Scaffolds: Current and Emerging Strategies

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of DNA Origami Scaffolds: Current and Emerging Strategies molecules Review Synthesis of DNA Origami Scaffolds: Current and Emerging Strategies 1, 1, 1, 1 1 Joshua Bush y , Shrishti Singh y , Merlyn Vargas y , Esra Oktay , Chih-Hsiang Hu and Remi Veneziano 1,2,* 1 Volgenau School of Engineering, Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA; [email protected] (J.B.); [email protected] (S.S.); [email protected] (M.V.); [email protected] (E.O.); [email protected] (C.-H.H.) 2 Institute for Advanced Biomedical Research, George Mason University, Manassas, VA 20110, USA * Correspondence: [email protected] These authors contributed equally to this work. y Academic Editor: Kirill A. Afonin Received: 1 July 2020; Accepted: 24 July 2020; Published: 26 July 2020 Abstract: DNA origami nanocarriers have emerged as a promising tool for many biomedical applications, such as biosensing, targeted drug delivery, and cancer immunotherapy. These highly programmable nanoarchitectures are assembled into any shape or size with nanoscale precision by folding a single-stranded DNA scaffold with short complementary oligonucleotides. The standard scaffold strand used to fold DNA origami nanocarriers is usually the M13mp18 bacteriophage’s circular single-stranded DNA genome with limited design flexibility in terms of the sequence and size of the final objects. However, with the recent progress in automated DNA origami design—allowing for increasing structural complexity—and the growing number of applications, the need for scalable methods to produce custom scaffolds has become crucial to overcome the limitations of traditional methods for scaffold production. Improved scaffold synthesis strategies will help to broaden the use of DNA origami for more biomedical applications. To this end, several techniques have been developed in recent years for the scalable synthesis of single stranded DNA scaffolds with custom lengths and sequences. This review focuses on these methods and the progress that has been made to address the challenges confronting custom scaffold production for large-scale DNA origami assembly. Keywords: single-stranded DNA; DNA scaffolds; DNA origami; nucleic acid nanoparticles; DNA nanotechnology; DNA Synthesis; DNA amplification 1. Introduction In all known living organisms, DNA molecules are responsible for storing and carrying genetic information [1]. From a materials and biomedical engineering point of view, DNA molecules also represent a promising alternative to several natural and synthetic polymers that are typically used for biomedical applications such as drug delivery and cancer immunotherapy [2–6]. DNA-based materials differ from other polymeric materials as they offer programmability at the nanoscale, along with unique structural and biochemical properties [7,8]. These characteristics make them ideal as building blocks to assemble complex nanoarchitectures and further organize various biomolecules and inorganic molecules with nanometer-scale precision [7–11]. In vivo, DNA molecules are primarily present as B-form double-stranded DNA (dsDNA) molecules, comprising two complementary single strands of DNA (ssDNA) assembled by hybridization through Watson–Crick base pairing [12]. They exhibit a right-handed double-helix structure (2 nm diameter) with a periodicity of 10.5 bases and a distance of 3.4 Å between each base pair [1,12]. Leveraging the sequence specificity and unique structural features of dsDNA along with the structural predictability of DNA assembly has facilitated the rapid Molecules 2020, 25, 3386; doi:10.3390/molecules25153386 www.mdpi.com/journal/molecules Molecules 2020, 25, 3386 2 of 18 development of the structural DNA nanotechnology field [11,13–15], and particularly enabled the emergence ofMolecules the 2020 DNA, 25, x FOR origami PEER REVIEW method [16]. This latter method rapidly became2 of the 18 strategy of choice for synthesizing discrete nanometer-scale particles, notably enabling the assembly of custom of DNA assembly has facilitated the rapid development of the structural DNA nanotechnology field complex 1-, 2-,[11,13–15], and 3D and discrete particularly DNA enabled nanoarchitectures the emergence of the with DNA highly origami