Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

# Supplementary Material (ESI) for Chemical Communications # This journal is (c) The Royal Society of Chemistry 2010

RNA-DNA Hybrid Origami: Folding a Long RNA Single Strands into Complex Nanostructures Pengfei Wang,a Seung Hyeon Ko,b± Cheng Tian,b Chenhui Hao b & Chengde Mao*b

Supplementary Information

Materials and Methods

Oligonucleotides: Forward primer (P1): 5'-ttctaatacgactcactataggtctgacagttaccaat-3' (the T7 promoter sequence is underlined.); Reverse primer (P2): 5'-gacgaaagggcctcgt-3'. The sequences for RNA scaffold and DNA staples are given in Figure S1. Both primers and DNA staple strands were purchased from Integrated DNA technology (IDT) and used without further purification. PCR amplification of DNA template: The dsDNA template containing T7 promoter sequence was prepared by polymerase chain reaction (PCR) with a DNA plasmid pUC19 (New England Biolabs), primers (P1 and P2), and GoTaq Flexi DNA polymerase (Promega). In vitro RNA : AmpliScribe™ T7-Flash™ Transcription Kit (Epicentre) was used to transcribe single-stranded RNA from DNA template, following the protocol provided with the kit. Briefly, a total of 20 uL mixture, including DNA template, ribonucleotides, RNase inhibitor together with T7-Flash RNA polymerase, was prepared in the provided reaction buffer, and then incubated at 42 °C for 120 mins. Then, transcription product was treated by DNase I to remove DNA template by incubating at 37 °C for 15 mins. Quantification of RNA scaffold: Purified RNA strands were quantified by a UV-Vis spectrophotometer. RNA strands without purification after in vitro transcription were indirectly quantified through agarose gel electrophoresis by using purified RNA as the calibrator. 1 μg of purified RNA was loaded into the gel, and unpurified RNA with known volume was loaded into the same gel. To compare the intensity of the two bands after staining with EtBr, the concentration of unpurified RNA could be obtained relatively based on the purified RNA with known concentration. Regular assembly of RNA-DNA hybrid origami: 10 nM of RNA scaffold was mixed with DNA staples (at a ratio of 1:10 or specifically indicated value) in 1×TAE/Mg2+ buffer, which contains 40 mM Tris base (pH 8.0), 20 mM Acetic acid, 2 mM ethylenediamine tetraacetic acid (EDTA), and 12.5 mM Mg(OAc)2. The mixed aqueous solution was incubated under the following protocol: 10 mins each at 65, 50, 37 and 25 °C. All RNA-DNA hybrid origami structures were assembly by this method unless specifically indicated by isothermal assembly. Isothermal assembly of RNA-DNA hybrid origami: 10 nM of RNA scaffold was mixed with DNA staples (at a ratio of 1:10) in 1×TAE/Mg2+ buffer, which contains 40 mM Tris base (pH 8.0), 20 mM Acetic acid, 2 mM ethylenediamine tetraacetic acid (EDTA), and 12.5 mM Mg(OAc)2. The mixed aqueous solution was incubated at one specified temperature for a specified duration. The assembly process was cryogenically stopped by being quenched into dry ice. RNase H treatment Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

50 μL RNA-DNA hybrid origami sample (assembled from 10 nM RNA and 100 nM DNA staples) was incubated with 5 units of RNase H (New England Biolabs) in the provided RNase H buffer for 30 mins at 37 °C. Agarose gel electrophoresis: 1% (for PCR amplification and RNA transcription characterization) and 2.5% (for RNA-DNA hybrid origami characterization) agarose gels were prepared with 1×TBE buffer (89 mM Tris base, 2 mM EDTA, 89 mM Boric acid) and run in the same buffer under constant voltage 8 V/cm. The gels were stained with EtBr solution and then visualized under a UV illuminator. AFM imaging: 5 uL of RNA-DNA hybrid origami sample was deposited onto freshly cleaved mica for 20 seconds, washed with 30 uL of water and then dried with compressed air. A MultiMode 8 AFM (Bruker) was used to image the samples under ScanAsyst-Air mode, using a ScanAsyst-Air probe (Bruker).

