The Cycloid and the Tautochrone Problem

Total Page:16

File Type:pdf, Size:1020Kb

The Cycloid and the Tautochrone Problem THE CYCLOID AND THE TAUTOCHRONE PROBLEM Laura Panizzi August 27, 2012 Abstract In this dissertation we will first introduce historically the invention of the Pendulum by Christiaan Huygens, in particular the cycloidal one. Then we will discuss mathematically the cycloid curve, related to the Tautochrone Problem and we’ll compare the circular and cycloidal pendulum. Finally we’ll introduce Abel’s Integral Equation as another way to attack and solve the Tautochrone Problem. 1HistoricalIntroduction Christiaan Huygens (14 April 1629 - 8 July 1695), was a prominent Dutch mathematician, astronomer, physicist and horologist. His work included early telescopic studies elucidating the nature of the rings of Saturn and the discovery of its moon Titan, the invention of the pendulum clock and other investigations in timekeeping, and studies of both optics and the cen- trifugal force. In 1657 patented his invention of the pendulum clock and in 1673 published his mathematical analysis of pendulums, Horologium Oscillatorium sive de motu pendulorum,hisgreatestworkonhorology.Ithadbeenobservedby Marin Mersenne and others that pendulums are not quite isochronous, that is, their period depends on their width of swing, wide swings taking longer than narrow swings. Huygens analysed this problem by finding the shape of the curve down which a mass will slide under the influence of gravity in the same amount of time, regardless of its starting point; the so-called 1 Tautochrone Problem.Bygeometricalmethodswhichwereanearlyuseof calculus, he showed that this curve is a Cycloid. ”On a cycloid whose axis is erected on the perpendicular and whose vertex is located at the bottom, the times of descent, in which a body arrives at the lowest point at the vertex after hav- ing departed from any point on the cycloid, are equal to each other...”1 2TheCycloid The cycloid is the locus of a point on the rim of a circle of radius R rolling without slipping along a straight line. It was first studied by Nicola Cusano and it was named by Galileo in 1599. It is also the solution to the Tautochrone Problem. The cycloid is represented by a parametric expression that contains the radius R of the circle and the rotation angle θ.Thefollowingformularepresents two cycloids generated by a circle of radius R,onetroughtheoriginandthe other trough π,whichconsistofthepoints(x, y), with x = R(θ sin θ) ± ± θ [ π,π] C ≡ y = R(1 cos θ) ∈ − ! − For a given θ,thecircle’scentreliesatx = Rθ, y = R. 2.1 Arc Length The arc length of a curve defined parametrically by x = f(t)andy = g(t) is θ s(θ)= ds where ds = dx2 + dy2 0 " # For the cycloid we have dx = R(1 cos θ)dθ ± !dy = R sin θdθ 1Blackwell, Richard J. (1986). Christiaan Huygens’ The Pendulum Clock.Ames,Iowa: Iowa State University Press. ISBN 0-8138-0933-9. Part II, Proposition XXV, p. 69 2 so θ θ ds =2R cos dθ s(θ)=4R sin 2 ⇒ 2 2.2 Critical Points From the study of the first derivative we obtain θ + dy sin θ tan 2 ( ) = = θ C dx 1 cos θ cot ( −) ± ! 2 C + we have the maxima for in θ =0+kπ and minima for − in θ = kπ. While from the study ofC the second derivative we get2 C 2 1 > 0(+) d y 1 4cos2 θ 2 C 2 = 2 = 1 dx ±(1 cos θ) − < 0( ) 4sin2 θ − ± 2 C + has always a positive curvature and − anegativeone. C C x = πR x =0 x = πR A" θ = π − ; O θ =0 ; A θ = π ⇔ − !y =2R ⇔ !y =0 ⇔ !y =2R For + the circle rolls over the line y =0 C For − the circle rolls under the line y =2R C 2Let us recall 2 2 2 1 cos 2α cos α sin α =cos2α sin α = − 2 − 2 1+cos 2α !2cosα sin α = sin 2α ⇒ !cos α = 2 3 Figure 1: Plot of Cycloid with R = 1 and π<θ<π, + (continuous) and − C − (dashed) C 3CircularPendulumvs.CycloidalPendu- lum Now we consider the equation of motion for a particle mass constrained to move in a vertical curve without friction. The equation is: d2s F (s)=m t dt2 where Ft(s) is the tangential force and s the curvilinear abscissa. Gravity is the only force acting upon the mass, so dy F (s)= mg cos φ;cosφ = . t − ds With this equation one can describe the motion of two type of pendulums: the Circular Pendulum, first studied by Galileo Galilei in 1581, and the Cycloidal Pendulum, studied by Huygens in 1673. 