defined method [16]. shapes This andlatter sizes [16–20]. DNA origamimethod nanoparticles rapidly became are the assembled strategy of choice by folding for synthesizing a long discrete ssDNA nanometer-scale scaffold strand particles, with an excess of several shortnotably complementary enabling the assembly oligonucleotides of custom complex 1-, (‘staple 2-, and 3D strands’) discrete DNA in nanoarchitectures a one-pot thermal with annealing highly defined shapes and sizes [16–20]. DNA origami nanoparticles are assembled by folding a long reaction (FiguressDNA1a). scaffold These strand nanoparticles with an excess are nowof severa widelyl short used complementary in many biomedicaloligonucleotides applications, (‘staple such as nucleic acid deliverystrands’) in [ 20a one-pot,21], vaccine thermal annealing platform reaction development (Figure 1a). [These22–24 nanoparticles], drug delivery are now[ widely25–27 ], and cancer therapy [28–31used], amongin many othersbiomedical [32 applications,–34]. such as nucleic acid delivery [20,21], vaccine platform development [22–24], drug delivery [25–27], and cancer therapy [28–31], among others [32–34]. Figure 1. DNAFigure origami 1. DNA nanoparticle origami nanoparticle assembly. assembly. (a) DNA(a) DNA origami origami areare folded with with a long a long single- single-stranded stranded DNA scaffold and multiple staple strands via a thermal annealing process. (b) Controlling DNA scaffoldthe and DNA multiple origami size staple with custom strands scaffold via lengths. a thermal annealing process. (b) Controlling the DNA origami size with custom scaffold lengths. Unlike other nucleic-acid-based nanoparticle assembly techniques that rely on the equimolar Unlike otherassembly nucleic-acid-based of short oligonucleotides nanoparticle [35,36], the complexity assembly and size techniques of the assembled that DNA rely origami on the equimolar nanostructures mainly depend on the scaffold strand length, sequence, and method of production assembly of[37] short (Figure oligonucleotides 1b). Furthermore, the [35 amount,36],the of DNA complexity origami nanoparticles and size that of can the be assembled assembled will DNA origami nanostructuresdepend mainly on the depend scaffold availability. on the sca DNAffold origam strandi nanoparticles length, sequence, are commonly and assembled method using of the production [37] (Figure1b). Furthermore,M13mp18 bacteriophage’s the amount genome—a of DNAcommercially origami available nanoparticles 7249 nucleotide that (nt)-long can becircular assembled will single strand of DNA—which can readily be used to assemble nanoparticles in a 10 to 100 nm size depend on therange sca [16–19,38].ffold availability. However, the DNAemergence origami of several nanoparticles new types of design are commonly software [19,39–42] assembled using the M13mp18enabling bacteriophage’s the automated design genome—a of complex commercially nanostructures with available any shape 7249or size—and nucleotide the increasing (nt)-long circular single strandnumber of DNA—which of biomedical applications can readily [43–45] have be usedled to the to increased assemble complexity nanoparticles and size of designed in a 10 to 100 nm DNA origami. The standard M13mp18 scaffold strand may limit the sizes of these newly designed size range [16nanoarchitectures.–19,38]. However, In addition, the the emergence sequence of the of scaffold several might new affect types the performance of design of the software DNA [19,39–42] enabling theorigami automated nanostructures design for of a complexgiven application. nanostructures For instance, withrecent anyworks shape suggestor the size—and importance of the increasing number of biomedicalsequence design applications to ensure immunocompatibility [43–45] have led of the to DNA the nanoparticles increased complexity[46]. Thus, controlling and size the of designed sequence of the scaffold strands to avoid the presence of phage genes that might have an undesirable DNA origami.effect The for in standard vivo applications, M13mp18 or controlling scaffold the presence strand or may absence limit of immunogenic the sizes of CpG these domains newly designed nanoarchitectures.is necessary. Inaddition, For all these the reasons, sequence the use of M13mp18 the scaff ssDNAold might as