Multiomics of Azacitidine-Treated AML Cells Reveals Variable And

Total Page:16

File Type:pdf, Size:1020Kb

Multiomics of Azacitidine-Treated AML Cells Reveals Variable And Multiomics of azacitidine-treated AML cells reveals variable and convergent targets that remodel the cell-surface proteome Kevin K. Leunga, Aaron Nguyenb, Tao Shic, Lin Tangc, Xiaochun Nid, Laure Escoubetc, Kyle J. MacBethb, Jorge DiMartinob, and James A. Wellsa,1 aDepartment of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; bEpigenetics Thematic Center of Excellence, Celgene Corporation, San Francisco, CA 94158; cDepartment of Informatics and Predictive Sciences, Celgene Corporation, San Diego, CA 92121; and dDepartment of Informatics and Predictive Sciences, Celgene Corporation, Cambridge, MA 02140 Contributed by James A. Wells, November 19, 2018 (sent for review August 23, 2018; reviewed by Rebekah Gundry, Neil L. Kelleher, and Bernd Wollscheid) Myelodysplastic syndromes (MDS) and acute myeloid leukemia of DNA methyltransferases, leading to loss of methylation in (AML) are diseases of abnormal hematopoietic differentiation newly synthesized DNA (10, 11). It was recently shown that AZA with aberrant epigenetic alterations. Azacitidine (AZA) is a DNA treatment of cervical (12, 13) and colorectal (14) cancer cells methyltransferase inhibitor widely used to treat MDS and AML, can induce interferon responses through reactivation of endoge- yet the impact of AZA on the cell-surface proteome has not been nous retroviruses. This phenomenon, termed viral mimicry, is defined. To identify potential therapeutic targets for use in com- thought to induce antitumor effects by activating and engaging bination with AZA in AML patients, we investigated the effects the immune system. of AZA treatment on four AML cell lines representing different Although AZA treatment has demonstrated clinical benefit in stages of differentiation. The effect of AZA treatment on these AML patients, additional therapeutic options are needed (8, 9). cell lines was characterized at three levels: the DNA methylome, Our group has recently generated antibodies toward potential the transcriptome, and the cell-surface proteome. Untreated AML targets in RAS-driven cancers, and there is significant interest cell lines showed substantial overlap at all three omics levels; in identifying surface protein targets for antibody-derived thera- however, while AZA treatment globally reduced DNA methyla- peutic strategies in combination with AZA for the treatment of SYSTEMS BIOLOGY tion in all cell lines, changes in the transcriptome and surface AML (15). Currently, there are numerous antibody-based ther- proteome were subtle and differed among the cell lines. Tran- apeutics in development for AML patients, targeting about a scriptome analysis identified five commonly up-regulated coding dozen cell-surface proteins, but it is not clear if AZA changes genes upon AZA treatment in all four cell lines, TRPM4 being the only gene encoding a surface protein, and surface proteome Significance analysis found no commonly regulated proteins. Gene set enrich- ment analysis of differentially regulated RNA and surface proteins showed a decrease in metabolic pathways and an increase in Acute myeloid leukemia (AML) is a heterogeneous disease immune defense response pathways. As such, AZA treatment led commonly treated with azacitidine (AZA), but additional ther- to diverse effects at the individual gene and protein levels but apeutic strategy is needed. We found that AZA treatment converged to common responses at the pathway level. Given in four AML cell lines had diverse effects at the individ- the heterogeneous responses in the four cell lines, we discuss ual gene and protein level, and these changes converged to potential therapeutic strategies for AML in combination with AZA. common responses at the pathway level. The most promi- nent responses were the down-regulation of metabolism and up-regulation of immune defense. Given the heterogeneous AML j azacitidine j target discovery j multiomics j surface proteomics responses in the four cell lines, we discuss serval potential therapeutic strategies for AML in combinations with AZA. In yelodysplastic syndromes (MDS) and acute myeloid addition, the surface proteomics experiment has identified the Mleukemia (AML) are hematopoietic malignancies that are greatest number of surface proteins for these cell lines to date genetically and epigenetically diverse in nature. As myeloid lin- and represents a valuable resource to others who use these eage cells differentiate from their hematopoietic stem/progenitor cell lines as AML models. cells, aberrant epigenetic changes can occur at any differen- tiation stage, driving cells into cancerous phenotypes (1). As Author contributions: K.K.L., A.N., L.E., K.J.M., J.D., and J.A.W. designed research; K.K.L. and A.N. performed research; K.K.L., T.S., L.T., and X.N. analyzed data; and K.K.L., A.N., such, AML is routinely classified according to hematopoietic T.S., L.T., and J.A.W. wrote the paper.y lineages by cell morphology or by cytometry using sparse sur- Reviewers: R.G., Medical College of Wisconsin; N.L.K., Northwestern University; and B.W., face markers (2, 3). Among many epigenetic changes that occur ETH Zurich.