The Comparative Efficacy of Antiepileptic Drugs for Partial and Tonic-Clonic Seizures

Total Page:16

File Type:pdf, Size:1020Kb

The Comparative Efficacy of Antiepileptic Drugs for Partial and Tonic-Clonic Seizures J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.48.11.1073 on 1 November 1985. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry 1985;48: 1073-1077 Occasional review The comparative efficacy of antiepileptic drugs for partial and tonic-clonic seizures D CHADWICK, DM TURNBULL From the Mersey Regional Department ofMedical and Surgical Neurology, Walton Hospital, Liverpool, and the Department ofNeurology, University ofNewcastle-upon- Tyne, UK SUMMARY Studies of the efficacy of anticonvulsant drugs are difficult to undertake and histori- cally have been of poor quality. Randomised comparisons of drugs are few in number, and have failed to detect significant differences between drugs. This is surprising in view of the strong feelings that many clinicians have about the relative efficacy of the drugs they use. A review of the literature emphasises the need for further studies in this field. guest. Protected by copyright. Recent studies have emphasised that the majority of introduction of sodium valproate, drugs effective patients with the onset of epilepsy in adult life can against petit mal absence seizures in childhood (for satisfactorily be managed by using a single anticon- example ethosuximide and trimethadione), were vulsant drug.' There is little definite evidence that ineffective against tonic-clonic and partial seizures adding a second anticonvulsant drug improves seiz- whilst drugs such as phenytoin and carbamazepine ure control in patients who have received an optimal which are effective against the latter are ineffective dose of a single drug.24 Since the risks of adverse against petit mal absence seizures. However, it has reactions and chronic toxicity increase when also been asssumed that different drugs are to be multiple anticonvulsant drugs are administered,45 preferred depending on whether a patient has monotherapy has become increasingly popular. This tonic-clonic seizures, or a partial epilepsy. Porter6 poses a question that has not previously demanded has recently reviewed the subject and suggested that serious investigation, namely: which anticonvulsant there is an order of preference for drugs which drug to choose for an individual patient? depends on seizure type (table 1). This ranking of Three major factors are likely to influence the anticonvulsant efficacy conforms to generally choice of an anticonvulsant: efficacy, toxicity and accepted clinical practice and would not be regarded cost. In clinical practice assumptions made about as controversial by many neurologists. However, it is comparative efficacy of anticonvulsants have been of uncertain on what evidence these preferences are major importance in this choice, and it is the based as the literature relating to the efficacy of purpose of this review to question the basis for these anticonvulsant drugs is unsatisfactory.'-' Few http://jnnp.bmj.com/ assumptions. studies have included such basic requirements as a The desire to adopt a universally acceptable randomised design and adequate statistical analysis classification of both seizures and epilepsy stems in in comparing anticonvulsant drugs. These omissions part from the assumption that there is a different are compounded by two further problems: a lack of response of individual seizure types and epilepsies to a generally accepted definition for "control" of different anticonvulsant drugs. There is some epilepsy, and problems in the selection of patients. evidence to support this contention in that, until the Control of epilepsy on September 30, 2021 by Address for reprint requests: Dr D Chadwick, Walton Hospital, Rice Lane, Liverpool L9 1AE, UK. Response to an anticonvulsant drug is most com- monly described using arbitrary definitions of poor, Received 14 December 1984 and in revised form 14 February good or excellent control. These terms are usually 1985. Accepted 16 Februarv 1985 defined by comparing pre-test seizure frequency, 1073 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.48.11.1073 on 1 November 1985. Downloaded from 1 074 Chadwick, Turnbull Table 1 Orders ofeffectiveness against tonic-clonic and partial seizures Decreasing likelihood of Simple* partial seizures Complex* partial seizures Tonic-clonic seizures effectiveness 1 phenytoin carbamazepine phenytoin carbamazepine phenytoin carbamazepine 