the sole affect source the of performance scaffolding for of the DNA origami nanostructuresDNA origami synthesis for a given is now application. becoming a limiting For instance, factor. To design recent custom works nanostructures suggest the and importance of precisely control their sequences, establishing novel and efficient custom ssDNA scaffold synthesis sequence designmethods to ensureis crucial immunocompatibility to leverage DNA origami’s of full the potential. DNA nanoparticlesTo be sustainable [ 46for]. biomedical Thus, controlling the sequence of theapplications, scaffold the strands production to scale avoid of ssDNA the presence scaffolds also of needs phage to be genes drastically that increased might haveto reduce an undesirable effect for in vivothe costsapplications, of production orand controlling enable a broader the range presence of applications. or absence of immunogenic CpG domains is This review focuses on existing and emerging techniques for the synthesis of ssDNA scaffolds necessary. Forfor allDNA these origami reasons, folding. theIn particular, use of M13mp18
Recommended publications
  • Programming Structured DNA Assemblies to Probe Biophysical Processes
    Programming Structured DNA Assemblies to Probe Biophysical Processes The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Wamhoff, Eike-Christian et al. “Programming Structured DNA Assemblies to Probe Biophysical Processes.” Annual Review of Biophysics 48 (2019): 395-419 © 2019 The Author(s) As Published 10.1146/ANNUREV-BIOPHYS-052118-115259 Publisher Annual Reviews Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/125280 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Annu Rev Manuscript Author Biophys. Author Manuscript Author manuscript; available in PMC 2020 February 22. Published in final edited form as: Annu Rev Biophys. 2019 May 06; 48: 395–419. doi:10.1146/annurev-biophys-052118-115259. Programming Structured DNA Assemblies to Probe Biophysical Processes Eike-Christian Wamhoff, James L. Banal, William P. Bricker, Tyson R. Shepherd, Molly F. Parsons, Rémi Veneziano, Matthew B. Stone, Hyungmin Jun, Xiao Wang, Mark Bathe Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Abstract Structural DNA nanotechnology is beginning to emerge as a widely accessible research tool to mechanistically study diverse biophysical processes. Enabled by scaffolded DNA origami in which a long single strand of DNA is weaved throughout an entire target nucleic acid assembly to ensure its proper folding, assemblies of nearly any geometric shape can now be programmed in a fully automatic manner to interface with biology on the 1–100-nm scale.
    [Show full text]
  • Bottom-Up Self-Assembly Based on DNA Nanotechnology
    nanomaterials Review Bottom-Up Self-Assembly Based on DNA Nanotechnology 1, 1, 1 1 1,2,3, Xuehui Yan y, Shujing Huang y, Yong Wang , Yuanyuan Tang and Ye Tian * 1 College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China; [email protected] (X.Y.); [email protected] (S.H.); [email protected] (Y.W.); [email protected] (Y.T.) 2 Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China 3 Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China * Correspondence: [email protected] These authors contributed equally to this work. y Received: 9 September 2020; Accepted: 12 October 2020; Published: 16 October 2020 Abstract: Manipulating materials at the atomic scale is one of the goals of the development of chemistry and materials science, as it provides the possibility to customize material properties; however, it still remains a huge challenge. Using DNA self-assembly, materials can be controlled at the nano scale to achieve atomic- or nano-scaled fabrication. The programmability and addressability of DNA molecules can be applied to realize the self-assembly of materials from the bottom-up, which is called DNA nanotechnology. DNA nanotechnology does not focus on the biological functions of DNA molecules, but combines them into motifs, and then assembles these motifs to form ordered two-dimensional (2D) or three-dimensional (3D) lattices. These lattices can serve as general templates to regulate the assembly of guest materials. In this review, we introduce three typical DNA self-assembly strategies in this field and highlight the significant progress of each.