¨ y in MDS and AML, the best-characterized change is the DNA Conflict of interest statement: This study was funded by the Celgene Corporation. A.N., methylation of cytosine bases in CpG islands (4). In fact, a T.S., L.T., X.N., L.E., K.J.M., and J.D. are employees of Celgene Corporation. K.K.L. and hallmark of epigenetic changes in AML is the redistribution of J.A.W. received research funding from Celgene Corporation but no personal financial methylated CpG dinucleotides with loss of methylation across gain or equity. y intergenic regions, primarily transposable elements and repeats, Published under the PNAS license.y and gain of aberrant methylation near the promoters of a num- Data deposition: Proteomics data have been deposited to ProteomeXchange Consortium ber of genes, including well-known tumor suppressors such as (proteomecentral.proteomexchange.org) via the MassIVE partner repository (dataset identifier PXD011298). Methylome and transcriptome datasets have been deposited to p16INK4a (5). As such, it is believed that these diseases are more the National Center for Biotechnology Information Gene Expression Omnibus database, sensitive to hypomethylating agents such as DNA methyltrans- https://www.ncbi.nlm.nih.gov/geo (SuperSeries GSE123211, accession nos. GSE123140 ferase inhibitors (DMNTi) (6, 7). One such DMNTi, azacitidine and GSE123207).y (AZA), has been efficaciously used for over a decade to treat 1 To whom correspondence should be addressed. Email: [email protected] MDS and AML (8, 9). At high doses, AZA induces rapid This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. DNA damage and is cytotoxic; at lower doses, AZA induces 1073/pnas.1813666116/-/DCSupplemental.y DNA hypomethylation by covalent trapping and degradation Published online December 24, 2018. www.pnas.org/cgi/doi/10.1073/pnas.1813666116 PNAS j January 8, 2019 j vol. 116 j no. 2 j 695–700 Downloaded by guest on October 2, 2021 the expression levels of these proteins (16). Furthermore, over A 3 KG1a B ) 15 ongoing clinical trials are investigating the combination of HL60 5 HNT34 AZA and checkpoint inhibitors in various leukemias and solid AML193 2 tumors, since AZA induces checkpoint inhibitory molecules on 1 0 methylation (10 Density of hyper- and hypo- Intersection set size both tumor and immune cells (7, 17). To identify cell-surface 1 markers, cell-surface capture proteomics has recently emerged HL60 as a highly sensitive target discovery technology and has been KG1a 0123456 HNT34 used to define a large number of common and distinct mark- 0.0 0.2 0.4 0.6 0.8 1.0 Beta value AML193 C 21012345 ers in AML (18–20). Taken together, a broader understanding Methylation set size KG1a in each cell line (105) HL60 of how AZA treatment remodels the cell-surface proteome in HNT34 AML193 E 0 ) AML cells could aid in identifying surface protein targets for 5 antibody-based therapy, leading to unique immunotherapies for 1 use in combination with AZA. Density Using a multiomics approach, we characterized four AML 2 de-methylation (10 Intersection set size of cell lines, representing different stages of differentiation, and 01234 0.0 0.2 0.4 0.6 0.8 1.0 KG1a studied the changes in DNA methylation, RNA expression, and Beta value surface proteome induced by AZA treatment. Across the four D AML193 KG1a HNT34 cell lines, AZA reduced DNA methylation in nearly all of the HL60 HNT34 HL60 AML193 6 4 2 0 hypermethylated CpG sites probed, but surprisingly the changes De-methylation set size -0.5 0.0 0.5 in each cell line(105) in gene expression and surface protein expression were few and Change in beta value after AZA treatment diverse. Transcriptome analysis identified only one gene encod- Fig. 1. AZA treatment drives global DNA demethylation among all four ing a surface protein that is commonly up-regulated in all four AML cell lines. (A) Vehicle-treated cell lines have a bimodal distribution of cell lines, and surface proteomics analysis did not identify any genome-wide beta values (kernel density estimation). (B) Vehicle-treated commonly regulated proteins. Despite little overlap, functional cells share a high proportion of hypermethylated and hypomethylated sites. analysis revealed some common responses among the four cell Overlapping hypermethylated sites (red, beta values >0.8) and hypomethy- lines—down-regulation of genes and proteins in metabolism and lated sites (blue, beta values <0.2) are indicated by upward and downward up-regulation of genes in immune response. Collectively, our bars, respectively, in the vertical bar graph. The specific overlapping groups study detailed the distinct impact of AZA treatment in four AML are indicated by the black solid points below the bar graph. Total hyperme- cell line at the individual gene level and illustrated that functional thylated and hypomethylated sites found in each cell line are indicated in networks are commonly regulated.
