Nanotechnology: the Engineer's Frontier

Total Page:16

File Type:pdf, Size:1020Kb

Nanotechnology: the Engineer's Frontier ® “… harmonizing things seen and not seen.” – S.A.G. Nanotechnology: The Engineer’s Frontier Dr. Anthony F. Laviano [email protected] 310. 524-4145 October 2004 Copyright © 2004 by Anthony F. Laviano ® “… harmonizing things seen and not seen.” – S.A.G. The Vision IEEE Los Angeles Council 14 December 2002 Meeting Crossing the Delaware on 22 December 2002 NANOWorld 21-23 September 2004 Copyright © 2004 by Anthony F. Laviano 1 ® “… harmonizing things seen and not seen.” – S.A.G. Acceptance of Ideas for Application Innovators First 2.5% Early Adapters Next 13.5% Early Majority Next 34% Late Majority Next 34% Laggards Remaining 16% Copyright © 2004 by Anthony F. Laviano ® “… harmonizing things seen and not seen.” – S.A.G. You may ask me, “What is Nanotechnology?” My answer is this. “Nanotechnology is the collaboration of chemistry, biology, physics, computer, and material sciences integrated with Engineering, Application and Education entering the Universe of Nanoscale. This means science and engineering focused on creating materials, devices, and systems at the atomic and molecular level.” Dialogues for The Cookie Jar by Dr. Anthony F. Laviano Copyright © 2004 by Anthony F. Laviano 2 ® “… harmonizing things seen and not seen.” – S.A.G. Copyright © 2004 by Anthony F. Laviano ® “… harmonizing things seen and not seen.” – S.A.G. Then Electronics, January 22,1960 Button like Amplifier Now Now and Beyond Palm Airplane Copyright © 2004 by Anthony F. Laviano 3 ® “… harmonizing things seen and not seen.” – S.A.G. U.S. Funding Trends Copyright © 2004 by Anthony F. Laviano ® “… harmonizing things seen and not seen.” – S.A.G. BAE Copyright © 2004 by Anthony F. Laviano 4 ® “… harmonizing things seen and not seen.” – S.A.G. Also….Universities and IEEE Copyright © 2004 by Anthony F. Laviano ® “… harmonizing things seen and not seen.” – S.A.G. Approved by Congress Signed by President S. 189 Dec 2003 $3.7B Senate Bill 2515 dated 27 June 2002 Established Nanotechnology in DOD Organization House Bill 766 dated 7 May 2003 Nanotechnology Research and Development Act Nanotechnology Education NSF 2004 Funded Workforce For 21st Century Copyright © 2004 by Anthony F. Laviano 5 ® “… harmonizing things seen and not seen.” – S.A.G. 1996 – 2002 Nano-Patents “Nano” in the patent: 2812 “Quantum” in a claim: 1469 “Nano” in a claim: 195 “Nanotechnology” in the patent: 148 “Nanoparticle” in the claim: 90 “Nanotube” in a claim: 60 ‘Nanowire” in a claim: 7 …and growing! Copyright © 2004 by Anthony F. Laviano ® “… harmonizing things seen and not seen.” – S.A.G. Generic Technology Readiness Levels TR9 Actual System Flight Proven Through Successful Mission Operations Flight Tests Life & Operations TR8 Actual System Completed & Flight Qualified Through Test & Demonstration Sciences TR7 System Prototype Demonstration in a Flight Environment Technology Demonstration TR6 Systems/Subsystem Model or Prototype Demo, in Relevant Environment TR5 Component and/or Breadboard Validation in Relevant Environment Technology Development TR4 Component and/or Bread Validation in Laboratory Environment Aerospace Prove Feasibility TR3 Analytical & Experimental Critical Function (Proof of Design) Basic TR2 Technology Concept and/or Application Formulated Research TR1 Basic Principles Observed & Reported S.A.G. Copyright © 2004 by Anthony F. Laviano 6 ® “… harmonizing things seen and not seen.” – S.A.G. Nanotechnology Nano-biosensors Nanowires and nanotubes interact with the biochemical world for DNA, protein characterization and sensing GHz frequency nano-electronics and NEMS Understanding the ultimate speed limits of molecular electronics and single-electron-transistor devices Nano-electromechanical devices Nanotube and Nanowire growth Chemical vapor deposition for devices beyond the lithographic limit Development of thin-film based catalyst technologies Towards THz electronic devices Deep-submicron HEMT devices Quantum transport in the ballistic regime Copyright © 2004 by Anthony F. Laviano ® “… harmonizing things seen and not seen.” – S.A.G. Electronics at the Molecular Scale Synthesis of Novel Nanomaterials We can now synthesize and characterize a