    [Show full text]
  • Artificial RNA Motifs Expand the Programmable Assembly Between
    biology Article Artificial RNA Motifs Expand the Programmable Assembly between RNA Modules of a Bimolecular Ribozyme Leading to Application to RNA Nanostructure Design Md. Motiar Rahman 1,2 ID , Shigeyoshi Matsumura 1 and Yoshiya Ikawa 1,2,* ID 1 Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 9308555, Japan; [email protected] (Md.M.R.); [email protected] (S.M.) 2 Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama 9308555, Japan * Correspondence: [email protected]; Tel.: +81-76-445-6599 Academic Editor: Jukka Finne Received: 17 September 2017; Accepted: 25 October 2017; Published: 30 October 2017 Abstract: A bimolecular ribozyme consisting of a core ribozyme (DP5 RNA) and an activator module (P5abc RNA) has been used as a platform to design assembled RNA nanostructures. The tight and specific assembly between the P5abc and DP5 modules depends on two sets of intermodule interactions. The interface between P5abc and DP5 must be controlled when designing RNA nanostructures. To expand the repertoire of molecular recognition in the P5abc/DP5 interface, we modified the interface by replacing the parent tertiary interactions in the interface with artificial interactions. The engineered P5abc/DP5 interfaces were characterized biochemically to identify those suitable for nanostructure design. The new interfaces were used to construct 2D-square and 1D-array RNA nanostructures. Keywords: catalytic RNA; group I intron; ribozyme; RNA nanostructure; RNA nanotechnology 1. Introduction Nanometer-sized biomolecules and their assemblies with precisely controlled shapes are attractive materials for the expanding field of nanobioscience, which includes nanomedicine and nanobiotechnology.
    [Show full text]
  • Abstract Booklet
    Abstract Booklet ONLINE EVENT 26th International Conference on DNA Computing and Molecular Programming 14–17 September 2020 IOP webinars for the physics community dna26.iopconfs.org/ Contents Committees 2 Sponsors 3 Proceedings 3 Programme 4 Poster programme 8 Keynote presentations 11 Contributed presentations 17 Poster sessions 48 1 Committees Chairs • Andrew Phillips, Microsoft Research, Cambridge, UK • Andrew Turberfield, Department of Physics, University of Oxford, UK Programme Chairs • Cody Geary, Interdisciplinary Nanoscience Centre, University of Aarhus, Denmark • Matthew Patitz, Department of Computer Science and Computer Engineering, University of Arkansas Steering Committee • Luca Cardelli, Computer Science, Oxford University, UK • Anne Condon (Chair), Computer Science, University of British Columbia, Canada • Masami Hagiya, Computer Science, University of Tokyo, Japan • Natasha Jonoska, Mathematics, University of Southern Florida, USA • Lila Kari, Computer Science, University of Waterloo, Canada • Chengde Mao, Chemistry, Purdue University, USA • Satoshi Murata, Robotics, Tohoku University, Japan • John H. Reif, Computer Science, Duke University, USA • Grzegorz Rozenberg, Computer Science, University of Leiden, The Netherlands • Rebecca Schulman, Chemical and Biomolecular Engineering, Johns Hopkins University, USA • Nadrian C. Seeman, Chemistry, New York University, USA • Friedrich Simmel, Physics, Technical University Munich, Germany • David Soloveichik, Electrical and Computer Engineering, The University of Texas at Austin,
    [Show full text]
  • RNA-DNA Hybrid Origami: Folding a Long RNA Single Strands Into Complex Nanostructures Pengfei Wang,A Seung Hyeon Ko,B± Cheng Tian,B Chenhui Hao B & Chengde Mao*B
    Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013 # Supplementary Material (ESI) for Chemical Communications # This journal is (c) The Royal Society of Chemistry 2010 RNA-DNA Hybrid Origami: Folding a Long RNA Single Strands into Complex Nanostructures Pengfei Wang,a Seung Hyeon Ko,b± Cheng Tian,b Chenhui Hao b & Chengde Mao*b Supplementary Information Materials and Methods Oligonucleotides: Forward primer (P1): 5'-ttctaatacgactcactataggtctgacagttaccaat-3' (the T7 promoter sequence is underlined.); Reverse primer (P2): 5'-gacgaaagggcctcgt-3'. The sequences for RNA scaffold and DNA staples are given in Figure S1. Both primers and DNA staple strands were purchased from Integrated DNA technology (IDT) and used without further purification. PCR amplification of DNA template: The dsDNA template containing T7 promoter sequence was prepared by polymerase chain reaction (PCR) with a DNA plasmid pUC19 (New England Biolabs), primers (P1 and P2), and GoTaq Flexi DNA polymerase (Promega). In vitro RNA transcription: AmpliScribe™ T7-Flash™ Transcription Kit (Epicentre) was used to transcribe single-stranded RNA from DNA template, following the protocol provided with the kit. Briefly, a total of 20 uL mixture, including DNA template, ribonucleotides, RNase inhibitor together with T7-Flash RNA polymerase, was prepared in the provided reaction buffer, and then incubated at 42 °C for 120 mins. Then, transcription product was treated by DNase I to remove DNA template by incubating at 37 °C for 15 mins. Quantification of RNA scaffold: Purified RNA strands were quantified by a UV-Vis spectrophotometer. RNA strands without purification after in vitro transcription were indirectly quantified through agarose gel electrophoresis by using purified RNA as the calibrator.