This journalis©TheRoyalSocietyofChemistry2013 Electronic SupplementaryMaterial(ESI)forChemicalCommunications staple strands. and black strands are DNA strand is the RNA scaffold strand Colored origami. ribbon the Figure S1. Detailed design of

5’

GAAUAGUGUAUGCGGCG ACCGAGUU GCUCUUGC CCGGCGUC AAUACGGGA UAAUACCG CGCCACAU AGCAGAAC UUUAAAAGU GCUCAUCAUUG UUUAAAAGU AGCAGAAC CGCCACAU UAAUACCG AAUACGGGA CCGGCGUC GCUCUUGC ACCGAGUU GAAUAGUGUAUGCGGCG

GAAAACGUUCU UCGGGGCG AAAACUCUC AAGGAUCU UACCGCUG UUGAGAUC CAGUUCGAU GUAACCCA CUCGUGCA CCCAACUG AUCUUCAGC CCCAACUG CUCGUGCA GUAACCCA CAGUUCGAU UUGAGAUC UACCGCUG AAGGAUCU AAAACUCUC UCGGGGCG GAAAACGUUCU GCTGAAGAT CAGTTGGG TGCACGAG TGGGTTAC ATCGAACTG GATCTCAA CAGCGGTA AGATCCTT GAGAGTTTT CGCCCCGA AGAACGTTTTC CAATGATGAGC ACTTTTAAA GTTCTGCT ATGTGGCG CGGTATTA TCCCGTATT GACGCCGG GCAAGAGC AACTCGGT CGCCGCATACACTATTC ACUACGAUA UGUAGAUA CCCCGUCG GCCUGACU UCCAUAGUU UUCGUUCA CUGUCUAU UCAGCGAU GCACCUAUC UCAGUGAG CCAAUGCUUAA Ribb 3-3 Ribb 3-2 Ribb 3-1 Ribb 2-4 Ribb 2-3 Ribb 2-2 Ribb 2-1 TATCGTAGT TATCTACA CGACGGGG AGTCAGGC AACTATGGA TGAACGAA ATAGACAG ATCGCTGA GATAGGTGC CTCACTGA TTAAGCATTGG Ribb 1-4 Ribb 1-3 Ribb 1-2 Ribb 1-1

H AUGGUUAUGGC AGCACUGC AUAAUUCU CUUACUGUC AUGCCAUC CGUAAGAU GCUUUUCU GUGACUGGU GAGUACUC AACCAAGU CAUUCUGA TCAGAATG ACTTGGTT GAGTACTC ACCAGTCAC AGAAAAGC ATCTTACG GATGGCAT GACAGTAAG AGAATTAT GCAGTGCT GCCATAACCAT GCAGTGCT AGAATTAT GACAGTAAG GATGGCAT ATCTTACG AGAAAAGC ACCAGTCAC GAGTACTC ACTTGGTT TCAGAATG AUCUUUUACGTAAAAGAT UUUCACCATGGTGAAA GCGUUUCUAGAAACGC GGGUGAGCGCTCACCC AAAAACAGGCCTGTTTTT AAGGCAAATTTGCCTT AUGCCGCATGCGGCAT AAAAAGGGCCCTTTTT AAUAAGGGCGCCCTTATT GACACGGATCCGTGTC AAUGUUGAAUATATTCAACATT

CGGGAGGGC UUACCAUC UGGCCCCA GUGCUGCA AUGAUACCG CGAGACCC ACGCUCAC CGGCUCCA GAUUUAUCA GCAAUAAA CCAGCCAG CCGGAAGG GCCGAGCGCAGAAGUGG CTCCCG GCC GATGGTAA TGGGGCCA TGCAGCAC CGGTATCAT GGGTCTCG GTGAGCGT TGGAGCCG TGATAAATC TTTATTGC CTGGCTGG CCTTCCGG TGCGCTCGGC

