bioRxiv preprint doi: https://doi.org/10.1101/2021.07.02.450731; this version posted July 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Gradient-mixing LEGO robots for purifying DNA origami nanostructures of multiple components by rate-zonal centrifugation Jason Sentosaa,b,1, Brian Hornec,1, Franky Djutantaa,d,1,2, Dominic Showkeirc,1, Robert Rezvania,c, and Rizal F. Hariadi ID a,d,1 aBiodesign Center for Molecular Design and Biomimetics (at the Biodesign Institute) at Arizona State University, Tempe, AZ 85287, USA.; bDepartment of Biomedical Engineering, Georgia Institute of Technology, GA; cDepartment of Physics, Arizona State University, AZ.; dSchool for Engineering of Matter, Transport and Energy, Arizona State University, AZ. 1These authors contributed equally. 2To whom correspondence should be addressed. E-mail:
[email protected] AND
[email protected] This manuscript was compiled on July 4, 2021 Abstract DNA origami purification is critical in emerging applications of functionalized DNA nanostructures from basic fundamental biophysics, nanorobots to therapeutics. Advances in DNA origami purification have led to the establishment of rate-zonal centrifugation (RZC) as a scalable, high-yield, and contamination-free approach to purifying DNA origami nanostructures. In RZC purification, a linear density gradient is created using viscous agents, such as glycerol and sucrose, to separate molecules based on their mass and shape during high-rpm centrifugation. However, current methods for creating density gradients are typically time-consuming because of their reliance on slow passive diffusion.