    [Show full text]
  • Using Modular Preformed DNA Origami Building Blocks to Fold Dynamic 3D Structures
    Using Modular Preformed DNA Origami Building Blocks to Fold Dynamic 3D Structures Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Gunter Eickert, B.S. Graduate Program in Mechanical Engineering The Ohio State University 2014 Thesis Committee: Carlos Castro, Advisor Haijun Su Copyright by Gunter Erick Eickert 2014 Abstract DNA origami is a bottom-up approach that takes advantage of DNA’s structure and lock key sequencing to build nano scale machines and structures. By introducing specific single stranded DNA (ssDNA) “staples”, a ssDNA “scaffold” can be folded into a desired 2D or 3D structure. Using this method, a variety of shapes have been formed, including tetrahedrons and octahedrons. These structures have been explored as drug carriers, enzyme platforms, signal markers, and for other medical and research uses. However, each of these structures must be specifically designed and often pertain to only one particular application. A DNA origami structure that functions as a building block was designed to allow for the creation of several different 3D structures without the need for a lengthy design process. An annealing process called a thermal ramp was then used to fold the structures. The building block was made of four equilateral triangles arranged into a parallelogram. This is ideal since a parallelogram can be used to form three of the five platonic solids, in addition to many non-platonic shapes. The parallelogram was successfully folded into a tetrahedron and an octahedron by introducing staples that bound to overhangs on its edges.
    [Show full text]
  • Enhanced Anticoagulation Activity of Functional RNA Origami
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.319590; this version posted October 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Enhanced Anticoagulation Activity of Functional RNA Origami Abhichart Krissanaprasit, Carson M. Key, Kristen Froehlich, Sahil Pontula, Emily Mihalko, Daniel M. Dupont, Ebbe S. Andersen, Jørgen Kjems, Ashley C. Brown, and Thomas H. LaBean* Dr. A Krissanaprasit, C. M. Key, Prof. T. H. LaBean Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, NC, 27695, USA. E-mail: [email protected] K. Froehlich, E. Mihalko, Prof. A. C. Brown Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University and University of North Carolina - Chapel Hill, Raleigh, NC, 27695, USA. S. Pontula William G. Enloe High School, Raleigh, NC 27610, USA Dr. D. M. Dupont, Prof. E. S. Andersen, Prof. J. Kjems Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark Prof. A. C. Brown, Prof. T. H. LaBean Comparative Medicine Institute, North Carolina State University and University of North Carolina - Chapel Hill, Raleigh, NC, 27695, USA. Keywords: anticoagulant, RNA origami, nucleic acid, RNA nanotechnology, aptamer, direct thrombin inhibitor, reversal agent 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.319590; this version posted October 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Anticoagulants are commonly utilized during surgeries and to treat thrombotic diseases like stroke and deep vein thrombosis.