wide range of nanowire and nanotube materials, allowing investigation of electronics at the scale of individual molecules. Development and Testing of Nanoelectronics Nanoscale circuits can be 100x smaller than state-of-the art electronics and can operate with single electrons or from quantum physics principles. To take advantage of these circuits, however, further research is required to learn how they truly operate. Nanocircuit Devices for Chemical Sensors Nanowire electronics are exquisitely sensitive to tiny changes, such as when a molecule from the air lands on the device. This research is leading towards new types of detectors able to sense ultralow concentrations of harmful chemicals. Copyright © 2004 by Anthony F. Laviano 7 ® “… harmonizing things seen and not seen.” – S.A.G. Atomic & Molecular Basis of Nanotechnology Atom by Atom Assembly of 1-D Metal Wire I The scanning tunneling microscope (STM) is used to move Tip single atoms and to assemble them into 1-D chains, thus V Vacuum revealing the formation of band structure. Surface Chemical Sensors – single molecule on 1-D metal chain The adsorption of a single CO molecule on a 1-D Au chain causes dramatic changes in the electronic structure which determines electrical conductivity. Molecular Electronics – single molecule bridge Individual atoms are moved to form two atomic chains separated by a gap. A molecule is manipulated to bridge this gap, connecting the molecule to two leads. Nanomagnetism – novel magnetic nanostructures Magnetic atoms are assembled into novel nanostructures and molecules containing a magnetic atom are connected to two magnetic leads. Copyright © 2004 by Anthony F. Laviano ® “… harmonizing things seen and not seen.” – S.A.G. Nanowires in Analytical Chemistry Nanowire Synthesis by Electrodeposition A new method for preparing arrays of size-similar metal and semiconductor nanowires has been developed. Effects of adsorbed molecule layers on Metal and Semiconductor Nanowires. Why does the attachment of molecules to the surface of metal nanowires modify their conductivity? BioSensors By anchoring virus particles to metal nanowires, highly selective biosensors can be prepared. Gas Sensors Metal nanowire arrays that rapidly and selectively detect gases including hydrogen and ammonia have been developed. Copyright © 2004 by Anthony F. Laviano 8 ® “… harmonizing things seen and not seen.” – S.A.G. Bucky Ball Fullerenes Nanotubes Copyright © 2004 by Anthony F. Laviano ® “… harmonizing things seen and not seen.” – S.A.G. The Molecular Switches SYNTHESIS Possibilities Simple & Modular Molecular Electronics SWITCHING SWITCHING MECHANISM Redox-Controllable Bistable & Hysteretic Electromechanical with Metastability MOLECULES MOLECULES Amphiphilic MOLECULES Functionalized for Robust for Self-Organization Self-Assembly DEVICES DEVICES Good Interfacial Interactions Molecular Dependent Between Molecules and Electrodes Switching Signatures Copyright © 2004 by Anthony F. Laviano 9 ® “… harmonizing things seen and not seen.” – S.A.G. Copyright © 2004 by Anthony F. Laviano ® “… harmonizing things seen and not seen.” – S.A.G. Copyright © 2004 by Anthony F. Laviano 10 ® “… harmonizing things seen and not seen.” – S.A.G. MOEMS Although it measures only 2 s 1.5 cm, up to 24 functions can be fit on an eight-channel chip. Besides saving space, the chip can decrease costs by using semiconductor batch fabrication techniques for its manufacture. Developing better, faster and cheaper laser-based products is the incentive behind increased MOEMS development. There is no clear benefit to low-volume production of the devices. Companies want to move away from the high-cost precision manufacturing components used in huge, room-size printers and photocopiers to MOEMS, which could reduce the size and cost of its machines while also enhancing image Copyright © 2004 by Anthony F. Laviano ® “… harmonizing things seen and not seen.” – S.A.G. Integrated Circuit This photograph is a close-up of a computer chip approximately one square centimeter in area. In integrated circuits, a process called photolithography is used to introduce a precise pattern of conduction lines (wires). Copyright © 2004 by Anthony F. Laviano 11 ® “… harmonizing things seen and not seen.” – S.A.G. Nano IC