3 primidone primidone phenobarbitone 4 phenobarbitone phenobarbitone valproate (Porter, 1982)6 *as defined in 1981 International Classification of seizures. with seizure frequency following the initiation or drug is given as add-on therapy to patients with change of therapy, and using percentage change to chronic epilepsy, whose seizures continue in spite of define the response as "good", "poor" etc. one, two, or more drugs in combination, the lack of However, there may be inherent difficulties in such response to an additional drug may not imply a lack comparisons. Patients rarely have a stable seizure of anticonvulsant properties. It may simply be an threshold and seizures not infrequently occur in indication that the trial drug is no more effective clusters. Thus when a patient presents with a flurry than the previously administered drugs, or that the of four seizures within one week and has his or her trial drug has a similar mechanism of action to the treatment amended it might be assumed that the concurrently administered drugs. pre-treatment seizure frequency might amount to These considerations make it essential that com- some 16 seizures per month. However the patient parative studies of the efficacy and toxicity of anti- may only experience one such flurry of seizures in a convulsant drugs should rely on trial designs which year, in which case when treatment is started the include a randomisation procedure with prolonged apparent monthly seizure frequency might well fall follow-up. Multiple drug therapy should be avoided, guest. Protected by copyright. from twelve seizures per month, to 0-35 seizures per and the population of patients should be defined in month even if the drug treatment had no effect on terms of those factors known to influence prognosis. seizure frequency. It is therefore necessary in asses- The number of prospective randomised comparative sing treatment to ensure that the period of observa- studies has increased over the past decade but the tion prior to treatment is prolonged and identical to numbers still remain small, and many are still open the period following the change before comparisons to criticism. of seizure frequency can be derived. In previously untreated patients it may be difficult Randomised comparative studies to withhold a treatment to establish a pretreatment Two differing designs have been used. Most have seizure frequency so that other means of assessing employed a double blind cross-over design (tables 2 seizure response become necessary in such patients. and 3), which necessitates short periods of patient Here it seems preferable to adopt definitions of con- observation which may not provide information that trol of epilepsy which describe periods entirely free can readily be applied to longer-term clinical man- from seizures. In this instance control of epilepsy agement. Drugs such as benzodiazepines, whose may be defined in terms of the number of patients anticonvulsant effects show tolerance, are likely to entering remissions lasting, one, two or more be unduly favoured by such designs. Other studies years."' Such a definition is more clinically relevant have undertaken randomisation with a longer-term than any assessment based on comparisons of parallel-group follow-up (table 4). However, these seizure frequencies, clinicians and patients aiming usually give no information to confirm that the for complete cessation of attacks, rather than reduc- groups as randomised are comparable for those fac- http://jnnp.bmj.com/ tion of say 50% from four seizures per day, to two. tors known to influence the prognosis of epilepsy,'2 essential for this particular type of design, which Patient selection lacks a cross-over. In spite of these difficulties it is Studies of anticonvulsant efficacy have usually been nevertheless quite striking that only one study'" sug- undertaken in chronic epileptic patients who have gests that one of the anticonvulsant drugs tested was proved themselves resistant to therapy over many superior to another, phenytoin being preferred to years, and who often continue with their previous sulthiame. As some of the antiepileptic properties of medication during the drug study. The long-term sulthiame may be due to its ability to inhibit pheny- on September 30, 2021 by remission rates in such patients are always likely to toin metabolism,'4 it is perhaps not surprising that remain low, in contrast to the prognosis for newly the drug is inferior when compared to phenytoin. diagnosed patients with epilepsy in whom the prog- Three recently reported studies demand further nosis is considerably better.'