CUCAU ACUCUUC CUCAU AGUGUUA UCACUC AGUGUUA UGGUAUGGCUUCAUUCA

3’ CUUUUUC AAUAU GUAAGU UGGCCGC UGUCACGCUCGUCGUU

GCUCCGGU UCCCAACG AUCAAGGC GAGUUACAU GAUCCCCC AUGUUGUG CAAAAAAG CGGUUAGCU CCUUCGGU CCUCCGAU CGUUGUCAGAA CCUCCGAU CCUUCGGU CGGUUAGCU CAAAAAAG AUGUUGUG GAUCCCCC GAGUUACAU AUCAAGGC UCCCAACG GCUCCGGU CAG GCAUCGUGG CAG UGCUA GUUGCCAU GCAACGUU AUAGUUUGC GCCAGUUA AGUAGUUC CUAGAGUA GCCGGGAAG UAAUUGUU CAGUCUAU CCUCCAUC UCCUGCAACUUUAUCCG GCCACCUGACGU

UAUUGAAGCAU UUAUCAGG GUUAUUGUC UCAUGAGC GGAUACAU AUUUGAAU GUAUUUAGA AAAAUAAA CAAAUAGG GGUUCCGC GCACAUUUC CCCGAAAAGU GCACAUUUC GGUUCCGC CAAAUAGG AAAAUAAA GUAUUUAGA AUUUGAAU I GGAUACAU UCAUGAGC GUUAUUGUC UUAUCAGG UAUUGAAGCAU GAAATGTGC GCGGAACC CCTATTTG TTTATTTT TCTAAATAC ATTCAAAT ATGTATCC GCTCATGA GACAATAAC CCTGATAA ATGCTTCAATA TTCTGACAACG ATCGGAGG ACCGAAGG AGCTAACCG CTTTTTTG CACAACAT GGGGGATC ATGTAACTC GCCTTGAT CGTTGGGA ACCGGAGC CCACGATGC CTGTAGCA ATGGCAAC AACGTTGC GCAAACTAT TAACTGGC GAACTACT TACTCTAG CTTCCCGGC AACAATTA ATAGACTG GATGGAGG CGGATAAAGT Ribb 3-6Ribb 3-5 Ribb 3-4 Ribb 2-8 Ribb 2-7 Ribb 2-6 Ribb 2-5 Ribb 1-9 Ribb 1-8 Ribb 1-7 Ribb 1-6 Ribb 1-5 This journalis©TheRoyalSocietyofChemistry2013 Electronic SupplementaryMaterial(ESI)forChemicalCommunications and black strandsaretheDNAstaplestrands. and black S2. Figure Detailed designoftherectangle origami. Detailed

UU CTGTCAGACC

GGUCUGACAGUUACCAA TTGGTAA UGCUUAAUCAGUGAGG CCTCACTGATTAAGCA CACCUAUCUCAGCGAUC GATCGCTGAGATAGGTG UGUCUAUUUCGUUCAU ATGAACGAAATAGACA CCAUAGUUGCCUGACUC GAGTCAGGCAACTATGG CCCGUCGUGUAGAUAA TTATCTACACGACGGG CUACGAUA TATCGTAG CGGGAGGGCGCCCTCCCG ACC

AUCUG

G

C

C

C

C 5’ A G U G

Rect-1.1,34nt Rect-1.2,16nt Rect-1.3,34nt Rect-1.4,16nt Rect-1.5,34nt Rect-1.6,16nt Rect-1.7,25nt C

C

U

A UCCAUCCAGU AUCCGCC GUGGUCCUGCAACUUU AAGGGCCGAGCGCAGAA UAAACCAGCCAGCCGG UCCAGAUUUAUCAGCAA ACCCACGCUCACCGGC ACCGCGAG UGCAAUGAU

