Council for Innovative Research Peer Review Research Publishing System Journal: Journal of Advances in Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Council for Innovative Research Peer Review Research Publishing System Journal: Journal of Advances in Mathematics View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KHALSA PUBLICATIONS ISSN 2347-1921 Some Geometrical Calculations for the Spherical Indicatrices of Involutes of a Timelike Curve in Minkowski 3-Space Mustafa Bilici, Mustafa Çalışkan Ondokuz Mayıs University, Educational Faculty, Department of Mathematics 55200 Kurupelit, Samsun, Turkey [email protected] Gazi University, Faculty of Sciences, Department of Mathematics, 06500 Teknik Okullar,Ankara, Turkey [email protected] ABSTRACT In this paper, we introduce the spherical indicatrices of involutes of a given timelike curve. Then we give some important 3 2 2 relationships between arc lengths and geodesic curvatures of the base curve and its involutes on E1 , S1 , H0 . Additionally, some important results concerning these curves are given. Keywords: Minkowski space; involute evolute curve couple; spherical indicatrices; geodesic curvature. Mathematics Subject Classification 2010: 51B20, 53B30, 53C50 Council for Innovative Research Peer Review Research Publishing System Journal: Journal of Advances in Mathematics Vol 5, No. 2 [email protected] www.cirworld.com, member.cirworld.com 668 | P a g e D e c 2 3 , 2 0 1 3 ISSN 2347-1921 INTRODUCTION The notion of the involute of a curve was introduced by Christiaan Huygens in his work titled Horologium oscillatorium sive de motu pendulorum ad horologia aptato demonstrationes geometricae (1673). In the theory of curves in Euclidean space, one of the important and interesting problems is the characterizations of a regular curve. In particular, the involute of a given curve is a well known concept in the classical differential geometry (see [5]). At the beginning of the twentieth century, A. Einstein’s theory opened a door of use of new geometries. One of them is simultaneously the geometry of special relativity and the geometry induced on each fixed tangent space of an arbitrary Lorentzian manifold, was introduced and some of classical differential geometry topics have been treated by the researchers. According to reference ([1], [2], [3]), it has been investigated the involutes of the timelike curves in Minkowski 3-space. Also, Bükcü and Karacan studied on the involute and evolute curves of the spacelike curve with a spacelike binormal in Minkowski 3-space, [4]. In this study, we carry tangents of the spacelike involute of a timelike curve to the center of the pseudohyperbolic space and we obtain a spacelike curve with equation on . This curve is called the first spherical indicatrix or tangent indicatrix of . Similarly one consider the principal normal indicatrix and the3 binormal2 2 E1 S1 H0 indicatrix on the pseudosphere . Then we give some important relationships between arc lengths and geodesic curvatures of the base curve and its involutes on , , . Additionally, some important results concerning these curves are given. PRELIMNARIES The Minkowski 3-space is the vector space E3 provided with the Lorentzian inner product g given by 222 g(,) X X x1 x 2 x 3 , 3 where X x1 ,x 2 ,x 3 E . A vector X is said to be timelike if g X ,X 0 , spacelike if g X ,X 0 and lightlike (or null) if g X ,X 0 . Similarly, an arbitrary curve s in where s is a pseudo-arclenght parameter, can locally be timelike spacelike or null (lightlike), if all of its velocity vectors s are respectively timelike, spacelike or null. The norm of a vector is defined by X g X ,X 3 and two vectors X x1 ,x 2 ,x 3 , Y y1 ,y 2 ,y 3 E 1 are orthogonal if and only if g X ,Y 0 . Now let and Y be two vectors in , then the Lorentzian cross product is given by e1 e 2 e 3 XY x1 x 2 x 3 xy 32 xy,xy 2313 xy,xy 3112 xy 21 , [6]. y1 y 2 y 3 Denote by T s ,N s ,B s the moving Frenet frame along the curve in the space . Then T , N and B are the tangent, the principal normal and the binormal vector of the curve , respectively. For these vectors, we can write TNB,NBT,BTN . Depending on the causal character of the curve , the following Frenet-Serret formulas are given in [7]. T N, N T B, B N . gT,T 1,gN,N gB,B 1,gT,N gT,B gN,B 0 If the curve is non-unit speed curve in space , then det , , , . 