°0 Indeed when a trial comment, as they were undertaken in previously J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.48.11.1073 on 1 November 1985. Downloaded from The comparative efficacy of antiepileptic drugs for partial and tonic-clonic seizures 1075 untreated patients who were randomised to differ- meaningful differences in efficacy in a parallel group ent drugs shortly after the diagnosis of epilepsy. Cal- design. laghan et all- compared phenytoin, carbamazepine, Why, then, should this array of data fail to dif- and valproate in 181 adult patients with tonic-clonic
Recommended publications
  • In Silico Methods for Drug Repositioning and Drug-Drug Interaction Prediction
    In silico Methods for Drug Repositioning and Drug-Drug Interaction Prediction Pathima Nusrath Hameed ORCID: 0000-0002-8118-9823 Submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy Department of Mechanical Engineering THE UNIVERSITY OF MELBOURNE May 2018 Copyright © 2018 Pathima Nusrath Hameed All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm or any other means without written permission from the author. Abstract Drug repositioning and drug-drug interaction (DDI) prediction are two fundamental ap- plications having a large impact on drug development and clinical care. Drug reposi- tioning aims to identify new uses for existing drugs. Moreover, understanding harmful DDIs is essential to enhance the effects of clinical care. Exploring both therapeutic uses and adverse effects of drugs or a pair of drugs have significant benefits in pharmacology. The use of computational methods to support drug repositioning and DDI prediction en- able improvements in the speed of drug development compared to in vivo and in vitro methods. This thesis investigates the consequences of employing a representative training sam- ple in achieving better performance for DDI classification. The Positive-Unlabeled Learn- ing method introduced in this thesis aims to employ representative positives as well as reliable negatives to train the binary classifier for inferring potential DDIs. Moreover, it explores the importance of a finer-grained similarity metric to represent the pairwise drug similarities. Drug repositioning can be approached by new indication detection. In this study, Anatomical Therapeutic Chemical (ATC) classification is used as the primary source to determine the indications/therapeutic uses of drugs for drug repositioning.
    [Show full text]
  • Therapeutic Class Overview Anticonvulsants
    Therapeutic Class Overview Anticonvulsants INTRODUCTION Epilepsy is a disease of the brain defined by any of the following (Fisher et al 2014): ○ At least 2 unprovoked (or reflex) seizures occurring > 24 hours apart; ○ 1 unprovoked (or reflex) seizure and a probability of further seizures similar to the general recurrence risk (at least 60%) after 2 unprovoked seizures, occurring over the next 10 years; ○ Diagnosis of an epilepsy syndrome. Types of seizures include generalized seizures, focal (partial) seizures, and status epilepticus (Centers for Disease Control and Prevention [CDC] 2018, Epilepsy Foundation 2016). ○ Generalized seizures affect both sides of the brain and include: . Tonic-clonic (grand mal): begin with stiffening of the limbs, followed by jerking of the limbs and face . Myoclonic: characterized by rapid, brief contractions of body muscles, usually on both sides of the body at the same time . Atonic: characterized by abrupt loss of muscle tone; they are also called drop attacks or akinetic seizures and can result in injury due to falls . Absence (petit mal): characterized by brief lapses of awareness, sometimes with staring, that begin and end abruptly; they are more common in children than adults and may be accompanied by brief myoclonic jerking of the eyelids or facial muscles, a loss of muscle tone, or automatisms. ○ Focal seizures are located in just 1 area of the brain and include: . Simple: affect a small part of the brain; can affect movement, sensations, and emotion, without a loss of consciousness . Complex: affect a larger area of the brain than simple focal seizures and the patient loses awareness; episodes typically begin with a blank stare, followed by chewing movements, picking at or fumbling with clothing, mumbling, and performing repeated unorganized movements or wandering; they may also be called “temporal lobe epilepsy” or “psychomotor epilepsy” .
