A Hybrid Nanomemristor/Transistor Logic Circuit Capable of Self-Programming
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Memristor-The Future of Artificial Intelligence L.Kavinmathi, C.Gayathri, K.Kumutha Priya
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 358 ISSN 2229-5518 Memristor-The Future of Artificial Intelligence L.kavinmathi, C.Gayathri, K.Kumutha priya Abstract- Due to increasing demand on miniaturization and low power consumption, Memristor came into existence. Our design exploration is Reconfigurable Threshold Logic Gates based Programmable Analog Circuits using Memristor. Thus a variety of linearly separable and non- linearly separable logic functions such as AND, OR, NAND, NOR, XOR, XNOR have been realized using Threshold logic gate using Memristor. The functionality can be changed between these operations just by varying the resistance of the Memristor. Based on this Reconfigurable TLG, various Programmable Analog circuits can be built using Memristor. As an example of our approach, we have built Programmable analog Gain amplifier demonstrating Memristor-based programming of Threshold, Gain and Frequency. As our idea consisting of Programmable circuit design, in which low voltages are applied to Memristor during their operation as analog circuit element and high voltages are used to program the Memristor’s states. In these circuits the role of memristor is played by Memristor Emulator developed by us using FPGA. Reconfigurable is the option we are providing with the present system, so that the resistance ranges are varied by preprogram too. Index Terms— Memristor, TLG-threshold logic gates, Programmable Analog Circuits, FPGA-field programmable gate array, MTL- memristor threshold logic, CTL-capacitor Threshold logic, LUT- look up table. —————————— ( —————————— 1 INTRODUCTION CCORDING to Chua’s [founder of Memristor] definition, 9444163588. E-mail: [email protected] the internal state of an ideal Memristor depends on the • L.kavinmathi is currently pursuing bachelors degree program in electronics A and communication engineering in tagore engineering college under Anna integral of the voltage or current over time. -
Logic Circuits S
1 Normally-off logic based on resistive switches – Part II: Logic circuits S. Balatti, Student Member, IEEE, S. Ambrogio, Student Member, IEEE, D. Ielmini, Senior Member, IEEE Abstract—Logic gates based on the resistive switching memory (RRAM) allows for normally-off digital computing thanks to the nonvolatile nature of the RRAM switch [1]. An extremely small area consumption can be achieved thanks to the 2−terminal structure of the RRAM switch and its capability of 3D stacking. However, the RRAM organization details within the array must be thoroughly investigated. This work discusses the array orga- nization and the select/unselect schemes of RRAM logic circuits. We demonstrate a 1-bit adder to support the high functionality of RRAM logic. These results support RRAM as a promising technology for nonvolatile logic circuits beyond CMOS. Keywords: Resistive switching memory (RRAM), logic gates, logic circuits, logic computing Fig. 1. Schematic view of 2 stacked arrays with 1T1R architecture (a) and I. INTRODUCTION corresponding plan view (b). The selected columns are biased at V and 0, while the unselected at αV and γV. The selected row is floating and the Resistive switching memory (RRAM) is raising an in- unselected rows are biased at βV. Depending on its position in the array a creasing interest for high-density nonvolatile memories [2]– cell can be selected (S), unselected (U) or half selected (HA and HB). [5] and logic circuits [1], [6]–[8]. The crossbar latch was first proposed to allow inversion and restoration within diode high density, e.g., only 2F2 for an AND gate, which is more logic circuits [9]. -
Hybrid Memristor–CMOS Implementation of Combinational Logic Based on X-MRL †
electronics Article Hybrid Memristor–CMOS Implementation of Combinational Logic Based on X-MRL † Khaled Alhaj Ali 1,* , Mostafa Rizk 1,2,3 , Amer Baghdadi 1 , Jean-Philippe Diguet 4 and Jalal Jomaah 3 1 IMT Atlantique, Lab-STICC CNRS, UMR, 29238 Brest, France; [email protected] (M.R.); [email protected] (A.B.) 2 Lebanese International University, School of Engineering, Block F 146404 Mazraa, Beirut 146404, Lebanon 3 Faculty of Sciences, Lebanese University, Beirut 6573, Lebanon; [email protected] 4 IRL CROSSING CNRS, Adelaide 5005, Australia; [email protected] * Correspondence: [email protected] † This paper is an extended version of our paper published in IEEE International Conference on Electronics, Circuits and Systems (ICECS) , 27–29 November 2019, as Ali, K.A.; Rizk, M.; Baghdadi, A.; Diguet, J.P.; Jomaah, J. “MRL Crossbar-Based Full Adder Design”. Abstract: A great deal of effort has recently been devoted to extending the usage of memristor technology from memory to computing. Memristor-based logic design is an emerging concept that targets efficient computing systems. Several logic families have evolved, each with different attributes. Memristor Ratioed Logic (MRL) has been recently introduced as a hybrid memristor–CMOS logic family. MRL requires an efficient design strategy that takes into consideration the implementation phase. This paper presents a novel MRL-based crossbar design: X-MRL. The proposed structure combines the density and scalability attributes of memristive crossbar arrays and the opportunity of their implementation at the top of CMOS layer. The evaluation of the proposed approach is performed through the design of an X-MRL-based full adder. -