3 2 The Darboux vector for the timelike curve is defined by [8] 669 | P a g e D e c 2 3 , 2 0 1 3 ISSN 2347-1921 TB . There are two cases corresponding to the causal characteristic of Darboux vector . Case I. If κτ , then is a spacelike vector. In this situation, we can write cosh 2 22 ,,g sinh and the unit vector C of direction is 1 CTB sinh cosh , where is the lorentzian timelike angle between B and unit timelike vector C that lorentz orthogonal to the normalisation of the Darboux vector (see Figure 1). Fig 1: Lorentzian timelike angle Case II. If κτ , then is a timelike vector. In this situation, we have sinh 2 22 ,, g cosh and the unit vector of direction is 1 CTB cosh sinh . τ τ Remark 1. We can easily see from equations of the section Case I and Case II that: = tanhφ or = cothφ , if κ κ constant then is a general helix. For the arc length of the spherical indicatrix of C we get 670 | P a g e D e c 2 3 , 2 0 1 3 ISSN 2347-1921 s s ds . C 0 After some calculations, we have for the arc lenghts of the spherical indicatrices T,N,B measured from the points corresponding to s 0 s s s s ds,s ds,s ds TNB 0 0 0 for their geodesic curvatures with respest to 11 kkTT, for timelike cosh sinh 1122 kk22 , for timelike 3 NNE1 11 kkBB, for timelike sinh cosh 22 k 1 k 1 , for timelike CC 2 2 and for their geodesic curvatures with respest to S1 or H0 TTT tT t tanh coth , for timelike t N tN N W , [6]. t coth tanh , for timelike B tB B B W t C tC C 2 2 Note that and are Levi-Civita connections on S1 and H0 , respectively. Then Gauss equations are given by the followings. XXXY YgSXY ,,,,, YX YgSXY g , 2 2 where is a unit normal vector field and S is the shape operator of S1 (or H0 ). 3 The unit pseudosphere and pseudohyperbolic space of radius 1and center 0 in E1 are given by 23 S1 X x 1, x 2 , x 3 E 1 : g X , X 1 and 23 H0 X x 1, x 2 , x 3 E 1 : g X , X 1 respectively, [4]. *3 Definition 1. Let s , s E1 be two curves. Let Frenet frames of and be T,N,B and T,N,B*** , respectively. is called the involute of ( is called the evolute of ) if g T ,T* 0 . 671 | P a g e D e c 2 3 , 2 0 1 3 ISSN 2347-1921 Remark 2. Let be a timelike curve. In this situation its involute curve must be a spacelike curve. , being the involute-evolute curve couple, the following lemma was presented by Bilici and Çalışkan ( see [1], [3]). Lemma 1. Let , be the timelike-spacelike involute-evolute curve couple. The relations between the Frenet vectors of the curve couple as follow. (1) If is a spacelike vector( ), then T* 0 1 0 T * Ncosh 0 sinh N . * Bsinh 0 cosh B (2) If is a timelike vector( ), then T* 0 1 0 T * Nsinh 0 cosh N . * Bcosh 0 sinh B Example 1. Let the curve s 2sinh s , 2 cosh s , s be a unit speed timelike curve such that 2 s 2 s 1 Ts cosh , sinh , . 3 3 3 3 3 If is a timelike curve then its involute curve is a spacelike curve. In this situation, involute curve of the curve can be given the equation 2 s 2 s 2 s 2 s c s sinh c s cosh , cosh c s sinh , , 3 3 3 3 3 3 3 3 3 where c is an arbitrary constant. If we compute the tangent vector field of the curve we have * T s sinh ,cosh , 0 33 and g T s ,T* s 0 . 3. SOME GEOMETRICAL CALCULATIONS FOR THE SPHERICAL INDICATRICES OF INVOLUTES OF A TIMELIKE CURVE In this section, we compute the arc-lengths of the spherical indicatrix curves T,N,B*** and then we calculate the 3 2 2 geodesic curvatures of these curves in E1 and S1 (or H0 ). Firstly, for the arc-length s of tagent indicatrix T * of the involute curve , we can write T* * s * S dT dN s ds* ds , T* * 00ds ds S 22 s* ds T 0 672 | P a g e D e c 2 3 , 2 0 1 3 ISSN 2347-1921 or from the definition of Darboux vector S s* ds . T 0 If the arc length for the principal normal indicatrix N* is s it is N* SSdN * dcosh T sinh B s* ds ds , N 00ds ds S 2 2 s* ds . N 0 For timelike , from the Lemma1. (2) we have S 2 2 s* ds . N 0 the arc length for the binormal indicatrix B* is s it is If B* SSdB* dsinh T cosh B s* ds ds , B 00ds ds S s* ds . B 0 If is a timelike vector, then we have the same result.