3.1 Cycloidal Pendulum Starting from the previous equation for a cycloidal curve, generated by a circle of radius R x = R(θ sin θ) ± π θ π y = R(1 cos θ) − ≤ ≤ ! − 4 we have θ dy = R sin θdθ and ds =2R cos dθ 2 then we obtain dy sin θ θ cos φ = = θ = sin ds 2cos 2 2 and the equation of motion becomes d2s θ + g sin =0 dt2 2 also noting that θ θ s s(θ)=4R sin = sin = 2 ⇒ 2 4R we finally have d2s g + s =0 dt2 4R The result is an harmonic motion s = s(θ)withperiod ∀ 4R T =2π ' g that does NOT depend on the amplitude of the oscillation. 3.2 Circular Pendulum In the case of a circular curve of radius L x = L sin α π π α y = L(1 cos α) − 2 ≤ ≤ 2 ! − we have dy = L sin αdα and ds = Ldα 5 Figure 2: Cycloidal pendulum: T = T0,CircularpendulumT T0, T0 = L ≥ 2π g with L =4R ( then we obtain dy cos φ = = sin α ds and the equation of motion becomes d2s + g sin α =0 dt2 d2α g + sin α =0 dt2 L In this case there is an harmonic motion only for sin α α with period ≈ L T 2π . * ' g 4AbelandTautochrone Niels Henrik Abel attacked a generalized version of the Tautochrone Problem (Abel’s mechanical problem), namely, to find, given a function T (y)that 6 specifies the total time of descent for a given starting height, an equation for the curve that yields such result. The Tautochrone Problem is a special case of Abel’s mechanical problem when T (y) is a constant. For the principle of conservation of energy, since the particle is frictionless, 2 1.8 1.6 y 1.4 0 1.2 y 1 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 x Figure 3: Tautochrone curve and thus loses no energy to heat, its kinetic energy at any point is exactly equal to the difference in potential energy from its starting point. Formally: 1 ds 2 m = mg(y y) 2 dt 0 − ) * ds where dt is the velocity of the particle, s the distance measured along the curve and mg(y y) the gravitational potential energy gained in falling from 0 − an initial height y0 to a height y. ds = 2g(y y) dt ± 0 − # ds dt = ± 2g(y y) 0 − 1 ds dt = # dy − 2g(y y) dy 0 − # 7 In the last equation, we’ve anticipated writing the distance remaining along the curve as a function of height (s(y)) and recognized that the distance remaining must decrease as time increases (thus the minus sign). Now we integrate from y = y0 to y =0togetthetotaltimerequiredforthe particle to fall: y=0 1 y0 1 ds T (y )= dt = dy 0 √2g √y y dy "y=y0 "0 0 − This is called Abel’s integral equation and allows us to compute the total ds time required for a particle to fall along a given curve (for which dy would be easy to calculate). Abel’s mechanical problem is the opposite one: given ds T (y0)wewishtofind dy ,fromwhichanequationforthecurvewouldfollow in a straightforward manner. ds To proceed, we note that the integral on the right is the convolution of dy 1 with √y and thus take the Laplace transform of both sides: 1 1 ds [T (y0)] = L √2g L √y L dy + , + , 1 1 Since = √πz− 2 ,wenowhaveanexpressionfortheLaplacetransform L √y ds of dy in- terms. of T (y0)’s Laplace transform: ds 2g 1 = z 2 [T (y )] L dy π L 0 + , / For the tautochrone problem, T (y0)=T0 is constant. Since the Laplace 1 transform of 1 is z ,weproceed: ds 2g 1 = T z− 2 L dy π 0 + , / Making use again of the Laplace transform above, we anti-transform and conclude: ds √2g 1 = T0 . dy π √y 8 Now if we let ds dx 2 2gt2 = 1+ and b = dy dy π2 ' ) * we obtain dx b y b y = − from which x = − dy + c dy y y ' " ' with the substitutions R y = b sin2 φ, b y = b cos2 φb= and dy =2b sin cos φdφ − 2 R cos2 φ x = R sin cos φdφ= R cos2 φdφ+ c R sin2 φ " ' " Recalling 1+cos2φ cos2 φ = with 2φ = θ 2 we finally have x = R(θ sin θ) ± . y = R(1 cos θ) ! − References [1] R. Gorenflo, S. Vessella, Abel Integral Equation -AnalysisandApplica- tion, Springer-Verlag Berlin Heidelber, 1991 [2] F. Mainardi, Lecture Notes on Mathematical Physics 9.