The Memristor: Anew Bond Graph Element D
Paper No. n-Aut·N J The Society shall not be responsible for statements or opinions :<;111 pnp~,r~ or, in'Ldisao~slofl at me~,~in~s~f t~~ <~~,~iety, o,~, ot ,.its (I',~l)o'isjons:"or S,ecti ons;) lor- prlrU9d;:)ln tts j:~obllcaJLors. G. F.OSTER The Memristor: ANew Bond Graph Element D. M. AUSLANDER Mechanical Engineering Department. The "mcmris[.or," first deft ned by L. Clma for electrical drwits, 1·$ proposed as a new University of California, Berkeley, bond gra,ph clemel/t, on (1.11- equul footiug with R, L, & C, and having some unique Calif. modelling capubilities for nontinear systems. The Missing Constitutive Relation circuit thcory; howevcr, if wc look beyond the electrical doma.in it is not hard 1.0 find systems whose characteristics are con Ix HIS original lecture notes int.roducing the bond veniently represented by a memristor modcl. graph technique, Paynter drew a 1I1ctrahedron of state," (Fig. I) which sumnHlrir.cd j.he relationship between the sl.ate vl~riables Properties (c, I, p, q) [I, 2].1 There are G binary relationships possible be tween these 4 state variableii, Two of these are definitions: the The constitutive relation for a I-port memristor is a curve in the q-p ph~ne, Fig. 2. [n this context, we do not necessarily in_ displacement., q(t) = q(O) + f(t)clJ, and the qU:l.utit,y pet) = J:' terpret the quant.it,y p(l) = p(O) + ]:' e(t)dt as momentum, magneti(~ p(O) + }:' c(l)dt, which is interpreted ns momentum, flux, or pressure-momentum (2), buti merely as t.he integrated etTol't ("impulse!». -
A Brief History of Molecular Electronics
COMMENTARY | FOCUS A brief history of molecular electronics Mark Ratner The field of molecular electronics has been around for more than 40 years, but only recently have some fundamental problems been overcome. It is now time for researchers to move beyond simple descriptions of charge transport and explore the numerous intrinsic features of molecules. he concept of electrons moving conductivity decreased exponentially with Conference by one of the inventors of through single molecules comes layer thickness, therefore revealing electron the STM how to account for the fact Tin two different guises. The first is tunnelling through the organic monolayer. that charge could actually move through electron transfer, which involves a charge In 1974, Arieh Aviram and I published fatty acids containing long, saturated moving from one end of the molecule to the first theoretical discussion of transport hydrocarbon chains. the other1. The second, which is closely through a single molecule8. On reflection The first significant work attempting related but quite distinct, is molecular now, there are some striking features about to measure single-molecule transport charge transport and involves current this work. First, we suggested a very ad came from Mark Reed’s group at Yale passing through a single molecule that is hoc scheme for the actual calculation. University, working in collaboration with strung between electrodes2,3. The two are (This was in fact the beginning of many James Tour’s group, then at the University related because they both attempt -
FLEXIBLE ELECTRONICS: MATERIALS and DEVICE FABRICATION
FLEXIBLE ELECTRONICS: MATERIALS and DEVICE FABRICATION by Nurdan Demirci Sankır Dissertation submitted to the Faculty of Virginia Polytechnic Institute and State University In partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Materials Science and Engineering APPROVED: Richard O. Claus, Chairman Sean Corcoran Guo-Quan Lu Daniel Stilwell Dwight Viehland December 7, 2005 Blacksburg, Virginia Keywords: flexible electronics, organic electronics, organic semiconductors, electrical conductivity, line patterning, inkjet printing, field effect transistor. Copyright 2005, Nurdan Demirci Sankır FLEXIBLE ELECTRONICS: MATERIALS and DEVICE FABRICATION by Nurdan Demirci Sankır ABSTRACT This dissertation will outline solution processable materials and fabrication techniques to manufacture flexible electronic devices from them. Conductive ink formulations and inkjet printing of gold and silver on plastic substrates were examined. Line patterning and mask printing methods were also investigated as a means of selective metal deposition on various flexible substrate materials. These solution-based manufacturing methods provided deposition of silver, gold and copper with a controlled spatial resolution and a very high electrical conductivity. All of these procedures not only reduce fabrication cost but also eliminate the time-consuming production steps to make basic electronic circuit components. Solution processable semiconductor materials and their composite films were also studied in this research. Electrically conductive, ductile, thermally and mechanically stable composite films of polyaniline and sulfonated poly (arylene ether sulfone) were introduced. A simple chemical route was followed to prepare composite films. The electrical conductivity of the films was controlled by changing the weight percent of conductive filler. Temperature dependent DC conductivity studies showed that the Mott three dimensional hopping mechanism can be used to explain the conduction mechanism in composite films. -