Recommended publications
  • Pioneers in Optics: Christiaan Huygens
    Downloaded from Microscopy Pioneers https://www.cambridge.org/core Pioneers in Optics: Christiaan Huygens Eric Clark From the website Molecular Expressions created by the late Michael Davidson and now maintained by Eric Clark, National Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306 . IP address: [email protected] 170.106.33.22 Christiaan Huygens reliability and accuracy. The first watch using this principle (1629–1695) was finished in 1675, whereupon it was promptly presented , on Christiaan Huygens was a to his sponsor, King Louis XIV. 29 Sep 2021 at 16:11:10 brilliant Dutch mathematician, In 1681, Huygens returned to Holland where he began physicist, and astronomer who lived to construct optical lenses with extremely large focal lengths, during the seventeenth century, a which were eventually presented to the Royal Society of period sometimes referred to as the London, where they remain today. Continuing along this line Scientific Revolution. Huygens, a of work, Huygens perfected his skills in lens grinding and highly gifted theoretical and experi- subsequently invented the achromatic eyepiece that bears his , subject to the Cambridge Core terms of use, available at mental scientist, is best known name and is still in widespread use today. for his work on the theories of Huygens left Holland in 1689, and ventured to London centrifugal force, the wave theory of where he became acquainted with Sir Isaac Newton and began light, and the pendulum clock. to study Newton’s theories on classical physics. Although it At an early age, Huygens began seems Huygens was duly impressed with Newton’s work, he work in advanced mathematics was still very skeptical about any theory that did not explain by attempting to disprove several theories established by gravitation by mechanical means.
    [Show full text]
  • On the Isochronism of Galilei's Horologium
    IFToMM Workshop on History of MMS – Palermo 2013 On the isochronism of Galilei's horologium Francesco Sorge, Marco Cammalleri, Giuseppe Genchi DICGIM, Università di Palermo, [email protected], [email protected], [email protected] Abstract − Measuring the passage of time has always fascinated the humankind throughout the centuries. It is amazing how the general architecture of clocks has remained almost unchanged in practice to date from the Middle Ages. However, the foremost mechanical developments in clock-making date from the seventeenth century, when the discovery of the isochronism laws of pendular motion by Galilei and Huygens permitted a higher degree of accuracy in the time measure. Keywords: Time Measure, Pendulum, Isochronism Brief Survey on the Art of Clock-Making The first elements of temporal and spatial cognition among the primitive societies were associated with the course of natural events. In practice, the starry heaven played the role of the first huge clock of mankind. According to the philosopher Macrobius (4 th century), even the Latin term hora derives, through the Greek word ‘ώρα , from an Egyptian hieroglyph to be pronounced Heru or Horu , which was Latinized into Horus and was the name of the Egyptian deity of the sun and the sky, who was the son of Osiris and was often represented as a hawk, prince of the sky. Later on, the measure of time began to assume a rudimentary technical connotation and to benefit from the use of more or less ingenious devices. Various kinds of clocks developed to relatively high levels of accuracy through the Egyptian, Assyrian, Greek and Roman civilizations.