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Anti-CD40 Antibody KPL-404 Inhibits T Cell
    Marken et al. Arthritis Research & Therapy (2021) 23:5 https://doi.org/10.1186/s13075-020-02372-z RESEARCH ARTICLE Open Access Anti-CD40 antibody KPL-404 inhibits T cell- mediated activation of B cells from healthy donors and autoimmune patients John Marken1, Sujatha Muralidharan2* and Natalia V. Giltiay1* Abstract Background: CD40-CD40L is a key co-stimulatory pathway for B cell activation. As such, its blockade can inhibit pathogenic B cell responses in autoimmune diseases, such as Sjogren’s syndrome (SjS) and systemic lupus erythematosus (SLE). In this study, we examined the in vitro effects of KPL-404, a humanized anti-CD40 monoclonal antibody (Ab), on primary human B cells derived from either healthy donors (HD) or autoimmune patients and compared them to the effects of G28-5, a partially antagonistic anti-CD40 antibody. Methods: PBMCs from HD or SjS and SLE patients were cultured in high-density cell cultures in the presence of IgG4 isotype control or anti-CD40 Abs KPL-404 or G28-5. Cells were stimulated with anti-CD3/CD28 cross-linking reagent ImmunoCult (IC) to induce CD40L-CD40-mediated B cell responses. B cell proliferation and activation, measured by dilution of proliferation tracker dye and the upregulation of CD69 and CD86, respectively, were assessed by flow cytometry. Anti-CD40 Ab cell-internalization was examined by imaging flow cytometry. Cytokine release in the PBMC cultures was quantified by bead-based multiplex assay. Results: KPL-404 binds to CD40 expressed on different subsets of B cells without inducing cell depletion, or B cell proliferation and activation in in vitro culture.
    [Show full text]
  • The Intracellular Ca2+ Release Channel TRPML1 Regulates Lower Urinary Tract Smooth Muscle Contractility
    The intracellular Ca2+ release channel TRPML1 regulates lower urinary tract smooth muscle contractility Caoimhin S. Griffina, Michael G. Alvaradoa, Evan Yamasakia, Bernard T. Drummb,c, Vivek Krishnana, Sher Alia, Eleanor M. Naglea, Kenton M. Sandersb, and Scott Earleya,1 aDepartment of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, NV 89557-0318; bDepartment of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557-0318; and cDepartment of Life & Health Sciences, Dundalk Institute of Technology, Louth, Ireland A91 K584 Edited by Mark T. Nelson, University of Vermont, Burlington, VT, and approved October 13, 2020 (received for review August 12, 2020) TRPML1 (transient receptor potential mucolipin 1) is a Ca2+-perme- including dense granulomembranous storage bodies in neurons, able, nonselective cation channel that is predominantly localized to elevated plasma gastrin, vacuolization in the gastric mucosa, and the membranes of late endosomes and lysosomes (LELs). Intracellular retinal degeneration (14). Interestingly, however, an anatomical release of Ca2+ through TRPML1 is thought to be pivotal for mainte- examination of these mice reveals dramatically distended bladders nance of intravesicular acidic pH as well as the maturation, fusion, and (14), leading us to question how TRPML1, an intracellular Ca2+- trafficking of LELs. Interestingly, genetic ablation of TRPML1 in mice release channel important in LEL function, affects bladder −/− (Mcoln1 ) induces a hyperdistended/hypertrophic bladder phenotype. physiology. Here, we investigated this phenomenon further by exploring an un- The lower urinary tract (LUT) is composed of the urinary conventional role for TRPML1 channels in the regulation of Ca2+-signal- bladder and urethra—structures that serve the simple, reciprocal ing activity and contractility in bladder and urethral smooth muscle cells functions of storing and voiding urine (15).