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/014.3507 A1 Gant Et Al
    US 2010.0143507A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/014.3507 A1 Gant et al. (43) Pub. Date: Jun. 10, 2010 (54) CARBOXYLIC ACID INHIBITORS OF Publication Classification HISTONE DEACETYLASE, GABA (51) Int. Cl. TRANSAMINASE AND SODIUM CHANNEL A633/00 (2006.01) A 6LX 3/553 (2006.01) A 6LX 3/553 (2006.01) (75) Inventors: Thomas G. Gant, Carlsbad, CA A63L/352 (2006.01) (US); Sepehr Sarshar, Cardiff by A6II 3/19 (2006.01) the Sea, CA (US) C07C 53/128 (2006.01) A6IP 25/06 (2006.01) A6IP 25/08 (2006.01) Correspondence Address: A6IP 25/18 (2006.01) GLOBAL PATENT GROUP - APX (52) U.S. Cl. .................... 424/722:514/211.13: 514/221; 10411 Clayton Road, Suite 304 514/456; 514/557; 562/512 ST. LOUIS, MO 63131 (US) (57) ABSTRACT Assignee: AUSPEX The present invention relates to new carboxylic acid inhibi (73) tors of histone deacetylase, GABA transaminase, and/or PHARMACEUTICALS, INC., Sodium channel activity, pharmaceutical compositions Vista, CA (US) thereof, and methods of use thereof. (21) Appl. No.: 12/632,507 Formula I (22) Filed: Dec. 7, 2009 Related U.S. Application Data (60) Provisional application No. 61/121,024, filed on Dec. 9, 2008. US 2010/014.3507 A1 Jun. 10, 2010 CARBOXYLIC ACID INHIBITORS OF HISTONE DEACETYLASE, GABA TRANSAMNASE AND SODIUM CHANNEL 0001. This application claims the benefit of priority of Valproic acid U.S. provisional application No. 61/121,024, filed Dec. 9, 2008, the disclosure of which is hereby incorporated by ref 0004 Valproic acid is extensively metabolised via erence as if written herein in its entirety.
    [Show full text]
  • DOCUMENT RESUME ED 300 697 CG 021 192 AUTHOR Gougelet, Robert M.; Nelson, E. Don TITLE Alcohol and Other Chemicals. Adolescent A
    DOCUMENT RESUME ED 300 697 CG 021 192 AUTHOR Gougelet, Robert M.; Nelson, E. Don TITLE Alcohol and Other Chemicals. Adolescent Alcoholism: Recognizing, Intervening, and Treating Series No. 6. INSTITUTION Ohio State Univ., Columbus. Dept. of Family Medicine. SPONS AGENCY Health Resources and Services Administration (DHHS/PHS), Rockville, MD. Bureau of Health Professions. PUB DATE 87 CONTRACT 240-83-0094 NOTE 30p.; For other guides in this series, see CG 021 187-193. AVAILABLE FROMDepartment of Family Medicine, The Ohio State University, Columbus, OH 43210 ($5.00 each, set of seven, $25.00; audiocassette of series, $15.00; set of four videotapes keyed to guides, $165.00 half-inch tape, $225.00 three-quarter inch tape; all orders prepaid). PUB TYPE Guides - Classroom Use - Materials (For Learner) (051) -- Reports - General (140) EDRS PRICE MF01 Plus Plstage. PC Not Available from EDRS. DESCRIPTORS *Adolescents; *Alcoholism; *Clinical Diagnosis; *Drug Use; *Family Problems; Physician Patient Relationship; *Physicians; Substance Abuse; Units of Study ABSTRACT This document is one of seven publications contained in a series of materials for physicians on recognizing, intervening with, and treating adolescent alcoholism. The materials in this unit of study are designed to help the physician know the different classes of drugs, recognize common presenting symptoms of drug overdose, and place use and abuse in context. To do this, drug characteristics and pathophysiological and psychological effects of drugs are examined as they relate to administration,