    [Show full text]
  • Evolute-Involute Partner Curves According to Darboux Frame in the Euclidean 3-Space E3
    Fundamentals of Contemporary Mathematical Sciences (2020) 1(2) 63 { 70 Evolute-Involute Partner Curves According to Darboux Frame in the Euclidean 3-space E3 Abdullah Yıldırım 1,∗ Feryat Kaya 2 1 Harran University, Faculty of Arts and Sciences, Department of Mathematics S¸anlıurfa, T¨urkiye 2 S¸ehit Abdulkadir O˘guzAnatolian Imam Hatip High School S¸anlıurfa, T¨urkiye, [email protected] Received: 29 February 2020 Accepted: 29 June 2020 Abstract: In this study, evolute-involute curves are researched. Characterization of evolute-involute curves lying on the surface are examined according to Darboux frame and some curves are obtained. Keywords: Curve, surface, geodesic, curvature, frame. 1. Introduction The interest of special curves has increased recently. Some of these are associated curves. They are curves where one of the Frenet vectors at opposite points is linearly dependent to the other curve. One of the best examples of these curves is the evolute-involute partner curves. An involute thought known to have been used in his optical work came up in 1658 by C. Huygens. C. Huygens discovered involute curves while trying to make more accurate measurement studies [5]. Many researches have been conducted about evolute-involute partner curves. Some of them conducted recently are Bilici and C¸alı¸skan [4], Ozyılmaz¨ and Yılmaz [9], As and Sarıo˘glugil[2]. Bekta¸sand Y¨uceconsider the notion of the involute-evolute curves lying on the surfaces for a special situation. They determine the special involute-evolute partner D−curves in E3: By using the Darboux frame of the curves they obtain the necessary and sufficient conditions between κg , ∗ − ∗ ∗ τg; κn and κn for a curve to be the special involute partner D curve.
    [Show full text]
  • Computer-Aided Design and Kinematic Simulation of Huygens's
    applied sciences Article Computer-Aided Design and Kinematic Simulation of Huygens’s Pendulum Clock Gloria Del Río-Cidoncha 1, José Ignacio Rojas-Sola 2,* and Francisco Javier González-Cabanes 3 1 Department of Engineering Graphics, University of Seville, 41092 Seville, Spain; [email protected] 2 Department of Engineering Graphics, Design, and Projects, University of Jaen, 23071 Jaen, Spain 3 University of Seville, 41092 Seville, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-953-212452 Received: 25 November 2019; Accepted: 9 January 2020; Published: 10 January 2020 Abstract: This article presents both the three-dimensional modelling of the isochronous pendulum clock and the simulation of its movement, as designed by the Dutch physicist, mathematician, and astronomer Christiaan Huygens, and published in 1673. This invention was chosen for this research not only due to the major technological advance that it represented as the first reliable meter of time, but also for its historical interest, since this timepiece embodied the theory of pendular movement enunciated by Huygens, which remains in force today. This 3D modelling is based on the information provided in the only plan of assembly found as an illustration in the book Horologium Oscillatorium, whereby each of its pieces has been sized and modelled, its final assembly has been carried out, and its operation has been correctly verified by means of CATIA V5 software. Likewise, the kinematic simulation of the pendulum has been carried out, following the approximation of the string by a simple chain of seven links as a composite pendulum. The results have demonstrated the exactitude of the clock.