    [Show full text]
  • A Shared Pathway of Exosome Biogenesis Operates at Plasma And
    bioRxiv preprint doi: https://doi.org/10.1101/545228; this version posted February 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A shared pathway of exosome biogenesis operates at plasma and endosome membranes Francis K. Fordjour1, George G. Daaboul2, and Stephen J. Gould1* 1Department of Biological Chemistry Johns Hopkins University Baltimore, MD USA 2Nanoview Biosciences Boston, MA USA Corresponding author: Stephen J. Gould, Ph.D. Department of Biological Chemistry Johns Hopkins University Baltimore, MD USA Email: [email protected] Tel (01) 443 847 9918 1 bioRxiv preprint doi: https://doi.org/10.1101/545228; this version posted February 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Summary: This study of exosome cargo protein budding reveals that cells use a common pathway for budding exosomes from plasma and endosome membranes, providing a new mechanistic explanation for exosome heterogeneity and a rational roadmap for exosome engineering. Keywords: Protein budding, tetraspanin, endosome, plasma membrane, extracellular vesicle, CD9, CD63, CD81, SPIR, interferometry Abbreviations: EV, extracellular vesicles; IB, immunoblot; IFM, immunofluorescence microscopy; IPMC, intracellular plasma membrane-connected compartment; MVB, multivesicular body; SPIR, single-particle interferometric reflectance; SPIRI, single-particle interferometric reflectance imaging 2 bioRxiv preprint doi: https://doi.org/10.1101/545228; this version posted February 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved.
    [Show full text]
  • Flow Reagents Single Color Antibodies CD Chart
    CD CHART CD N° Alternative Name CD N° Alternative Name CD N° Alternative Name Beckman Coulter Clone Beckman Coulter Clone Beckman Coulter Clone T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells CD1a T6, R4, HTA1 Act p n n p n n S l CD99 MIC2 gene product, E2 p p p CD223 LAG-3 (Lymphocyte activation gene 3) Act n Act p n CD1b R1 Act p n n p n n S CD99R restricted CD99 p p CD224 GGT (γ-glutamyl transferase) p p p p p p CD1c R7, M241 Act S n n p n n S l CD100 SEMA4D (semaphorin 4D) p Low p p p n n CD225 Leu13, interferon induced transmembrane protein 1 (IFITM1). p p p p p CD1d R3 Act S n n Low n n S Intest CD101 V7, P126 Act n p n p n n p CD226 DNAM-1, PTA-1 Act n Act Act Act n p n CD1e R2 n n n n S CD102 ICAM-2 (intercellular adhesion molecule-2) p p n p Folli p CD227 MUC1, mucin 1, episialin, PUM, PEM, EMA, DF3, H23 Act p CD2 T11; Tp50; sheep red blood cell (SRBC) receptor; LFA-2 p S n p n n l CD103 HML-1 (human mucosal lymphocytes antigen 1), integrin aE chain S n n n n n n n l CD228 Melanotransferrin (MT), p97 p p CD3 T3, CD3 complex p n n n n n n n n n l CD104 integrin b4 chain; TSP-1180 n n n n n n n p p CD229 Ly9, T-lymphocyte surface antigen p p n p n
    [Show full text]
  • Mouse CD302/CLEC13A Antibody Antigen Affinity-Purified Polyclonal Sheep Igg Catalog Number: AF6424
    Mouse CD302/CLEC13A Antibody Antigen Affinity-purified Polyclonal Sheep IgG Catalog Number: AF6424 DESCRIPTION Species Reactivity Mouse Specificity Detects mouse CD302/CLEC13A in direct ELISAs and Western blots. In direct ELISAs, approximately 30% cross­reactivity with recombinant human CD302 is observed. Source Polyclonal Sheep IgG Purification Antigen Affinity­purified Immunogen Mouse myeloma cell line NS0­derived recombinant mouse CD302/CLEC13A Asp21­His165 Accession # Q9DCG2 Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details. *Small pack size (­SP) is supplied either lyophilized or as a 0.2 μm filtered solution in PBS. APPLICATIONS Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration Western Blot 1 µg/mL See Below DATA Western Blot Detection of Mouse CD302/CLEC13A by Western Blot. Western blot shows lysates of mouse spleen tissue. PVDF Membrane was probed with 1 µg/mL of Mouse CD302/CLEC13A Antigen Affinity­purified Polyclonal Antibody (Catalog # AF6424) followed by HRP­conjugated Anti­Sheep IgG Secondary Antibody (Catalog # HAF016). A specific band was detected for CD302/CLEC13A at approximately 32 kDa (as indicated). This experiment was conducted under reducing conditions and using Immunoblot Buffer Group 8. PREPARATION AND STORAGE Reconstitution Sterile PBS to a final concentration of 0.2 mg/mL. Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. *Small pack size (­SP) is shipped with polar packs. Upon receipt, store it immediately at ­20 to ­70 °C Stability & Storage Use a manual defrost freezer and avoid repeated freeze­thaw cycles.