    [Show full text]
  • Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis With
    University of Rhode Island DigitalCommons@URI Pharmacy Practice Faculty Publications Pharmacy Practice 2018 Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis with Antiepileptic Drugs: An Analysis of the Food and Drug Administration Adverse Event Reporting System (FAERS) Eric P. Borrelli University of Rhode Island, [email protected] Erica Y. Lee University of Rhode Island SeFoe nelloxtw pa thige fors aaddndition addal aitutionhorsal works at: https://digitalcommons.uri.edu/php_facpubs The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits oy u. This is a pre-publication author manuscript of the final, published article. Terms of Use This article is made available under the terms and conditions applicable towards Open Access Policy Articles, as set forth in our Terms of Use. Citation/Publisher Attribution Borrelli EP, Lee EY, Descoteaux AM, Kogut SJ, Caffrey AR. Stevens‐Johnson syndrome and toxic epidermal necrolysis with antiepileptic drugs: An analysis of the US Food and Drug Administration Adverse Event Reporting System. Epilepsia. 2018;00:1–7. https://doi.org/10.1111/epi.14591 Available at: https://doi.org/10.1111/epi.14591 This Article is brought to you for free and open access by the Pharmacy Practice at DigitalCommons@URI. It has been accepted for inclusion in Pharmacy Practice Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Authors Eric P. Borrelli, Erica Y. Lee, Andrew M. Descoteaux, Stephen Jon Kogut, and Aisling R. Caffrey This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/php_facpubs/124 Title: Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis with Antiepileptic Drugs: An Analysis of the Food and Drug Administration Adverse Event Reporting System (FAERS) Authors: Eric P.
    [Show full text]
  • "2-Oxo-1-Pyrrolidine Derivative and Its Pharmaceutical Uses"
    (19) & (11) EP 1 452 524 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 207/27 (2006.01) A61K 31/4015 (2006.01) 14.10.2009 Bulletin 2009/42 A61P 25/08 (2006.01) (21) Application number: 04007878.4 (22) Date of filing: 21.02.2001 (54) "2-oxo-1-pyrrolidine derivative and its pharmaceutical uses" "2-Oxo-1-Pyrrolidinderivate und ihre pharmazeutische Verwendung" "Dérivé de 2-oxo-1-pyrrolidine et ses applications pharmaceutique" (84) Designated Contracting States: • Talaga, Patrice AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU 1170 Watermael-Boitsfort (BE) MC NL PT SE TR (74) Representative: UCB (30) Priority: 23.02.2000 GB 0004297 Intellectual Property c/o UCB S.A. (43) Date of publication of application: Intellectual Property Department 01.09.2004 Bulletin 2004/36 Allée de la Recherche 60 1070 Brussels (BE) (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: (56) References cited: 01925354.1 / 1 265 862 WO-A-99/13911 GB-A- 1 309 692 (73) Proprietor: UCB Pharma, S.A. • PROUS: "LEVETIRACETAM" DRUGS OF THE 1170 Brussels (BE) FUTURE, BARCELONA, ES, vol. 19, no. 2, 1994, pages 111-113, XP000908882 ISSN: 0377-8282 (72) Inventors: • FISCHER W ET AL: "Die Wirksamkeit von • Differding, Edmond Piracetam, Meclofenoxat und Vinpocetin in 1348 Ottignies-Louvain-La-Neuve (BE) verschiedenen Krampfmodellen bei der Maus" • Kenda, Benoît PHARMAZIE, VEB VERLAG VOLK UND 5080 Emines (BE) GESUNDHEIT. BERLIN, DD, vol. 46, no.