    [Show full text]
  • ALBERT VAN HELDEN + HUYGENS’S RING CASSINI’S DIVISION O & O SATURN’S CHILDREN
    _ ALBERT VAN HELDEN + HUYGENS’S RING CASSINI’S DIVISION o & o SATURN’S CHILDREN )0g-_ DIBNER LIBRARY LECTURE , HUYGENS’S RING, CASSINI’S DIVISION & SATURN’S CHILDREN c !@ _+++++++++ l ++++++++++ _) _) _) _) _)HUYGENS’S RING, _)CASSINI’S DIVISION _) _)& _)SATURN’S CHILDREN _) _) _)DDDDD _) _) _)Albert van Helden _) _) _) , _) _) _)_ _) _) _) _) _) · _) _) _) ; {(((((((((QW(((((((((} , 20013–7012 Text Copyright ©2006 Albert van Helden. All rights reserved. A H is Professor Emeritus at Rice University and the Univer- HUYGENS’S RING, CASSINI’S DIVISION sity of Utrecht, Netherlands, where he resides and teaches on a regular basis. He received his B.S and M.S. from Stevens Institute of Technology, M.A. from the AND SATURN’S CHILDREN University of Michigan and Ph.D. from Imperial College, University of London. Van Helden is a renowned author who has published respected books and arti- cles about the history of science, including the translation of Galileo’s “Sidereus Nuncius” into English. He has numerous periodical contributions to his credit and has served on the editorial boards of Air and Space, 1990-present; Journal for the History of Astronomy, 1988-present; Isis, 1989–1994; and Tractrix, 1989–1995. During his tenure at Rice University (1970–2001), van Helden was instrumental in establishing the “Galileo Project,”a Web-based source of information on the life and work of Galileo Galilei and the science of his time. A native of the Netherlands, Professor van Helden returned to his homeland in 2001 to join the faculty of Utrecht University.
    [Show full text]
  • Variation Analysis of Involute Spline Tooth Contact
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2006-02-22 Variation Analysis of Involute Spline Tooth Contact Brian J. De Caires Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Mechanical Engineering Commons BYU ScholarsArchive Citation De Caires, Brian J., "Variation Analysis of Involute Spline Tooth Contact" (2006). Theses and Dissertations. 375. https://scholarsarchive.byu.edu/etd/375 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. VARIATION ANALYSIS OF INVOLUTE SPLINE TOOTH CONTACT By Brian J. K. DeCaires A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Department of Mechanical Engineering Brigham Young University April 2006 Copyright © 2006 Brian J. K. DeCaires All Rights Reserved BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL of a thesis submitted by Brian J. K. DeCaires This thesis has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory. ___________________________ ______________________________________ Date Kenneth W. Chase, Chair ___________________________ ______________________________________ Date Carl D. Sorensen ___________________________
    [Show full text]
  • Precalculus Huygens Quiz Answers
    Chapter Two Math History for Precalculus Christiaan Huygens 1. When did Huygens (HIE genz) live? 1629–1695 2. Where was he from? Holland (The Hague) 3. What was his marital status? lifelong bachelor 4. What was his most famous work and when was it published? Horologium Oscillatorium, 1673 This famous work discussed pendulum clocks. Pendulum motion is periodic and is described using trigonometric functions. The most important mathematical result in this work involves the study of a curve—the cycloid. He discovered a very important property of this curve. In later works he studied other important mathematical curves and their properties. Describe each curve below and explain what Huygens discovered about it. Curves Discovery 5. Cycloid Determined by a point on a It is the tautochrone (time needed for wheel as it rolls along the a ball to roll to lowest point is equal (level) ground regardless of starting point). 6. Catenary Determined by suspending a It is not a parabola. cable from two points 7. Cissoid Determined by secant It is rectifiable (found arc length segments of a circle formula). 8. Which of the three previous curves are functions? cycloid, catenary 9. Huygens wrote on the paraboloid, a surface formed by revolving a parabola about its axis. What did he discover? Its surface area 10. Huygens also wrote the first treatise on probability (following the correspondence of Pascal and Fermat). What concept did he contribute to this subject? expectation 11. Name some of his famous scientific theories. rings of Saturn (1654–1656, using his own improved telescope lenses); pendulum clocks (1658); wave theory of light (1678, 1690) 12.