Roadmap Copyright © 2004 by Anthony F. Laviano ® “… harmonizing things seen and not seen.” – S.A.G. Copyright © 2004 by Anthony F. Laviano 12 ® “… harmonizing things seen and not seen.” – S.A.G. Competitive Cost Through Engineering Design 100 ACTUAL 90 Influences INFLUENCE 80 70% 70% of Initial ON TOTAL 70 COST 60 Product Cost 50 % 5% 40 20 5% 30 20 10 % MANUFACTURING 30% LABOR 15% MATERIAL ST L CO 50% NA G ITI O TIN RAD OUN DESIGN T ACC Graph - Courtesy of 5% Munro and Associates Buy and Apply Supply Chain Management Copyright © 2004 by Anthony F. Laviano ® “… harmonizing things seen and not seen.” – S.A.G. Performance, Functionality, and Today Design Reliability, etc Today Size Copyright © 2004 by Anthony F. Laviano 13 “… harmonizing things seen and not seen.” – S.A.G. Time Line for Evolut ® 15 billion – Universe begins (Big Bang) ion of Life on Earth 15 billion years ago 5 billion – Formation of Sun and Solar System Copyright © 2004 by Anthony F. Laviano 4.5 billion – Life begins in oceans on Earth 2.5 billion – Continents form 2 billion – O2 atmosphere forms by photosynthesis Years Before Present 1 billion – Simple
Recommended publications
  • A Brief History of Molecular Electronics
    COMMENTARY | FOCUS A brief history of molecular electronics Mark Ratner The field of molecular electronics has been around for more than 40 years, but only recently have some fundamental problems been overcome. It is now time for researchers to move beyond simple descriptions of charge transport and explore the numerous intrinsic features of molecules. he concept of electrons moving conductivity decreased exponentially with Conference by one of the inventors of through single molecules comes layer thickness, therefore revealing electron the STM how to account for the fact Tin two different guises. The first is tunnelling through the organic monolayer. that charge could actually move through electron transfer, which involves a charge In 1974, Arieh Aviram and I published fatty acids containing long, saturated moving from one end of the molecule to the first theoretical discussion of transport hydrocarbon chains. the other1. The second, which is closely through a single molecule8. On reflection The first significant work attempting related but quite distinct, is molecular now, there are some striking features about to measure single-molecule transport charge transport and involves current this work. First, we suggested a very ad came from Mark Reed’s group at Yale passing through a single molecule that is hoc scheme for the actual calculation. University, working in collaboration with strung between electrodes2,3. The two are (This was in fact the beginning of many James Tour’s group, then at the University related because they both attempt
    [Show full text]
  • Is EE Right for You?
    Erik Jonsson School of Engggineering and The Un ivers ity o f Texas a t Da llas Computer Science Is EE Right for You? • “Toto, I have a feeling we’re not in Kansas anymore.” • Now that you are here, diii?id you make the right choice? • Electrical engineering is a challenging and satisfying profession. That does not mean it is easy. In fact, with the possible exceptions of medicine or law, it is the MOST difficult. • There are some things you need to consider if you really, really want to be an engineer. • We will consider a few today. EE 1202 Lecture #1 – Why Electrical Engineering? 1 © N. B. Dodge 01/12 Erik Jonsson School of Engggineering and The Un ivers ity o f Texas a t Da llas Computer Science Is EE Right for You (2)? • Why did you decide to be an electrical engineer? – Parents will pay for engineering education (it’s what they want). – You like math and science. – A relative is an engineer and you like him/her. – You want to challenge yourself, and engineering seems challenging. – You think you are creative and love technology. – You want to make a difference in society . EE 1202 Lecture #1 – Why Electrical Engineering? 2 © N. B. Dodge 01/12 Erik Jonsson School of Engggineering and The Un ivers ity o f Texas a t Da llas Computer Science The High School “Science Student” Problem • In high school, you were FAR above the average. – And you probably didn’t study too hard, right? • You liked science and math, and they weren’t terribly hard.