    [Show full text]
  • Drug and Medication Classification Schedule
    KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine
    [Show full text]
  • Pharmaceuticals As Environmental Contaminants
    PharmaceuticalsPharmaceuticals asas EnvironmentalEnvironmental Contaminants:Contaminants: anan OverviewOverview ofof thethe ScienceScience Christian G. Daughton, Ph.D. Chief, Environmental Chemistry Branch Environmental Sciences Division National Exposure Research Laboratory Office of Research and Development Environmental Protection Agency Las Vegas, Nevada 89119 [email protected] Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Why and how do drugs contaminate the environment? What might it all mean? How do we prevent it? Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada This talk presents only a cursory overview of some of the many science issues surrounding the topic of pharmaceuticals as environmental contaminants Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada A Clarification We sometimes loosely (but incorrectly) refer to drugs, medicines, medications, or pharmaceuticals as being the substances that contaminant the environment. The actual environmental contaminants, however, are the active pharmaceutical ingredients – APIs. These terms are all often used interchangeably Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Office of Research and Development Available: http://www.epa.gov/nerlesd1/chemistry/pharma/image/drawing.pdfNational
    [Show full text]
  • Phenobarbital Sodium Injection West-Ward Pharmaceuticals Corp
    PHENOBARBITAL SODIUM- phenobarbital sodium injection West-Ward Pharmaceuticals Corp. Disclaimer: This drug has not been found by FDA to be safe and effective, and this labeling has not been approved by FDA. For further information about unapproved drugs, click here. ---------- Phenobarbital Sodium Injection, USP CIV FOR IM OR SLOW IV ADMINISTRATION DO NOT USE IF SOLUTION IS DISCOLORED OR CONTAINS A PRECIPITATE Rx only DESCRIPTION The barbiturates are nonselective central nervous system (CNS) depressants which are primarily used as sedative hypnotics and also anticonvulsants in subhypnotic doses. The barbiturates and their sodium salts are subject to control under the Federal Controlled Substances Act (CIV). Barbiturates are substituted pyrimidine derivatives in which the basic structure common to these drugs is barbituric acid, a substance which has no central nervous system activity. CNS activity is obtained by substituting alkyl, alkenyl or aryl groups on the pyrimidine ring. Phenobarbital Sodium Injection, USP is a sterile solution for intramuscular or slow intravenous administration as a long-acting barbiturate. Each mL contains phenobarbital sodium either 65 mg or 130 mg, alcohol 0.1 mL, propylene glycol 0.678 mL and benzyl alcohol 0.015 mL in Water for Injection; hydrochloric acid added, if needed, for pH adjustment. The pH range is 9.2-10.2. Chemically, phenobarbital sodium is 2,4,6(1H,3H,5H)-Pyrimidinetrione,5-ethyl-5-phenyl-, monosodium salt and has the following structural formula: C12H11N2NaO3 MW 254.22 The sodium salt of phenobarbital occurs as a white, slightly bitter powder, crystalline granules or flaky crystals; it is soluble in alcohol and practically insoluble in ether or chloroform.
    [Show full text]
  • Advances 1N the Medical and Surgical Management of Intractable Partial Complex Seizures* **
    Advances 1n the Medical and Surgical Management of Intractable Partial Complex Seizures* ** HOOSHANG HOOSHMAND, M.D. Associate Professor of Neurology, Medical College of Virginia, Health Sciences Division of Virginia Commonwealth University, Richmond Introduction. Seizures can be due to a variety of ing to body surface is safer and more accurate acute, subacute, or chronic diseases with different (Table 2). As the child grows, there may be a need to etiologies. Clinically, they may manifest as focal or gradually increase the dose of anticonvulsants if generalized phenomena (Table I). Whereas the ma­ seizure control is poor or if the serum level of the an­ jority of the patients suffering from partial seizures ticonvulsant starts to decline. are easily controlled with medications, in a small Drug Interaction. The relationship of multiple number of patients treatment may fail. The failure drug therapy to its toxic effects on the brain is quite may be due to incorrect diagnosis or incorrect complicated, and many forms of therapeutic failure therapy. The efficacy of medical treatment for seizure or toxicity can result. disorder depends upon six factors: I) dosage; 2) the Combination ofSimilar Drugs. Failure or toxicity size of the patient; 3) drug interaction; 4) drug may be the result of a combination of phar­ specificity for the disease; 5) the nature of the disease macologically similar drugs. Such a combination may for which the drug is used; 6) the mode and frequency enhance the side effects of drowsiness and ataxia. The of medication. patient may suffer from these side effects without at­ Dosage of Anticonvulsant. The dosage of anti­ taining therapeutic levels of individual anticon­ convulsant is very important (Table 2) .