U

U

A A U U G ACTGGATGGAGGCGGAT AAAGTTGCAGGACCAC TTCTGCGCTCGGCCCTT CCGGCTGGCTGGTTTA TTGCTGATAAATCTGGA GCCGGTGAGCGTGGGT CTCGCGGT ATCATTGCA UUGCC GGGAA

AUCA TTACTCTAGC GCUAGAGUAAGUAGUUCGAACTAC GCCAGUUAAUAGUUUGCAAACTATTAACTGGC CGCAACGUUGUUGCCAUATGGCAACAACGTTGCG UGCUACAGGCAUCGUGCACGATGCCTGTAGCA GUGUCACGCUCGUCGUUAACGACGAGCGTGACAC UGGUAUGGCUUCAUUCGAATGAAGCCATACCA AGCUCCGGCCGGAGCT UUCCCAACGCGTTGGGAA A

GGCGA

G

U

U

A

C

A U G A U

Rect-3.1,34nt Rect-3.2,32nt Rect-3.3,34nt Rect-3.4,32nt Rect-3.5,34nt Rect-3.6,32nt Rect-3.7,34nt The redstrandistheRNAscaffold

UUCUCUUACU UGCAUAA AUGGUUAUGGCAGCAC CCGCAGUGUUAUCACUC GUCAGAAGUAAGUUGG UCGGUCCUCCGAUCGUU AAAGCGGUUAGCUCCU UGUGCAAA CCCCCAUGU

G

U

C

A

U G C C A

U AGTAAGAGAATTATGCA GTGCTGCCATAACCAT GAGTGATAACACTGCGG CCAACTTACTTCTGAC AACGATCGGAGGACCGA AGGAGCTAACCGCTTT TTTGCACA ACATGGGGG CCGUA AGAUG

UAAA AAGTTCTGC TATGTGGC GCGGTATTATCCCGTA TTGACGCCGGGCAAGAG CAACTCGGTCGCCGCA TACACTATTCTCAGAAT GACTTGGTTGAGTACT CACCAGT GACTTGGTTGAGTACT TACACTATTCTCAGAAT CAACTCGGTCGCCGCA TTGACGCCGGGCAAGAG GCGGTATTATCCCGTA TATGTGGC AAGTTCTGC CUUUUCUGUGACUGGUGCACAGAAAAG AGUACUCAACCAAGUC AUUCUGAGAAUAGUGUA UGCGGCGACCGAGUUG CUCUUGCCCGGCGUCAA UACGGGAUAAUACCGC GCCACAUA GCAGAACUU A

GUGCU

C

A

U

C

A U U G G

Rect-5.1,34nt Rect-5.2,32nt Rect-5.3,34nt Rect-5.4,32nt Rect-5.5,34nt Rect-5.6,32nt Rect-5.7,34nt A

AAACGUUCU UCGGGGCG AAAACUCUCAAGGAUC UUACCGCUGUUGAGAUC CAGUUCGAUGUAACCC ACUCGUGCACCCAACUG AUCUUCAGCAUCUUUU ACUUUCA AUCUUCAGCAUCUUUU ACUCGUGCACCCAACUG CAGUUCGAUGUAACCC UUACCGCUGUUGAGAUC AAAACUCUCAAGGAUC UCGGGGCG AAACGUUCU CCAGCGUUUC

U

G

G

G

U G A G C

A GAAACGCTGGTGAAAGT AAAAGATGCTGAAGAT CAGTTGGGTGCACGAGT GGGTTACATCGAACTG GATCTCAACAGCGGTAA GATCCTTGAGAGTTTT CGCCCCGA AGAACGTTT AAAAC AGGAA