    [Show full text]
  • Robotics Engineer
    CONTENTS Robotics Engineer at a Glance 6 Introduction 7 Turning Science Fiction into Reality Chapter One 11 What Does a Robotics Engineer Do? Chapter Two 18 How Do You Become a Robotics Engineer? Chapter Three 26 What Skills and Personal Qualities Matter Most —and Why? Chapter Four 31 What Is It Like to Work as a Robotics Engineer? Chapter Five 37 Advancement and Other Job Opportunities Chapter Six 42 What Does the Future Hold for Robotics Engineers? Chapter Seven 49 Interview with a Robotics Engineer Source Notes 53 Find Out More 56 Index 59 Picture Credits 63 About the Author 64 5 ROBOTICS ENGINEER AT A GLANCE te’s Ba cia che so ee de lo As gr gr r’s de ee l D o r o o o t d c h n e t c o a le g s r r m a e a h v t o e l i e g i p u i q H d e Personal Minimum Educational Qualities Requirements Problem solving Creativity Working Conditions Attention to detail Indoors Strong science, math, and computer- programming skills Median Salary $81,591 Percent job increase by 278,000* 2024 Number of jobs *Numbers are for mechanical 5% engineers, a group that includes robotics engineers. Future Job Outlook Source: Bureau of Labor Statistics, Occupational Outlook Handbook. www.bls.gov. 6 CHAPTER 3 What Skills and Personal Qualities Matter Most—and Why? First and foremost, robotics engineers must be very good prob- lem solvers. They must have suffi cient technical skill to recognize and understand a problem and enough creativity to think up an original solution.
    [Show full text]
  • Photonic Design Engineer
    Photonic Design Engineer Are you looking for the ultimate startup challenge? Have you always wanted to transform innovative technology into real products? Are you ready to join OPTIUS among the first employees with all the advantages and opportunities? Optius is a new startup with the vision to transform the field of efficient AI computations by using optical computing. By joining OPTIUS, you are contributing to a growing team of motivated entrepreneurs and researchers passionate about bringing this vision into reality. The Photonic Design Engineer role will involve the design, optimization, and layout of photonic integrated circuits (PICs) and photonic devices. Your opportunity and benefits: • Solve problems by commercializing cutting edge technology – Major impact! • Mentorship, coaching and support – we are here for you! • Cool Startup environment – celebrations, endless lattes, healthy snacks What we offer: • Competitive compensation package • Opportunity for growth and personal development • Insurance benefits such as health, dental and vision • Cool Startup environment – celebrations, endless coffee, healthy snacks • Lunch and Learns What your day-today will look like: • Design and optimize photonic integrated circuits (PIC’s) • Layout photonic devices with common EDA • Conduct numerical electromagnetic simulation of photonic devices • Interacting with photonic foundries to understand design environment and rules • Designing optical bench experiments for device characterization • Collaborating with the team on research and development
    [Show full text]
  • Position Description
    position description Date: September 2017 Title: Engineer 1 Department: Biomedical Engineering School: Case School of Engineering Location: Bingham 308 Supervisor Name and Title: Ron Triolo, Professor POSITION OBJECTIVE Under general supervision, perform engineering objectives as a member of multidisciplinary research and development teams designing and investigating new medical devices and restorative technologies, and provide high level computing infrastructure support. Responsible for microprocessor, mobile device, or computer based software system design, testing and operation on specific research and development projects for new assistive technologies for individuals with neuro-musculo-skeletal disabilities, limb loss or cognitive dysfunction. The engineer will apply methods and techniques, adjust and correlate data, determine errors in results, and follow the operation through a series of related steps to completion. ESSENTIAL FUNCTIONS 1. Develop embedded control and operating systems for new and emerging assistive technologies and medical devices, and create both low and high level user and clinician interfaces. (20%) 2. Set system processing specifications, design and verify software operation of new computer- microprocessor- or mobile computing platform-based assistive technologies. (20%) 3. Construct embedded applications and integrate information from networks of distributed sensors in new medical devices. (20%) 4. Identify the work to be done to fulfill project requirements and objectives, plan and carry out the procedural and technical steps required, seek assistance as needed, independently coordinate work efforts with outside parties, and characteristically submit only completed work. (10%) 5. Design, maintain and interrogate databases for research-related operational information. (10%) 6. Fully document, test and validate design and system performance according to standard design controls and quality system practices, including incident reporting, error/bug tracking and repair, and version/release control.