Molecular and Nano Electronics/Molecular Electronics
NANOSCIENCES AND NANOTECHNOLOGIES - Molecular And Nano-Electronics - Weiping Wu, Yunqi Liu, Daoben Zhu MOLECULAR AND NANO-ELECTRONICS Weiping Wu, Yunqi Liu, Daoben Zhu Institute of Chemistry, Chinese Academy of Sciences, China Keywords: nano-electronics, nanofabrication, molecular electronics, molecular conductive wires, molecular switches, molecular rectifier, molecular memories, molecular transistors and circuits, molecular logic and molecular computers, bioelectronics. Contents 1. Introduction 2. Molecular and nano-electronics in general 2.1. The Electrodes 2.2. The Molecules and Nano-Structures as Active Components 2.3. The Molecule–Electrode Interface 3. Approaches to nano-electronics 3.1. Nanofabrication 3.2. Nanomaterial Electronics 3.3. Molecular Electronics 4. Molecular and Nano-devices 4.1. Definition, Development and Challenge of Molecular Devices 4.2. Molecular Conductive Wires 4.3. Molecular Switches 4.4. Molecular Rectifiers 4.5. Molecular Memories 4.6. Molecular Transistors and Circuits 4.7. Molecular Logic and Molecular Computers 4.8. Nano-Structures in Nano-Electronics 4.9. Other Applications, Such as Energy Production and Medical Diagnostics 4.10. Molecularly-Resolved Bioelectronics 5. Summary and perspective Glossary BibliographyUNESCO – EOLSS Biographical Sketches Summary SAMPLE CHAPTERS Molecular and nano-electronics using single molecules or nano-structures as active components are promising technological concepts with fast growing interest. It is the science and technology related to the understanding, design, and -
Memristor Nanodevice for Unconventional Computing:Review and Applications Mahyar Shahsavari, Pierre Boulet
Memristor nanodevice for unconventional computing:review and applications Mahyar Shahsavari, Pierre Boulet To cite this version: Mahyar Shahsavari, Pierre Boulet. Memristor nanodevice for unconventional computing:review and applications . [Research Report] Université de Lille 1, Sciences et Technologies; CRIStAL UMR 9189. 2016. hal-01480614 HAL Id: hal-01480614 https://hal.archives-ouvertes.fr/hal-01480614 Submitted on 1 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Memristor nanodevice for unconventional computing: review and applications Mahyar Shahsavari, Pierre Boulet Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France. Abstract A memristor is a two-terminal nanodevice that its properties attract a wide community of re- searchers from various domains such as physics, chemistry, electronics, computer and neuroscience. The simple structure for manufacturing, small scalability, nonvolatility and potential of using in low power platforms are outstanding characteristics of this emerging nanodevice. In this report, we review a brief literature of memristor from mathematic model to the physical realization. We discuss different classes of memristors based on the material used for its manufacturing. The potential applications of memristor are presented and a wide domain of applications are explained and classified. -
The Roadmap to Realize Memristive Three- Dimensional Neuromorphic Computing System
We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 4,800 122,000 135M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com Chapter 2 The Roadmap to Realize Memristive Three- Dimensional Neuromorphic Computing System HongyuHongyu An, An, KangjunKangjun Bai Bai and Yang YiYang Yi Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.78986 Abstract Neuromorphic computing, an emerging non-von Neumann computing mimicking the physical structure and signal processing technique of mammalian brains, potentially achieves the same level of computing and power efficiencies of mammalian brains. This chapter will discuss the state-of-the-art research trend on neuromorphic computing with memristors as electronic synapses. Furthermore, a novel three-dimensional (3D) neuro- morphic computing architecture combining memristor and monolithic 3D integration technology would be introduced; such computing architecture has capabilities to reduce the system power consumption, provide high connectivity, resolve the routing congestion issues, and offer the massively parallel data processing. Moreover, the design methodology of applying the capacitance formed by the through-silicon vias (TSVs) to generate a mem- brane potential in 3D neuromorphic computing system would be discussed in this chapter. -