    [Show full text]
  • Interactive Involute Gear Analysis and Tooth Profile Generation Using Working Model 2D
    AC 2008-1325: INTERACTIVE INVOLUTE GEAR ANALYSIS AND TOOTH PROFILE GENERATION USING WORKING MODEL 2D Petru-Aurelian Simionescu, University of Alabama at Birmingham Petru-Aurelian Simionescu is currently an Assistant Professor of Mechanical Engineering at The University of Alabama at Birmingham. His teaching and research interests are in the areas of Dynamics, Vibrations, Optimal design of mechanical systems, Mechanisms and Robotics, CAD and Computer Graphics. Page 13.781.1 Page © American Society for Engineering Education, 2008 Interactive Involute Gear Analysis and Tooth Profile Generation using Working Model 2D Abstract Working Model 2D (WM 2D) is a powerful, easy to use planar multibody software that has been adopted by many instructors teaching Statics, Dynamics, Mechanisms, Machine Design, as well as by practicing engineers. Its programming and import-export capabilities facilitate simulating the motion of complex shape bodies subject to constraints. In this paper a number of WM 2D applications will be described that allow students to understand the basics properties of involute- gears and how they are manufactured. Other applications allow students to study the kinematics of planetary gears trains, which is known to be less intuitive than that of fix-axle transmissions. Introduction There are numerous reports on the use of Working Model 2D in teaching Mechanical Engineering disciplines, including Statics, Dynamics, Mechanisms, Vibrations, Controls and Machine Design1-9. Working Model 2D (WM 2D), currently available form Design Simulation Technologies10, is a planar multibody software, capable of performing kinematic and dynamic simulation of interconnected bodies subject to a variety of constraints. The versatility of the software is given by its geometry and data import/export capabilities, and scripting through formula and WM Basic language system.
    [Show full text]
  • The Cycloid Scott Morrison
    The cycloid Scott Morrison “The time has come”, the old man said, “to talk of many things: Of tangents, cusps and evolutes, of curves and rolling rings, and why the cycloid’s tautochrone, and pendulums on strings.” October 1997 1 Everyone is well aware of the fact that pendulums are used to keep time in old clocks, and most would be aware that this is because even as the pendu- lum loses energy, and winds down, it still keeps time fairly well. It should be clear from the outset that a pendulum is basically an object moving back and forth tracing out a circle; hence, we can ignore the string or shaft, or whatever, that supports the bob, and only consider the circular motion of the bob, driven by gravity. It’s important to notice now that the angle the tangent to the circle makes with the horizontal is the same as the angle the line from the bob to the centre makes with the vertical. The force on the bob at any moment is propor- tional to the sine of the angle at which the bob is currently moving. The net force is also directed perpendicular to the string, that is, in the instantaneous direction of motion. Because this force only changes the angle of the bob, and not the radius of the movement (a pendulum bob is always the same distance from its fixed point), we can write: θθ&& ∝sin Now, if θ is always small, which means the pendulum isn’t moving much, then sinθθ≈. This is very useful, as it lets us claim: θθ&& ∝ which tells us we have simple harmonic motion going on.