    [Show full text]
  • Maturation and Is Inhibited by TLR2 Signaling Through TLR4 Promotes
    Role of TLR in B Cell Development: Signaling through TLR4 Promotes B Cell Maturation and Is Inhibited by TLR2 This information is current as Elize A. Hayashi, Shizuo Akira and Alberto Nobrega of September 28, 2021. J Immunol 2005; 174:6639-6647; ; doi: 10.4049/jimmunol.174.11.6639 http://www.jimmunol.org/content/174/11/6639 Downloaded from References This article cites 45 articles, 26 of which you can access for free at: http://www.jimmunol.org/content/174/11/6639.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 28, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Role of TLR in B Cell Development: Signaling through TLR4 Promotes B Cell Maturation and Is Inhibited by TLR21 Elize A. Hayashi,* Shizuo Akira,† and Alberto Nobrega2* The role of TLR4 in mature B cell activation is well characterized.
    [Show full text]
  • TRP CHANNELS AS THERAPEUTIC TARGETS TRP CHANNELS AS THERAPEUTIC TARGETS from Basic Science to Clinical Use
    TRP CHANNELS AS THERAPEUTIC TARGETS TRP CHANNELS AS THERAPEUTIC TARGETS From Basic Science to Clinical Use Edited by ARPAD SZALLASI MD, PHD Department of Pathology, Monmouth Medical Center, Long Branch, NJ, USA AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 125 London Wall, London, EC2Y 5AS, UK 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA 225 Wyman Street, Waltham, MA 02451, USA The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK First published 2015 Copyright © 2015 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein.
    [Show full text]
  • Snapshot: Mammalian TRP Channels David E
    SnapShot: Mammalian TRP Channels David E. Clapham HHMI, Children’s Hospital, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA TRP Activators Inhibitors Putative Interacting Proteins Proposed Functions Activation potentiated by PLC pathways Gd, La TRPC4, TRPC5, calmodulin, TRPC3, Homodimer is a purported stretch-sensitive ion channel; form C1 TRPP1, IP3Rs, caveolin-1, PMCA heteromeric ion channels with TRPC4 or TRPC5 in neurons -/- Pheromone receptor mechanism? Calmodulin, IP3R3, Enkurin, TRPC6 TRPC2 mice respond abnormally to urine-based olfactory C2 cues; pheromone sensing 2+ Diacylglycerol, [Ca ]I, activation potentiated BTP2, flufenamate, Gd, La TRPC1, calmodulin, PLCβ, PLCγ, IP3R, Potential role in vasoregulation and airway regulation C3 by PLC pathways RyR, SERCA, caveolin-1, αSNAP, NCX1 La (100 µM), calmidazolium, activation [Ca2+] , 2-APB, niflumic acid, TRPC1, TRPC5, calmodulin, PLCβ, TRPC4-/- mice have abnormalities in endothelial-based vessel C4 i potentiated by PLC pathways DIDS, La (mM) NHERF1, IP3R permeability La (100 µM), activation potentiated by PLC 2-APB, flufenamate, La (mM) TRPC1, TRPC4, calmodulin, PLCβ, No phenotype yet reported in TRPC5-/- mice; potentially C5 pathways, nitric oxide NHERF1/2, ZO-1, IP3R regulates growth cones and neurite extension 2+ Diacylglycerol, [Ca ]I, 20-HETE, activation 2-APB, amiloride, Cd, La, Gd Calmodulin, TRPC3, TRPC7, FKBP12 Missense mutation in human focal segmental glomerulo- C6 potentiated by PLC pathways sclerosis (FSGS); abnormal vasoregulation in TRPC6-/-
    [Show full text]
  • Association of CD69 and CD 25 Activation Markers on CD4 And
    arm Ph ac f ov l o i a g n il r a n u c o e J Teixeira et al., J Pharmacovigilance 2013, 1:3 Journal of Pharmacovigilance DOI: 10.4172/2329-6887.1000111 ISSN: 2329-6887 CaseResearch Report Article OpenOpen Access Access Association of CD69 and CD 25 Activation Markers on CD4 and CD8 Cells with Skin Tests in Drug Allergy Teixeira FM1, Vasconcelos LMF2, Araújo TS3, Genre J4, Almeida TLP5, Magalhães HIF3, Câmara LMC6 and Nagao-Dias AT3* 1Posgraduation Program of Biotechnology (RENORBIO), Federal University of Ceará (UFC), Brazil 2Posgraduation Program of Pharmaceutical Sciences, UFC, Brazil 3Department of Clinical Analysis and Toxicology, Faculty of Pharmacy, UFC, Brazil 4Department of Clinical