    [Show full text]
  • Antiepileptic Drug Treatment in 1959
    Antiepileptic Drug Treatment in 1959 The two decades between 1938 and 1958 were notable for a large number of new medicinal com- pounds.Phenytoin was of course the most important, but other drugs, some of which are still prescribed, were introduced at this time. Not only drugs – for the ketogenic diet was also popu- larised in this period. Lennox in his book in 1960 gave a long treatise on drug therapy. Head- ing his list were the bromides, which he found rather ineffective, but barbiturates were greeted enthusiastically. Lennox mentioned that 2,500 compounds had been synthesised, and of these 50 compounds were marketed of which phenobarbital was the most frequently used for epilepsy. He was also enthusiastic about phenytoin, especially for patients ‘with long–standing convul- sions previously unrelieved by phenobarbital’ although Mesantoin outranked it on several points, and indeed he favoured their combined use: ‘Mesantoin and Dilantin are Damon and Pythias in respect to their suitability for joint action. Similarity of action gives a doubled therapeutic effect; the dissimilarity of their side reactions keeps these within bounds.’ Phenacemide was ‘what in athletics might be called a triple threat because, more than any other drug, it acts against each of the three main types of seizures, and especially against the most feared psychomotor seizures. However, it is also a triple threat to the patient himself because of possible effect on the marrow, the liver or the psyche.’ Given one chance in 250 of not surviving this treatment, he Drugs introduced into clinical asked, ‘Is the risk too great?’ Trimethadione practice between 1938 and 1958 (Tridione) ‘heads the list of drugs that are 1938 Dilantin Phenytoin peculiarly beneficial to persons subject to 1941 Diamox Acetazolamide 1946 Tridione Trimethadione petits’.
    [Show full text]
  • Drugs Affecting the Central Nervous System
    Drugs affecting the central nervous system 15. Antiepileptic drugs (AEDs) Epilepsy is caused by the disturbance of the functions of the CNS. Although epileptic seizures have different symptoms, all of them involve the enhanced electric charge of a certain group of central neurons which is spontaneously discharged during the seizure. The instability of the cell membrane potential is responsible for this spontaneous discharge. This instability may result from: increased concentration of stimulating neurotransmitters as compared to inhibiting neurotransmitters decreased membrane potential caused by the disturbance of the level of electrolytes in cells and/or the disturbance of the function of the Na+/K+ pump when energy is insufficient. 2 Mutations in sodium and potassium channels are most common, because they give rise to hyperexcitability and burst firing. Mutations in the sodium channel subunits gene have been associated with - in SCN2A1; benign familial neonatal epilepsy - in SCN1A; severe myoclonic epilepsy of infancy - in SCN1A and SCN1B; generalized epilepsy with febrile seizures The potassium channel genes KCNQ2 and KCNQ3 are implicated in some cases of benign familial neonatal epilepsy. Mutations of chloride channels CLCN2 gene have been found to be altered in several cases of classical idiopathic generalized epilepsy suptypes: child-epilepsy and epilepsy with grand mal on awakening. Mutations of calcium channel subunits have been identified in juvenile absence epilepsy (mutation in CACNB4; the B4 subunit of the L-type calcium channel) and idiopathic generalized epilepsy (CACN1A1). 3 Mutations of GABAA receptor subunits also have been detected. The gene encoding the 1 subunit, GABRG1, has been linked to juvenile myoclonic epilepsy; mutated GABRG2, encoding an abnormal subunit, has been associated with generalized epilepsy with febrile seizures and childhood absence epilepsy.
    [Show full text]