    [Show full text]
  • A Tale of the Cycloid in Four Acts
    A Tale of the Cycloid In Four Acts Carlo Margio Figure 1: A point on a wheel tracing a cycloid, from a work by Pascal in 16589. Introduction In the words of Mersenne, a cycloid is “the curve traced in space by a point on a carriage wheel as it revolves, moving forward on the street surface.” 1 This deceptively simple curve has a large number of remarkable and unique properties from an integral ratio of its length to the radius of the generating circle, and an integral ratio of its enclosed area to the area of the generating circle, as can be proven using geometry or basic calculus, to the advanced and unique tautochrone and brachistochrone properties, that are best shown using the calculus of variations. Thrown in to this assortment, a cycloid is the only curve that is its own involute. Study of the cycloid can reinforce the curriculum concepts of curve parameterisation, length of a curve, and the area under a parametric curve. Being mechanically generated, the cycloid also lends itself to practical demonstrations that help visualise these abstract concepts. The history of the curve is as enthralling as the mathematics, and involves many of the great European mathematicians of the seventeenth century (See Appendix I “Mathematicians and Timeline”). Introducing the cycloid through the persons involved in its discovery, and the struggles they underwent to get credit for their insights, not only gives sequence and order to the cycloid’s properties and shows which properties required advances in mathematics, but it also gives a human face to the mathematicians involved and makes them seem less remote, despite their, at times, seemingly superhuman discoveries.
    [Show full text]
  • Mathematics, the Language of Watchmaking
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE 90LEARNINGprovidedL by Infoscience E- École polytechniqueA fédérale de LausanneRNINGLEARNINGLEARNING Mathematics, the language of watchmaking Morley’s theorem (1898) states that if you trisect the angles of any triangle and extend the trisecting lines until they meet, the small triangle formed in the centre will always be equilateral. Ilan Vardi 1 I am often asked to explain mathematics; is it just about numbers and equations? The best answer that I’ve found is that mathematics uses numbers and equations like a language. However what distinguishes it from other subjects of thought – philosophy, for example – is that in maths com- plete understanding is sought, mostly by discover- ing the order in things. That is why we cannot have real maths without formal proofs and why mathe- maticians study very simple forms to make pro- found discoveries. One good example is the triangle, the simplest geometric shape that has been studied since antiquity. Nevertheless the foliot world had to wait 2,000 years for Morley’s theorem, one of the few mathematical results that can be expressed in a diagram. Horology is of interest to a mathematician because pallet verge it enables a complete understanding of how a watch or clock works. His job is to impose a sequence, just as a conductor controls an orches- tra or a computer’s real-time clock controls data regulating processing. Comprehension of a watch can be weight compared to a violin where science can only con- firm the preferences of its maker.
    [Show full text]
  • Parametric Equations and Polar Coordinates
    10 PARAMETRIC EQUATIONS AND POLAR COORDINATES Parametric equations and polar coordinates enable us to describe a great variety of new curves—some practical, some beautiful, some fanciful, some strange. So far we have described plane curves by giving y as a function of x ͓y ෇ f ͑x͔͒ or x as a function of y ͓x ෇ t͑y͔͒ or by giving a relation between x and y that defines y implicitly as a function of x ͓ f ͑x, y͒ ෇ 0͔. In this chapter we discuss two new methods for describing curves. Some curves, such as the cycloid, are best handled when both x and y are given in terms of a third variable t called a parameter ͓x ෇ f ͑t͒, y ෇ t͑t͔͒ . Other curves, such as the cardioid, have their most convenient description when we use a new coordinate system, called the polar coordinate system. 620 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS y Imagine that a particle moves along the curve C shown in Figure 1. It is impossible to C describe C by an equation of the form y ෇ f ͑x͒ because C fails the Vertical Line Test. But (x, y)={f(t), g(t)} the x- and y-coordinates of the particle are functions of time and so we can write x ෇ f ͑t͒ and y ෇ t͑t͒. Such a pair of equations is often a convenient way of describing a curve and gives rise to the following definition. Suppose that x and y are both given as functions of a third variable t (called a param- 0 x eter ) by the equations x ෇ f ͑t͒ y ෇ t͑t͒ FIGURE 1 (called parametric equations ).
    [Show full text]