Recommended publications
  • Engineering Curves – I
    Engineering Curves – I 1. Classification 2. Conic sections - explanation 3. Common Definition 4. Ellipse – ( six methods of construction) 5. Parabola – ( Three methods of construction) 6. Hyperbola – ( Three methods of construction ) 7. Methods of drawing Tangents & Normals ( four cases) Engineering Curves – II 1. Classification 2. Definitions 3. Involutes - (five cases) 4. Cycloid 5. Trochoids – (Superior and Inferior) 6. Epic cycloid and Hypo - cycloid 7. Spiral (Two cases) 8. Helix – on cylinder & on cone 9. Methods of drawing Tangents and Normals (Three cases) ENGINEERING CURVES Part- I {Conic Sections} ELLIPSE PARABOLA HYPERBOLA 1.Concentric Circle Method 1.Rectangle Method 1.Rectangular Hyperbola (coordinates given) 2.Rectangle Method 2 Method of Tangents ( Triangle Method) 2 Rectangular Hyperbola 3.Oblong Method (P-V diagram - Equation given) 3.Basic Locus Method 4.Arcs of Circle Method (Directrix – focus) 3.Basic Locus Method (Directrix – focus) 5.Rhombus Metho 6.Basic Locus Method Methods of Drawing (Directrix – focus) Tangents & Normals To These Curves. CONIC SECTIONS ELLIPSE, PARABOLA AND HYPERBOLA ARE CALLED CONIC SECTIONS BECAUSE THESE CURVES APPEAR ON THE SURFACE OF A CONE WHEN IT IS CUT BY SOME TYPICAL CUTTING PLANES. OBSERVE ILLUSTRATIONS GIVEN BELOW.. Ellipse Section Plane Section Plane Hyperbola Through Generators Parallel to Axis. Section Plane Parallel to end generator. COMMON DEFINATION OF ELLIPSE, PARABOLA & HYPERBOLA: These are the loci of points moving in a plane such that the ratio of it’s distances from a fixed point And a fixed line always remains constant. The Ratio is called ECCENTRICITY. (E) A) For Ellipse E<1 B) For Parabola E=1 C) For Hyperbola E>1 Refer Problem nos.