    [Show full text]
  • Co-Transcriptional Folding of a Bio-Orthogonal Fluorescent Scaffolded RNA Origami
    bioRxiv preprint doi: https://doi.org/10.1101/864678; this version posted December 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 bioRxiv preprint doi: https://doi.org/10.1101/864678; this version posted December 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Co-transcriptional folding of a bio-orthogonal fluorescent scaffolded RNA origami Emanuela Torelli1,*, Jerzy W. Kozyra1,§, Ben Shirt-Ediss1, Luca Piantanida2,^, Kislon Voïtchovsky2, and Natalio Krasnogor1,* 1Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne, NE1 7RX, United Kingdom 2Department of Physics, Durham University, Durham, DH1 3LE, United Kingdom §Present Address: Nanovery Ltd, 85 Great Portland Street, First Floor, London, W1W 7LT, United Kingdom ^Present Address: Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA *[email protected], [email protected] 2 bioRxiv preprint doi: https://doi.org/10.1101/864678; this version posted December 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT The scaffolded origami technique has provided an attractive tool for engineering nucleic acid nanostructures. This paper demonstrates scaffolded RNA origami folding in vitro in which all components are transcribed simultaneously in a single-pot reaction. Double-stranded DNA sequences are transcribed by T7 RNA polymerase into scaffold and staple strands able to correctly fold in high yield into the nanoribbon.
    [Show full text]
  • Title Preparation of Chemically Modified RNA Origami
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Kyoto University Research Information Repository Preparation of chemically modified RNA origami Title nanostructures. Endo, Masayuki; Takeuchi, Yosuke; Emura, Tomoko; Hidaka, Author(s) Kumi; Sugiyama, Hiroshi Citation Chemistry - A European Journal (2014), 20(47): 15330-15333 Issue Date 2014-10-14 URL http://hdl.handle.net/2433/198828 This is the peer reviewed version of the following article: Endo, M., Takeuchi, Y., Emura, T., Hidaka, K. and Sugiyama, H. (2014), Preparation of Chemically Modified RNA Origami Nanostructures. Chem. Eur. J., 20: 15330‒15333, which has Right been published in final form at http://dx.doi.org/10.1002/chem.201404084. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.; 許諾条件により本 文ファイルは2015-10-14に公開. Type Journal Article Textversion author Kyoto University COMMUNICATION Preparation of Chemically Modified RNA Origami Nanostructures Masayuki Endo,*[a][c] Yosuke Takeuchi,[b] Tomoko Emura,[b] Kumi Hidaka,[a] and Hiroshi Sugiyama*[a][b][c] Abstract: RNA molecules potentially have structural diversity and scaffold and staple RNA strands (Figure 1a). The RNA origami functionalities, and it should be required to organize the structures for a 7-helix bundled planar structure (7HB-tile) was designed and functions in a designed fashion. We developed the method to with a geometry of 33 bp per three turns in the adjacent design and prepare RNA nanostructures by employing DNA origami crossover points, which corresponds to a helical pitch with 11 strategy. RNA transcripts were used as a single-stranded RNA bp/turn.
    [Show full text]
  • Control of RNA Function by Conformational Design
    DISSERTATION / DOCTORAL THESIS Titel der Dissertation /Title of the Doctoral Thesis Control of RNA function by conformational design verfasst von / submitted by Mag. rer. nat. Stefan Badelt angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) Wien, 2016 / Vienna, 2016 Studienkennzahl lt. Studienblatt / A 794 685 490 degree programme code as it appears on the student record sheet: Dissertationsgebiet lt. Studienblatt / Molekulare Biologie field of study as it appears on the student record sheet: Betreut von / Supervisor: Univ.-Prof. Dipl.