    [Show full text]
  • Engineer I/Ii/Iii
    ENGINEER I/II/III DEFINITION Under direct and general supervision, performs professional civil engineering work in the planning, design, technical investigation, inspection, and construction of projects in several areas of public works and civil engineering, and performs related work as required. SUPERVISION RECEIVED AND EXERCISED Receives general supervision from assigned supervisory and managerial staff. Exercises no direct supervision of staff. CLASS CHARACTERISTICS Engineer I/II/III is a flexibly-staffed class series. Advancement from the Engineer I level to the II level is at the discretion of the appointing authority, provided that the following criteria are met: (1) the minimum qualifications and time-in-grade requirements, (2) demonstration of the ability to independently perform the full scope of the assigned duties. Advancement from the Engineer II level to the III level is at the discretion of the appointing authority, provided that the following criteria are met: (1) the minimum qualifications and time-in-grade requirements, (2) demonstration of the ability to independently perform the full scope of the assigned duties. Engineer I is the entry level engineer classification. Incumbents perform less complex office and field civil engineering work under direct supervision in preparation for advancement to the journey level of Engineer II. Engineer II is the advanced level class in the engineering series, not requiring registration. Positions in this class are flexibly staffed and are normally filled by advancement from the lower class of Engineer I, or if filled from the outside, require prior professional level experience and possession of an Engineer-in- Training Certificate. Incumbents in this class work under general direction and perform moderately difficult professional engineering work in civil engineering.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Fire Protection Engineers: Using Science and Technology to Make the College Campus Safe from Fire
    Fire Protection Engineers: Using Science and Technology to Make the College Campus Safe from Fire Chris Jelenewicz, P.E. Engineering Program Manager, Society of Fire Protection Engineers As colleges and universities are trying to compete for • Investigate fires to discover how fire spreads, why the best students, there is an increasing demand to protective measures failed, and how those meas- improve and modernize college campus facilities. To ures could have been designed more effectively. keep up with this demand, colleges and universities are building larger stadiums, more modern laboratories and They can also assist campus administrators by working more comfortable housing units. These newer facilities with architects and other engineers, state and local are larger, taller and their designs are more complex. building officials and local fire departments to build Consequently, the fire protection systems that are and maintain fire safe campuses. In addition, they needed to protect students and faculty from fire are make recommendations for cost effective fire protec- also more complex. tion solutions to ensure that the structure, and the property and occupants contained within are ade- Furthermore, recent tragic fires in dormitories and fra- quately protected. ternity houses have placed a new interest in upgrading the fire protection features in existing residential fa- What are the Educational and Licensure Require- cilities. As financial resources are limited for such up- ments for Fire Protection Engineers? grades, it is essential that the most efficient fire pro- Like engineers in other disciplines, fire protection en- tection be provided. gineers are required to earn college degrees from ac- To help make their campuses safe from fire, many col- credited engineering programs.
    [Show full text]
  • FLEXIBLE ELECTRONICS: MATERIALS and DEVICE FABRICATION
    FLEXIBLE ELECTRONICS: MATERIALS and DEVICE FABRICATION by Nurdan Demirci Sankır Dissertation submitted to the Faculty of Virginia Polytechnic Institute and State University In partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Materials Science and Engineering APPROVED: Richard O. Claus, Chairman Sean Corcoran Guo-Quan Lu Daniel Stilwell Dwight Viehland December 7, 2005 Blacksburg, Virginia Keywords: flexible electronics, organic electronics, organic semiconductors, electrical conductivity, line patterning, inkjet printing, field effect transistor. Copyright 2005, Nurdan Demirci Sankır FLEXIBLE ELECTRONICS: MATERIALS and DEVICE FABRICATION by Nurdan Demirci Sankır ABSTRACT This dissertation will outline solution processable materials and fabrication techniques to manufacture flexible electronic devices from them. Conductive ink formulations and inkjet printing of gold and silver on plastic substrates were examined. Line patterning and mask printing methods were also investigated as a means of selective metal deposition on various flexible substrate materials. These solution-based manufacturing methods provided deposition of silver, gold and copper with a controlled spatial resolution and a very high electrical conductivity. All of these procedures not only reduce fabrication cost but also eliminate the time-consuming production steps to make basic electronic circuit components. Solution processable semiconductor materials and their composite films were also studied in this research. Electrically conductive, ductile, thermally and mechanically stable composite films of polyaniline and sulfonated poly (arylene ether sulfone) were introduced. A simple chemical route was followed to prepare composite films. The electrical conductivity of the films was controlled by changing the weight percent of conductive filler. Temperature dependent DC conductivity studies showed that the Mott three dimensional hopping mechanism can be used to explain the conduction mechanism in composite films.