    [Show full text]
  • Pioneers in Optics: Christiaan Huygens
    Downloaded from Microscopy Pioneers https://www.cambridge.org/core Pioneers in Optics: Christiaan Huygens Eric Clark From the website Molecular Expressions created by the late Michael Davidson and now maintained by Eric Clark, National Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306 . IP address: [email protected] 170.106.33.22 Christiaan Huygens reliability and accuracy. The first watch using this principle (1629–1695) was finished in 1675, whereupon it was promptly presented , on Christiaan Huygens was a to his sponsor, King Louis XIV. 29 Sep 2021 at 16:11:10 brilliant Dutch mathematician, In 1681, Huygens returned to Holland where he began physicist, and astronomer who lived to construct optical lenses with extremely large focal lengths, during the seventeenth century, a which were eventually presented to the Royal Society of period sometimes referred to as the London, where they remain today. Continuing along this line Scientific Revolution. Huygens, a of work, Huygens perfected his skills in lens grinding and highly gifted theoretical and experi- subsequently invented the achromatic eyepiece that bears his , subject to the Cambridge Core terms of use, available at mental scientist, is best known name and is still in widespread use today. for his work on the theories of Huygens left Holland in 1689, and ventured to London centrifugal force, the wave theory of where he became acquainted with Sir Isaac Newton and began light, and the pendulum clock. to study Newton’s theories on classical physics. Although it At an early age, Huygens began seems Huygens was duly impressed with Newton’s work, he work in advanced mathematics was still very skeptical about any theory that did not explain by attempting to disprove several theories established by gravitation by mechanical means.
    [Show full text]
  • On the Isochronism of Galilei's Horologium
    IFToMM Workshop on History of MMS – Palermo 2013 On the isochronism of Galilei's horologium Francesco Sorge, Marco Cammalleri, Giuseppe Genchi DICGIM, Università di Palermo, [email protected], [email protected], [email protected] Abstract − Measuring the passage of time has always fascinated the humankind throughout the centuries. It is amazing how the general architecture of clocks has remained almost unchanged in practice to date from the Middle Ages. However, the foremost mechanical developments in clock-making date from the seventeenth century, when the discovery of the isochronism laws of pendular motion by Galilei and Huygens permitted a higher degree of accuracy in the time measure. Keywords: Time Measure, Pendulum, Isochronism Brief Survey on the Art of Clock-Making The first elements of temporal and spatial cognition among the primitive societies were associated with the course of natural events. In practice, the starry heaven played the role of the first huge clock of mankind. According to the philosopher Macrobius (4 th century), even the Latin term hora derives, through the Greek word ‘ώρα , from an Egyptian hieroglyph to be pronounced Heru or Horu , which was Latinized into Horus and was the name of the Egyptian deity of the sun and the sky, who was the son of Osiris and was often represented as a hawk, prince of the sky. Later on, the measure of time began to assume a rudimentary technical connotation and to benefit from the use of more or less ingenious devices. Various kinds of clocks developed to relatively high levels of accuracy through the Egyptian, Assyrian, Greek and Roman civilizations.
    [Show full text]
  • Computer-Aided Design and Kinematic Simulation of Huygens's
    applied sciences Article Computer-Aided Design and Kinematic Simulation of Huygens’s Pendulum Clock Gloria Del Río-Cidoncha 1, José Ignacio Rojas-Sola 2,* and Francisco Javier González-Cabanes 3 1 Department of Engineering Graphics, University of Seville, 41092 Seville, Spain; [email protected] 2 Department of Engineering Graphics, Design, and Projects, University of Jaen, 23071 Jaen, Spain 3 University of Seville, 41092 Seville, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-953-212452 Received: 25 November 2019; Accepted: 9 January 2020; Published: 10 January 2020 Abstract: This article presents both the three-dimensional modelling of the isochronous pendulum clock and the simulation of its movement, as designed by the Dutch physicist, mathematician, and astronomer Christiaan Huygens, and published in 1673. This invention was chosen for this research not only due to the major technological advance that it represented as the first reliable meter of time, but also for its historical interest, since this timepiece embodied the theory of pendular movement enunciated by Huygens, which remains in force today. This 3D modelling is based on the information provided in the only plan of assembly found as an illustration in the book Horologium Oscillatorium, whereby each of its pieces has been sized and modelled, its final assembly has been carried out, and its operation has been correctly verified by means of CATIA V5 software. Likewise, the kinematic simulation of the pendulum has been carried out, following the approximation of the string by a simple chain of seven links as a composite pendulum. The results have demonstrated the exactitude of the clock.