GGCAAAAUGCCGCAAAA AAGGGAAUAAGGGCGA CACGGAAAUGUUGAAUA CUCAUACUCUUCCUUU UUCAAUAUUAUUGAAGC AUUUAUCAGGGUUAUU GUCUCAUG AGCGGATAC AUA GTATCCGCT CATGAGAC AATAACCCTGATAAAT GCTTCAATAATATTGAA AAAGGAAGAGTATGAG TATTCAACATTTCCGTG TCGCCCTTATTCCCTT TTTTGCG TCGCCCTTATTCCCTT TATTCAACATTTCCGTG AAAGGAAGAGTATGAG GCTTCAATAATATTGAA AATAACCCTGATAAAT CATGAGAC GTATCCGCT

GCATTTTGCC UU

UGAAU G

U

A

U

U

U A G A A

Rect-7.1,34nt Rect-7.2,32nt Rect-7.3,34nt Rect-7.4,32nt Rect-7.5,34nt Rect-7.6,32nt Rect-7.7,34nt AAAUAAACA AAUAGGGG UUCCGCGCACAUUUCC CCGAAAAGUGCCACCUG ACGUCUAAGAAACCAU UAUUAUCAUGACAUUAA CCUAUAAAAAUAGGCG UAUCACG CCUAUAAAAAUAGGCG UAUUAUCAUGACAUUAA ACGUCUAAGAAACCAU CCGAAAAGUGCCACCUG UUCCGCGCACAUUUCC AAUAGGGG AAAUAAACA 3’ GUC AGGCCTUUUC GAAAGGGCCTCGTGATA CGCCTATTTTTATAGG TTAATGTCATGATAATA ATGGTTTCTTAGACGT CAGGTGGCACTTTTCGG GGAAATGTGCGCGGAA CCCCTATT TGTTTATTT

Rect-8.2,16nt Rect-8.4,16nt Rect-8.6,16nt Electronic Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2013

A

C

G

T

C

A

G

G U

T G

G C

G A

C G

0

A U

1

C C T

T C

T A

T C

T C

C G

G U

G G

G A

A

A

A

G G

A C

A C

A C CCACTTC UGCUA GUUGCCAU GCAACGUU AUAGUUUGC GCCAGUUA AGUAGUUC CUAGAGUA GCCGGGAAG UAAUUGUU CAGUCUAU CCUCCAUC UCCUGCAACUUUAUCCG

T

G

T

T

G C

C

r U

3’

i U

G

U

C

3 A

G

- C

G

4 A

A C

A G

C

C C TGCGCTCGGC CCTTCCGG CTGGCTGG TTTATTGC TGATAAATC TGGAGCCG GTGAGCGT GGGTCTCG CGGTATCAT TGCAGCAC TGGGGCCA GATGGTAA GCC GATGGTAA TGGGGCCA TGCAGCAC CGGTATCAT GGGTCTCG GTGAGCGT TGGAGCCG TGATAAATC TTTATTGC CTGGCTGG CCTTCCGG TGCGCTCGGC

G

C

C

C U

C U

T G

A G

T

T

T

A

G

G TU

G AC

T

A GU AGCGCAGAAGUGG

Tri 1-7 T

U AU

T

A AU

A

A AU

T

A AA

T

C TC

T

G

T

A U

A AU

A AU

U AC

T

A GA

C

A TC

T

A GC

A

A GA

A

T

A

T

G

A

5

A G

T

C

C

T

G CC

T

GG

r A

G

A

CU

i U

A

T U

U A

A

T 3

U AU

G

C

A AC -

A

A

GU

U ACUACGAUA UGUAGAUA CCCCGUCG GCCUGACU UCCAUAGUU UUCGUUCA CUGUCUAU UCAGCGAU GCACCUAUC UCAGUGAG CCAAUGCUUAA 5

T C

A

G A

G

A

G

C A

T

U CG

A C

A CG

G U

A CU

T U

G AG

T C

A

U CA

G U

T

U TG

G A

G

U CC

G

T

A G

G

A

U

T

CTG GATGGAGG CGGATAAAGTTGCAGGA C

C

A

T A

C

U TA

G A

A TA

C C

G

C TA

A C

C

A TA

C C

T

U TC

G

C

A GA

A

A

G TG

T G

T

G CG

A

G

C r

T C

A

C A i

G G

TA

G

G U

G

A T 3

G G

G CG

- T C G

U CC

1

T U

A

A GA

A C

C

C TA

C

A

U TA

A

A

T

C

T

C

A

A C

A

A Tri 1-6

T C

T A

C

U TU

C A

G

r A

G 5’