Nanotechnology: the Engineer's Frontier
® “… harmonizing things seen and not seen.” – S.A.G. Nanotechnology: The Engineer’s Frontier Dr. Anthony F. Laviano [email protected] 310. 524-4145 October 2004 Copyright © 2004 by Anthony F. Laviano ® “… harmonizing things seen and not seen.” – S.A.G. The Vision IEEE Los Angeles Council 14 December 2002 Meeting Crossing the Delaware on 22 December 2002 NANOWorld 21-23 September 2004 Copyright © 2004 by Anthony F. Laviano 1 ® “… harmonizing things seen and not seen.” – S.A.G. Acceptance of Ideas for Application Innovators First 2.5% Early Adapters Next 13.5% Early Majority Next 34% Late Majority Next 34% Laggards Remaining 16% Copyright © 2004 by Anthony F. Laviano ® “… harmonizing things seen and not seen.” – S.A.G. You may ask me, “What is Nanotechnology?” My answer is this. “Nanotechnology is the collaboration of chemistry, biology, physics, computer, and material sciences integrated with Engineering, Application and Education entering the Universe of Nanoscale. This means science and engineering focused on creating materials, devices, and systems at the atomic and molecular level.” Dialogues for The Cookie Jar by Dr. Anthony F. Laviano Copyright © 2004 by Anthony F. Laviano 2 ® “… harmonizing things seen and not seen.” – S.A.G. Copyright © 2004 by Anthony F. Laviano ® “… harmonizing things seen and not seen.” – S.A.G. Then Electronics, January 22,1960 Button like Amplifier Now Now and Beyond Palm Airplane Copyright © 2004 by Anthony F. Laviano 3 ® “… harmonizing things seen and not seen.” – S.A.G. U.S. Funding Trends Copyright © 2004 by Anthony F. Laviano ® “… harmonizing things seen and not seen.” – S.A.G. -
Memristor Devices: Fabrication, Characterization, Simulation
MEMRISTOR DEVICES: FABRICATION, CHARACTERIZATION, SIMULATION, AND CIRCUIT DESIGN Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Electrical Engineering By Chris Yakopcic Dayton, Ohio August, 2011 MEMRISTOR DEVICES: FABRICATION, CHARACTERIZATION, SIMULATION, AND CIRCUIT DESIGN Name: Yakopcic, Chris APPROVED BY: _________________________________ _________________________________ Tarek M. Taha, Ph.D. Guru Subramanyam, Ph.D. Advisory Committee Chairman Committee Member Associate Professor Chair and Professor Electrical and Computer Engineering Electrical and Computer Engineering _________________________________ Andrew Sarangan, Ph.D. Committee Member Associate Professor Electro-Optics _________________________________ _________________________________ John G. Weber, Ph.D. Tony E. Saliba, Ph.D. Associate Dean Dean, School of Engineering School of Engineering & Wilke Distinguished Professor ii ©Copyright by Chris Yakopcic All Rights Reserved 2011 iii ABSTRACT MEMRISTOR DEVICES: FABRICATION, CHARACTERIZATION, SIMULATION, AND CIRCUIT DESIGN Name: Yakopcic, Chris University of Dayton Advisor: Dr. Tarek M. Taha Significant interest has been placed on developing systems based on memristors since the initial fabrication by HP Labs in 2008 [1]. The memristor is a nanoscale device with dynamic resistance that is able to retain the last programmed resistance value after power is removed from the device. This property shows that the memristor can be used as a non-volatile memory component, and has potential to enhance many types of systems, such as high density memory, and neuromorphic computing architectures. This thesis presents the fabrication and characterization results obtained based memristor devices developed at the University of Dayton. In addition, a comparison between the existing memristor device models was completed to show how the memristor can be used in a multistate operation. -
CMOS and Memristor Technologies for Neuromorphic Computing Applications
CMOS and Memristor Technologies for Neuromorphic Computing Applications Jeff Sun Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2015-219 http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-219.html December 1, 2015 Copyright © 2015, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. CMOS and Memristor Technologies for Neuromorphic Computing Applications by Jeff K.Y. Sun Research Project Submitted to the Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, in partial satisfaction of the requirements for the degree of Master of Science, Plan II. Approval for the Report and Comprehensive Examination: Committee: Professor Tsu-Jae King Liu Research Advisor (Date) * * * * * * * Professor Vladimir Stojanovic Second Reader (Date) Abstract In this work, I present a CMOS implementation of a neuromorphic system that aims to mimic the behavior of biological neurons and synapses in the human brain. The synapse is modeled with a memristor-resistor voltage divider, while the neuron-emulating circuit (“CMOS Neuron”) comprises transistors and capacitors. The input aggregation and output firing characteristics of a CMOS Neuron are based on observations from studies in neuroscience, and achieved using both analog and digital circuit design principles.