    [Show full text]
  • ALBERT VAN HELDEN + HUYGENS’S RING CASSINI’S DIVISION O & O SATURN’S CHILDREN
    _ ALBERT VAN HELDEN + HUYGENS’S RING CASSINI’S DIVISION o & o SATURN’S CHILDREN )0g-_ DIBNER LIBRARY LECTURE , HUYGENS’S RING, CASSINI’S DIVISION & SATURN’S CHILDREN c !@ _+++++++++ l ++++++++++ _) _) _) _) _)HUYGENS’S RING, _)CASSINI’S DIVISION _) _)& _)SATURN’S CHILDREN _) _) _)DDDDD _) _) _)Albert van Helden _) _) _) , _) _) _)_ _) _) _) _) _) · _) _) _) ; {(((((((((QW(((((((((} , 20013–7012 Text Copyright ©2006 Albert van Helden. All rights reserved. A H is Professor Emeritus at Rice University and the Univer- HUYGENS’S RING, CASSINI’S DIVISION sity of Utrecht, Netherlands, where he resides and teaches on a regular basis. He received his B.S and M.S. from Stevens Institute of Technology, M.A. from the AND SATURN’S CHILDREN University of Michigan and Ph.D. from Imperial College, University of London. Van Helden is a renowned author who has published respected books and arti- cles about the history of science, including the translation of Galileo’s “Sidereus Nuncius” into English. He has numerous periodical contributions to his credit and has served on the editorial boards of Air and Space, 1990-present; Journal for the History of Astronomy, 1988-present; Isis, 1989–1994; and Tractrix, 1989–1995. During his tenure at Rice University (1970–2001), van Helden was instrumental in establishing the “Galileo Project,”a Web-based source of information on the life and work of Galileo Galilei and the science of his time. A native of the Netherlands, Professor van Helden returned to his homeland in 2001 to join the faculty of Utrecht University.
    [Show full text]
  • 1 Functions, Derivatives, and Notation 2 Remarks on Leibniz Notation
    ORDINARY DIFFERENTIAL EQUATIONS MATH 241 SPRING 2019 LECTURE NOTES M. P. COHEN CARLETON COLLEGE 1 Functions, Derivatives, and Notation A function, informally, is an input-output correspondence between values in a domain or input space, and values in a codomain or output space. When studying a particular function in this course, our domain will always be either a subset of the set of all real numbers, always denoted R, or a subset of n-dimensional Euclidean space, always denoted Rn. Formally, Rn is the set of all ordered n-tuples (x1; x2; :::; xn) where each of x1; x2; :::; xn is a real number. Our codomain will always be R, i.e. our functions under consideration will be real-valued. We will typically functions in two ways. If we wish to highlight the variable or input parameter, we will write a function using first a letter which represents the function, followed by one or more letters in parentheses which represent input variables. For example, we write f(x) or y(t) or F (x; y). In the first two examples above, we implicitly assume that the variables x and t vary over all possible inputs in the domain R, while in the third example we assume (x; y)p varies over all possible inputs in the domain R2. For some specific examples of functions, e.g. f(x) = x − 5, we assume that the domain includesp only real numbers x for which it makes sense to plug x into the formula, i.e., the domain of f(x) = x − 5 is just the interval [5; 1).
    [Show full text]
  • Precalculus Huygens Quiz Answers
    Chapter Two Math History for Precalculus Christiaan Huygens 1. When did Huygens (HIE genz) live? 1629–1695 2. Where was he from? Holland (The Hague) 3. What was his marital status? lifelong bachelor 4. What was his most famous work and when was it published? Horologium Oscillatorium, 1673 This famous work discussed pendulum clocks. Pendulum motion is periodic and is described using trigonometric functions. The most important mathematical result in this work involves the study of a curve—the cycloid. He discovered a very important property of this curve. In later works he studied other important mathematical curves and their properties. Describe each curve below and explain what Huygens discovered about it. Curves Discovery 5. Cycloid Determined by a point on a It is the tautochrone (time needed for wheel as it rolls along the a ball to roll to lowest point is equal (level) ground regardless of starting point). 6. Catenary Determined by suspending a It is not a parabola. cable from two points 7. Cissoid Determined by secant It is rectifiable (found arc length segments of a circle formula). 8. Which of the three previous curves are functions? cycloid, catenary 9. Huygens wrote on the paraboloid, a surface formed by revolving a parabola about its axis. What did he discover? Its surface area 10. Huygens also wrote the first treatise on probability (following the correspondence of Pascal and Fermat). What concept did he contribute to this subject? expectation 11. Name some of his famous scientific theories. rings of Saturn (1654–1656, using his own improved telescope lenses); pendulum clocks (1658); wave theory of light (1678, 1690) 12.