G U

C

C

i U C

A G

C

C

U G

A 3

T

A GG

C

G

CC

- U

T

A

GA

6 U

G U

T

G T

A

A

A

G G

A

G TA

A C

G TA

T U

A TA

C U

C TA

T G

A

U TG

C A

T

A CG

A C G

U CG

A C

U C

C T

U T

A

C

A

C G

A

U TA

A A

A TT

G G

A

C AA

C U

T

G TA

G U

A

A TG

G

A

A CG

T T

G CG

T

A A

U CC

G T

G

r

A U T

G U i

G C

A

A C

A G

C

U T 3

T C

U GA -

C C

G

A TC 2

C A

A

U GG

T U

A

A CG

T

A

A CA

U

A

T

C

A

U G

G A

C A

A G Tri 1-2

U TA

G G

U TU

A A

U AG

G A

U CU

T

U AU

T

C AG T

CA

T C

T

U

A

C C

TU

G U

AA

C C

TC

C A

GU

T

C A

AC

C A

A G r

G A

U

T i

A

A

3 G

C

-

G

A 3

A G

TC

G G

GU

A G

AC

A C

GU

C U

AU

G

AC

G T T

T U

T C C U GU AC AA GA

Tri 1-5

T6 G U

U

A

C

U

C A

A C

A U

A T C

G G G

T

U A

C

G T

A

U G

C

U A U

A

A G G

A

C A

T

A

A

U A

C A U

A

A C U

G

C T U

T

U T

G

C T C

A

A T A

G

U A A

T

G A G

A

A A

C

G C

U G G

C

C

U T A

A

G

A T

A

C

U C

T

C

G T

A

G

G G U

C

G

C C A

C

G U

T C

G

C

A

G

C

G

A C Tri 1-1 Tri 1-3

C U

G A G

T

C G

C T C

C

A A

A T G

T G

A

C T G

T

U r

r U G C

G

G i

i G G C

A A A

C C A

C 2

2 C A

G U

G

T G

A - A

-

T A

4 U 1 C A

T

A C

A G U

C A

A G

T

T U

U T

T

T G

U A

A

C U

C T A

A

T U

U T G

G

G G

A G

A

C

G

A

C

C

C A

A

U T U

G

A U

U C A

A

C A

A C A

A

G G

C C

T

C

U G C

G

C

G T U

A

U

U A G

C

A C

C T C

A

T C

T G

T G

C

A G

G U

r U G C

T

G G

i G A C

A

A G

C C

C

2 G C

C G

G

G U

A C

- G

U

5 U C C T

A C

C G G

A

C C

G U

G

C

U

G

C

Tri 1-4

A

C U

A U

G G C

G

G C

U C G

C

G G

A A

CAG GCAUCGUGG UGUCACGCUCGUCGUU GCAUCGUGG CAG

A T A

A A U

T

U

G r G U

T

U

A i A G C

A G

U G A

T

G G

2 C G

A

C C

G C

-

T

C A C

C 2

A G

U A A

G

A A

U C

A

C A

U T

A

C A

U C

A

G A

C G G

A

A

U G C

G

C A

T G

A CTCCCG

T C

G

T

C

T

G G

T

U C U

C

T G

G G A

A

T U

A C U

C

G G

C C G

T

U

U G U

G

U

G C G

A

G

G A A

C

C U

U T U

C

A A

A A

A TATCGTAGT TATCTACA CGACGGGG AGTCAGGC AACTATGGA TGAACGAA ATAGACAG ATCGCTGA GATAGGTGC CTCACTGA TTAAGCATTGG C

T C A G CGGGAGGGC UUACCAUC UGGCCCCA GUGCUGCA AUGAUACCG CGAGACCC ACGCUCAC CGGCUCCA GAUUUAUCA GCAAUAAA CCAGCCAG CCGGAAGG GCCG