    [Show full text]
  • Engineer I/II DEFINITION DISTINGUISHING CHARACTERISTICS TYPICAL DUTIES
    Class Code: 428,429 Engineer I/II DEFINITION Under supervision, performs a variety of professional environmental engineering work in connection with water quality studies, treatment and distribution system operations, water quality regulations, facility improvements, and other related work; assists other engineering disciplines on assigned projects; provides administrative support to District projects and programs; may exercise technical and functional oversight over engineering support staff; and performs other related work as required. DISTINGUISHING CHARACTERISTICS Engineer I is the entry level in the engineering series. Under close to general supervision within a framework of established policies and procedures, incumbents perform a variety of engineering and administrative tasks of limited to moderate difficulty. Assignments are given in specific terms and are subject to frequent review while in progress and upon completion, except where tasks are well defined by established standards, policies and procedures. Assignments may cover the entire field of environmental engineering and may include other engineering and technical disciplines. There is limited latitude for independent judgment. This class is distinguished from the intermediate-level Engineer II (Environmental) class by the routine nature and limited complexity of work assignments and the level of supervision received. Upon recommendation of the immediate supervisor and approval by the department manager, incumbents in this class may advance to the Engineer II classification after gaining experience and achieving proficiency that meets the Engineer II experience requirements. Engineer II is the intermediate level in the environmental engineering series. Under general supervision within a framework of established policies and procedures, incumbents perform a variety of engineering and administrative tasks of moderate difficulty requiring the use of some independent judgment.
    [Show full text]
  • Molecular and Nano Electronics/Molecular Electronics
    NANOSCIENCES AND NANOTECHNOLOGIES - Molecular And Nano-Electronics - Weiping Wu, Yunqi Liu, Daoben Zhu MOLECULAR AND NANO-ELECTRONICS Weiping Wu, Yunqi Liu, Daoben Zhu Institute of Chemistry, Chinese Academy of Sciences, China Keywords: nano-electronics, nanofabrication, molecular electronics, molecular conductive wires, molecular switches, molecular rectifier, molecular memories, molecular transistors and circuits, molecular logic and molecular computers, bioelectronics. Contents 1. Introduction 2. Molecular and nano-electronics in general 2.1. The Electrodes 2.2. The Molecules and Nano-Structures as Active Components 2.3. The Molecule–Electrode Interface 3. Approaches to nano-electronics 3.1. Nanofabrication 3.2. Nanomaterial Electronics 3.3. Molecular Electronics 4. Molecular and Nano-devices 4.1. Definition, Development and Challenge of Molecular Devices 4.2. Molecular Conductive Wires 4.3. Molecular Switches 4.4. Molecular Rectifiers 4.5. Molecular Memories 4.6. Molecular Transistors and Circuits 4.7. Molecular Logic and Molecular Computers 4.8. Nano-Structures in Nano-Electronics 4.9. Other Applications, Such as Energy Production and Medical Diagnostics 4.10. Molecularly-Resolved Bioelectronics 5. Summary and perspective Glossary BibliographyUNESCO – EOLSS Biographical Sketches Summary SAMPLE CHAPTERS Molecular and nano-electronics using single molecules or nano-structures as active components are promising technological concepts with fast growing interest. It is the science and technology related to the understanding, design, and
    [Show full text]
  • Defining Engineering Education
    Paper ID #9586 Defining Engineering Education Dr. Alan Cheville, Bucknell University Alan Cheville studied optoelectronics and ultrafast optics at Rice University, followed by fourteen years as a faculty member at Oklahoma State University working on terahertz frequencies and engineering edu- cation. While at Oklahoma State he developed courses in photonics and engineering design. After serving for two and a half years as a program director in engineering education at the National Science Founda- tion, he took a chair position in electrical engineering at Bucknell University. He is currently interested in engineering design education, engineering education policy, and the philosophy of engineering education. c American Society for Engineering Education, 2014 A Century of Defining Engineering Education Abstract The broad issue question addressed in this paper is how the complex interface between engineering education and the larger contexts in which it is embedded change over time. These contexts—social, intellectual, economic, and more—define both the educational approaches taken and how various approaches are valued. These contexts are themselves inter-related, forming a complex system of which engineering education is a part. The interface between engineering education and the larger system is not unidirectional; while environmental changes can affect engineering education so too does engineering education affect the larger environment. This paper adopts a philosophical perspective in exploring some interrelationships between engineering education and the larger social-technical-economic system. To explore the extent to which a meaningful conceptual ontology exists for dialog of the role on engineering education in society, definitions of how engineering for the purpose of engineering education are examined.
    [Show full text]