Analysis and Toxicology, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Brazil 5Department of Dermatology, Hospital Universitário Walter Cantídio, UFC, Brazil 6Department of Pathology, Faculty of Medicine, UFC, Brazil Abstract Background: Diagnosis of drug allergy is difficult because few methods have been validated in the literature. In the last few years, identification of T cell activation markers to assess drug allergy has been the focus of several studies. Objective: The aim of the present work was to search for CD25 and CD69 markers on T CD4+ and T CD8+ cells in drug allergy. Methods: Fourteen patients with drug hypersensitivity were enrolled in this investigation. Some patients had at least one adverse reaction to one or more suspected drugs, therefore, a total of 16 reactions and 10 drugs were investigated. Prick or patch tests were done according with the time of onset and type of the clinical manifestations.
    [Show full text]
  • BD Multicolor Antibody Reagents Catalog BD Continues to Provide More Choices for Multicolor Flow Cytometry Applications by Expanding Our Portfolio and Color Options
    Welcome to More Choice BD Multicolor Antibody Choose from our extensive portfolio of high-quality fluorescent-conjugated reagents Reagents Catalog to build your multicolor flow cytometry panels. 10th Edition Human Mouse Non-Human Primate Welcome to More Choice BD Multicolor Antibody Reagents Catalog BD continues to provide more choices for multicolor flow cytometry applications by expanding our portfolio and color options. Check out the newly released BD Horizon™ Brilliant Violet™ reagents: Human • BD Horizon™ BV421: Offers PE-level brightness for the violet laser, making it optimal for dim markers. It can be detected in the BD Horizon V450 filter set (450/50 nm). Mouse • BD Horizon™ BV510: Adds another bright choice for the violet laser. It can be detected in Non-Human Primate the BD Horizon V500 filter set (525/20 nm). • BD Horizon™ BV605: Provides a very bright option for the third violet channel. • BD Horizon™ BV711: Provides a fourth dye for the violet laser expanding the options for multicolor flow. The brightness of this dye makes it ideal for dim markers. • Look for newly released products as we continue our commitment to provide more choices for multicolor assays. More Sizes BD now offers a wide variety of antibody conjugates in small and large vial sizes. Small sizes (25 test or 25 µg) are now available for hundreds of specificities. • Use the small-size formats to determine feasibility of pilot experiments. • Design and optimize multicolor panels with our small sizes. Larger sizes (250 test or 500 test) are now available for many of the common markers. • Use this convenient package size for routine assays or large studies.
    [Show full text]
  • Elevated MCOLN1 Expression in P53-Deficient Bladder Cancer Is Necessary for Oncogene-Induced Cell Proliferation, Inflammation
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193862; this version posted July 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Elevated MCOLN1 Expression in p53-Deficient Bladder Cancer is Necessary for Oncogene-Induced Cell proliferation, Inflammation, and Invasion Jewon Jung1, Han Liao1, Hong Liang1, John F. Hancock1,2, Catherine Denicourt1,2, and Kartik Venkatachalam1,2,3,4,5 1Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA 2Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences 3Graduate Program in Neuroscience, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences 4Lead Contact 5Correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193862; this version posted July 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Summary Inhibition of the endolysosomal cation channel, TRPML1, which is encoded by MCOLN1, deters the proliferation of cancer cells with augmented TFEB activity. Here, we report that the tumor suppressor, p53, antagonizes TFEB-driven MCOLN1 expression in bladder cancer.
    [Show full text]