A C

A A G

C

r A C G C

T

i C C U T T

C

2 A C A A

A r

T C C T

T

- U U i T

G

6 G A C 2 C

A

G G

G

G -

G 3

G A

A U A

T

T A C

T

C C C

G

A A

G

U A

T

U G

T

A G U

C

T A

A

G G C

T A

G

A C U

T

A G U

A

C G C

A

T A U

G

C A G

A

C A C

G U

T C A

C

T

T

G G

A C

T A

A

C

AACGACGAGCGTGACA CCACGATGC CTGTAGCA ATGGCAAC AACGTTGC GCAAACTAT TAACTGGC GAACTACT TACTCTAG CTTCCCGGC AACAATTA ATAGA C

C C

G U

T T

r T U

i G G

G G

2 G C A C

- U

7 A C

C G

C

G

G

A A

G C

C U

U

A

C

T U

G U

A C

A G

T G

G U 7

A A T A U

G G

C G C U T AT r AC i 2 CA -8 Figure S3. Detailed design of the triangle origami. Colored strand is the RNA scaffold strand and black strands are DNA staple strands. Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013 1 kb DNA marker DNA template from PCR from DNA template pUC 19 DNA template from PCR from DNA template 1 kb DNA marker Transcription mixtrue with RNA polymerase Purified RNA Transcription mixture without RNA polymerase

3.0 kb 1.0 kb 2.0 kb

1.5 kb 0.5 kb

1.0 kb

Figure S4. Agarose gel analysis of the preparation of DNA template, RNA scaffold strand, and RNA-DNA hybrid origami structures. The RNase H experiments further confirm that the origami structures are hybrid assembly of RNA scaffold and DNA staples. Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Table S1. Yield quantification of three origami structures (All counts are the observed objects in AFM images)

Origami structures Length (nm) Yield (%) Total count (N) Ribbon 70.3±11.4 67.3 401 Rectangle NA 60.1 642 Triangle NA 77.8 771

Figure S5. Length distribution of the ribbon origami measured from AFM images. Note that ribbons can stack onto each other and leads to ribbons longer than the expected value, 77 nm. Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Ribbon Rectangle Triangle

2 nm

-1 nm

300 nm 300 nm 300 nm

Figure S6. A negative control: assemblies from the transcription mixture without T7 RNA polymerase. No origami structure has been observed. This experiment confirms that the reported origami structures are indeed from RNA scaffolds instead of potential DNA template contaminations.

Ribbon Rectangle Triangle

2 nm

-1 nm

300 nm 300 nm 300 nm

Figure S7. RNA origami assembled from purified RNA strand. Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

25 °C 37 °C 45 °C

2 nm

55 °C 65 °C 70 °C

-1 nm

400 nm

Figure S8. Isothermal assembly of the triangle origami at different temperature for 1 hour incubation (RNA:DNA = 1:10). Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

1.5 min 3 min 5 min

10 min 15 min 30 min

1 hrs 2 hrs 4 hrs

8 hrs 16 hrs

2 nm

400 nm

-1 nm

Figure S9. Isothermal assembly of triangle origami at 65 ºC for different incubation time (RNA:DNA = 1:10). Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

1:10 (77.8%) 1:5 (73.5%) 1:2.5 (73.7%)

2 nm

1:1 (70%) 1:0.5 (59.1%) 1:0.25 (12.1)

-1 nm

300nm

Figure S10. Assembly the triangle origami with different molecular ratio (RNA:DNA). For each condition, the assembly yield was calculated based on the observed objects in AFM imaging and given in parentheses.