    [Show full text]
  • The Cycloid: Tangents, Velocity Vector, Area, and Arc Length
    The Cycloid: Tangents, Velocity Vector, Area, and Arc Length [This is Chapter 2, section 13 of Historical Perspectives for the Reform of Mathematics Curriculum: Geometric Curve Drawing Devices and their Role in the Transition to an Algebraic Description of Functions; http://www.quadrivium.info/mathhistory/CurveDrawingDevices.pdf Interactive applets for the figures can also be found at Mathematical Intentions.] The circle is the curve with which we all have the most experience. It is an ancient symbol and a cultural icon in most human societies. It is also the one curve whose area, tangents, and arclengths are discussed in our mathematics curriculum without the use of calculus, and indeed long before students approach calculus. This discussion can take place, because most people have a lot of experience with circles, and know several ways to generate them. Pascal thought that, second only to the circle, the curve that he saw most in daily life was the cycloid (Bishop, 1936). Perhaps the large and slowly moving carriage wheels of the seventeenth century were more easily observed than those of our modern automobile, but the cycloid is still a curve that is readily generated and one in which many students of all ages easily take an interest. In a variety of settings, when I have mentioned, for example, the path of an ant riding on the side of a bicycle tire, some immediate interest has been sparked (see Figure 2.13a). Figure 2.13a The cycloid played an important role in the thinking of the seventeenth century. It was used in architecture and engineering (e.g.
    [Show full text]
  • The Pope's Rhinoceros and Quantum Mechanics
    Bowling Green State University ScholarWorks@BGSU Honors Projects Honors College Spring 4-30-2018 The Pope's Rhinoceros and Quantum Mechanics Michael Gulas [email protected] Follow this and additional works at: https://scholarworks.bgsu.edu/honorsprojects Part of the Mathematics Commons, Ordinary Differential Equations and Applied Dynamics Commons, Other Applied Mathematics Commons, Partial Differential Equations Commons, and the Physics Commons Repository Citation Gulas, Michael, "The Pope's Rhinoceros and Quantum Mechanics" (2018). Honors Projects. 343. https://scholarworks.bgsu.edu/honorsprojects/343 This work is brought to you for free and open access by the Honors College at ScholarWorks@BGSU. It has been accepted for inclusion in Honors Projects by an authorized administrator of ScholarWorks@BGSU. The Pope’s Rhinoceros and Quantum Mechanics Michael Gulas Honors Project Submitted to the Honors College at Bowling Green State University in partial fulfillment of the requirements for graduation with University Honors May 2018 Dr. Steven Seubert Dept. of Mathematics and Statistics, Advisor Dr. Marco Nardone Dept. of Physics and Astronomy, Advisor Contents 1 Abstract 5 2 Classical Mechanics7 2.1 Brachistochrone....................................... 7 2.2 Laplace Transforms..................................... 10 2.2.1 Convolution..................................... 14 2.2.2 Laplace Transform Table.............................. 15 2.2.3 Inverse Laplace Transforms ............................ 15 2.3 Solving Differential Equations Using Laplace
    [Show full text]
  • The Tautochrone/Brachistochrone Problems: How to Make the Period of a Pendulum Independent of Its Amplitude
    The Tautochrone/Brachistochrone Problems: How to make the Period of a Pendulum independent of its Amplitude Tatsu Takeuchi∗ Department of Physics, Virginia Tech, Blacksburg VA 24061, USA (Dated: October 12, 2019) Demo presentation at the 2019 Fall Meeting of the Chesapeake Section of the American Associa- tion of Physics Teachers (CSAAPT). I. THE TAUTOCHRONE A. The Period of a Simple Pendulum In introductory physics, we teach our students that a simple pendulum is a harmonic oscillator, and that its angular frequency ! and period T are given by s rg 2π ` ! = ;T = = 2π ; (1) ` ! g where ` is the length of the pendulum. This, of course, is not quite true. The period actually depends on the amplitude of the pendulum's swing. 