-Phys. Dr. Ivo Hofacker Design landscapes >Output Input AGGAACAGUCGCACU ACCCACCUCGACAUC AGCAACA GUAAAUCAAAUUGGA AGGAUCU ACUGAAGCCCUUGGU AGGAUCA CUGGAGUCACCAGGG objective function AGGAACA GGUUUACGUACUACU design Energy landscapes 0.7 0.7 >Input -8.0 Output 3.9 3.7 1.1 2.8 1.2 1.3 2.3 0.8 AGGAACAGUCGCACU 3.5 2.6 2.6 2.8 3.9 2.3 -10.0 3.0 4.2 1.2 0.7 2.3 1.2 4.4 1.3 0.599999 1.3 2.4 1.0 0.8 100 1.5 2.0 1.2 0.8 97 98 99 2.8 1.4 1.0 94 95 93 96 92 2.3 0.7 2.6 0.8 91 1.5 1.3 2.0 2.6 1.6 89 90 1.9 0.8 2.0 86 88 87 2.9 2.3 1.9 1.3 1.3 ACCCACCUCGACAUC 0.6 83 85 84 82 2.6 1.0 0.8 0.8 77 81 79 78 80 0.7 76 1.9 74 75 73 1.5 72 0.7 -12.0 0.8 0.8 70 71 1.1 0.799999 1.2 0.8 69 68 0.8 0.8 0.8 63 65 64 66 67 0.9 1.2 1.2 59 60 58 61 62 1.2 1.4 1.7 1.2 55 54 57 56 3.1 3.0 4.2 52 53 51 49 50 0.7 1.0 45 44 46 47 48 42 43 41 3.5 1.0 38 39 40 1.3 0.6 2.6 1.3 0.8 0.8 0.8 GUAAAUCAAAUUGGA 37 35 36 34 32 33 31 30 28 29 27 1.2 0.8 24 25 26 23 -14.0 22 20 21 2.4 17
    [Show full text]
  • Gradient-Mixing LEGO Robots for Purifying DNA Origami Nanostructures of Multiple Components by Rate-Zonal Centrifugation
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.02.450731; this version posted July 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Gradient-mixing LEGO robots for purifying DNA origami nanostructures of multiple components by rate-zonal centrifugation Jason Sentosaa,b,1, Brian Hornec,1, Franky Djutantaa,d,1,2, Dominic Showkeirc,1, Robert Rezvania,c, and Rizal F. Hariadi ID a,d,1 aBiodesign Center for Molecular Design and Biomimetics (at the Biodesign Institute) at Arizona State University, Tempe, AZ 85287, USA.; bDepartment of Biomedical Engineering, Georgia Institute of Technology, GA; cDepartment of Physics, Arizona State University, AZ.; dSchool for Engineering of Matter, Transport and Energy, Arizona State University, AZ. 1These authors contributed equally. 2To whom correspondence should be addressed. E-mail: [email protected] AND [email protected] This manuscript was compiled on July 4, 2021 Abstract DNA origami purification is critical in emerging applications of functionalized DNA nanostructures from basic fundamental biophysics, nanorobots to therapeutics. Advances in DNA origami purification have led to the establishment of rate-zonal centrifugation (RZC) as a scalable, high-yield, and contamination-free approach to purifying DNA origami nanostructures. In RZC purification, a linear density gradient is created using viscous agents, such as glycerol and sucrose, to separate molecules based on their mass and shape during high-rpm centrifugation. However, current methods for creating density gradients are typically time-consuming because of their reliance on slow passive diffusion.
    [Show full text]
  • Atomic Force Microscopy Studies of DNA Origami Nanostructures: from Structural Stability to Molecular Patterning
    Atomic force microscopy studies of DNA origami nanostructures: from structural stability to molecular patterning Dissertation zur Erlangung des Grades „Doktor rerum naturalium“ an der Universität Paderborn Fakultät für Naturwissenschaften Department Chemie von Saminathan Ramakrishnan Geb. 22.04.1989 in Aranthangi, India Gutachter: PD Dr. Adrian Keller Adjunct Professor, PhD Veikko Linko Eingereicht am: Tag der Verteidigung: ii Contents Abstract ............................................................................................................................................ 1 1. Introduction .................................................................................................................................. 3 1.1 Genetic material ...................................................................................................................... 3 1.2 DNA as a genetic material ...................................................................................................... 3 1.3 Molecular structure of nucleic acids ....................................................................................... 4 1.4 Nanotechnology and Atomic Force Microscopy (AFM)........................................................ 7 1.5 DNA nanotechnology ........................................................................................................... 11 1.6 DNA origami ........................................................................................................................ 14 1.7 Structural stability of
    [Show full text]