1. The Small-Angle Approximation Recall that the equation of motion for a simple pendulum is d2θ g = − sin θ : (2) dt2 ` (Note that the equation of motion of a mass sliding frictionlessly along a semi-circular track of radius ` is the same. See FIG. 1.) FIG. 1. The motion of the bob of a simple pendulum (left) is the same as that of a mass sliding frictionlessly along a semi-circular track (right). The tension in the string (left) is simply replaced by the normal force from the track (right). ∗ [email protected] CSAAPT 2019 Fall Meeting Demo { Tatsu Takeuchi, Virginia Tech Department of Physics 2 We need to make the small-angle approximation sin θ ≈ θ ; (3) to render the equation into harmonic oscillator form: d2θ rg ≈ −!2θ ; ! = ; (4) dt2 ` so that it can be solved to yield θ(t) ≈ A sin(!t) ; (5) where we have assumed that pendulum bob is at θ = 0 at time t = 0.
    [Show full text]
  • The Cycloid Scott Morrison
    The cycloid Scott Morrison “The time has come”, the old man said, “to talk of many things: Of tangents, cusps and evolutes, of curves and rolling rings, and why the cycloid’s tautochrone, and pendulums on strings.” October 1997 1 Everyone is well aware of the fact that pendulums are used to keep time in old clocks, and most would be aware that this is because even as the pendu- lum loses energy, and winds down, it still keeps time fairly well. It should be clear from the outset that a pendulum is basically an object moving back and forth tracing out a circle; hence, we can ignore the string or shaft, or whatever, that supports the bob, and only consider the circular motion of the bob, driven by gravity. It’s important to notice now that the angle the tangent to the circle makes with the horizontal is the same as the angle the line from the bob to the centre makes with the vertical. The force on the bob at any moment is propor- tional to the sine of the angle at which the bob is currently moving. The net force is also directed perpendicular to the string, that is, in the instantaneous direction of motion. Because this force only changes the angle of the bob, and not the radius of the movement (a pendulum bob is always the same distance from its fixed point), we can write: θθ&& ∝sin Now, if θ is always small, which means the pendulum isn’t moving much, then sinθθ≈. This is very useful, as it lets us claim: θθ&& ∝ which tells us we have simple harmonic motion going on.
    [Show full text]
  • Unity Via Diversity 81
    Unity via diversity 81 Unity via diversity Unity via diversity is a concept whose main idea is that every entity could be examined by different point of views. Many sources name this conception as interdisciplinarity . The mystery of interdisciplinarity is revealed when people realize that there is only one discipline! The division into multiple disciplines (or subjects) is just the human way to divide-and-understand Nature. Demonstrations of how informatics links real life and mathematics can be found everywhere. Let’s start with the bicycle – a well-know object liked by most students. Bicycles have light reflectors for safety reasons. Some of the reflectors are attached sideway on the wheels. Wheel reflector Reflectors notify approaching vehicles that there is a bicycle moving along or across the road. Even if the conditions prevent the driver from seeing the bicycle, the reflector is a sufficient indicator if the bicycle is moving or not, is close or far, is along the way or across it. Curve of the reflector of a rolling wheel When lit during the night, the wheel’s side reflectors create a beautiful luminous curve – a trochoid . 82 Appendix to Chapter 5 A trochoid curve is the locus of a fixed point as a circle rolls without slipping along a straight line. Depending on the position of the point a trochoid could be further classified as curtate cycloid (the point is internal to the circle), cycloid (the point is on the circle), and prolate cycloid (the point is outside the circle). Cycloid, curtate cycloid and prolate cycloid An interesting activity during the study of trochoids is to draw them using software tools.
    [Show full text]