<<

Report

of the

Tomato Cooperative Number 52 – September 2002

University of Florida Gulf Coast Research and Education Center 5007 60th Street East Bradenton, FL 34203 USA

Foreword

The Tomato Genetics Cooperative, initiated in 1951, is a group of researchers who share an interest in tomato genetics, and who have organized informally for the purpose of exchanging information, germplasm, and genetic stocks. The Report of the Tomato Genetics Cooperative is published annually and contains reports of work in progress by members, announcements and updates on linkage maps and materials available. The research reports include work on diverse topics such as new traits or mutants isolated, new cultivars or germplasm developed, interspecific transfer of traits, studies of function or control or tissue culture. Relevant work on other Solanaceous species is encouraged as well.

Membership currently stands at approximately 200 from 34 countries. Requests for membership (per year) US$15 (plus $5 shipping if international)--should be sent to Dr. J.W. Scott, Gulf Coast Research and Education Center, 5007 60th Street East, Bradenton, FL 34203, USA, [email protected]. Please send only checks or money orders. Make checks payable to the University of Florida. We are sorry but we are NOT able to accept cash, wire transfers or credit cards.

Cover photo provided by Roger Chetelat: With Charley Rick’s passing we have lost one of the great pioneers of tomato genetics who was instrumental in forming the Tomato Genetics Cooperative. Below is an obituary written by his son highlighting some aspects of his life and career. It is followed by an article written by Dick Robinson in 1982 (TGC 32:1-2) that outlines the early history of the Tomato Genetics Cooperative and Dr. Rick’s critical role in its development. I know everyone involved in tomato genetics and/or breeding has admiration and respect for Charley because of his wisdom, accomplishments, and his friendly demeanor. The main reason I have taken on the editorship of the TGC was because I considered it an honor to carry on one of Charley’s legacies.

- J.W. Scott

Rick taught and mentored generations of U.S. and international scientists in . His students went on to lead major research institutes, serve as ministers of agriculture and other governmental roles, and become faculty at universities on every continent. They have worked on studying and improving many major crops, including rice, grapes, potatoes, and peppers. His children continued in academics; his daughter Susan Baldi teaches anatomy and physiology at Santa Rosa Junior College, and his son John is an archaeologist at Stanford. Three grandchildren and a great grandchild were his greatest joys in his last years.

TGC HISTORY Reprinted from TGC Report No. 32, 1982

A HISTORY OF THE TOMATO GENETICS COOPERATIVE

R.W. Robinson

Two graduate students at the University of California at Berkeley, Don Barton and Allan Burdick, met in the early summer of 1949 with Charley Rick, geneticist at the Davis campus, for one of their periodic stimulating discussions on tomato genetics. Their doctoral research on cytogenetics of the tomato had given them an appreciation for the value of an organization to exchange information on tomato genetic research, stimulate linkage studies, and preserve and distribute germplasm, and they urged Rick to consider founding such an organization. The proposal was further discussed by Burdick, Barton, Rick and others with a common interest in tomato genetics during a scientific meeting in 1950, probably at the annual meeting of Genetics Society of America at Columbus, Ohio. The proposal was received with so much support and enthusiasm that Rick consented to be Chairman of the Tomato Genetics Cooperative, which was founded in 1950.

The first Report of the TGC was issued in 1951 by C. M. Rick, who served as editor from then until 1981. The membership of the TGC has grown from 87 in 1951 to 354 thirty years later. It is largely through the efforts of C. M. Rick that the TGC has become such a useful and renowned publication.

The activities of the TGC are directed by the Coordinating Committee. Members of the original Coordinating Committee were C. F. Andrus, D. W. Barton, W. H. Frazier, H. M. Munger, and, as chairman, C. M. Rick. Rick continued to serve as chairman of the Coordinating Committee for 32 years. Others who have served on the Coordinating Committee include A. B. Burdick, L. Butler, W. S. Barham, G. B. Reynard, A. L. Harrison, R. W. Robinson, M. L. Tomes, S. Honma, M. A. Stevens, and E. C. Tigchelaar.

It soon became apparent to the Coordinating Committee that rules were needed for the tomato. The Coordinating Committee appointed a committee on nomenclature, consisting of D. W. Barton as chairman, L. Butler and J. A. Jenkins. The Nomenclature Committee formulated nomenclature rules for tomato mutants, , and chromosomal aberrations. The original nomenclature rules were published in TGC 3, and supplemental rules were given in TGC 4, 9, 17, 20, and 23. The Gene List Committee was given the assignment of compiling and publishing lists of known tomato and revising gene symbols when necessary to conform with nomenclature rules. The first gene list, prepared for TGC 4 by chairman L. Butler, D. W. Barton, P. A. Young, and C. M. Rick, included 108 tomato genes. The gene list more than doubled in the next five years; 172 additional genes were included in the list in TGC 9. The gene list has continued to expand, with 99 new genes added to the list in TGC 12, 146 for TGC 17, 88 for TGC 21, 51 for TGC 23, and 93 additional genes for the list in TGC 29.

The number of tomato genes has grown so large in recent years that there was a need to categorize them, to classify them into different groups for the convenience of researchers interested in locating a particular kind of mutant. The gene list committee, therefore, published in TGC 21 a classification, according to 21 phenotype groups, all of genes known at that time.

The first gene lists for the tomato included sources of seed for each gene. Carl Clayberg and later Dick Robinson served as coordinators of the stock-keeping program, assigning volunteers to maintain and distribute seed of each mutant. This system worked well for many years, but became cumbersome as the number of known genes greatly increased and some former stock-keepers retired.

The Tomato Genetics Stock Center was established by C. M. Rick in 1976 to solve the problem of preserving and making available germplasm for tomato researchers. The Stock Center published in TGC Reports 27 and 30 lists of accessions of Lycopersicon and related Solanum species being maintained. TGC Reports 28 and 31 included lists of mutants in the collection of the Tomato Genetics Stock Center. Lists in TGC 29 reported other tomato germplasm maintained by the Stock Center, including allozyme variants, multiple gene stocks, linkage testers, translocations, tetraploids, trisomics, and cultivars.

For many years, Len Butler coordinated linkage investigations by TGC members. To prevent duplication in research and to ensure that gene mapping was done with each of the 12 chromosomes of the tomato, different chromosomes were assigned to different investigators for linkage testing. In the linkage map published by Rick and Clayberg in TGC 5, 47 genes were mapped on 11 chromosomes. The linkage map prepared by C. M. Rick for TGC 27 included 288 genes, with each of the 12 chromosomes mapped for marker genes and position of the centromere.

No history of the TGC would be complete without giving recognition to Dora Hunt, who has had so much to do with editing the Report, helping with membership arrangements, and other work for the TGC. Many others have also contributed to the success of the Tomato Genetics Cooperative, but no one else to the extent of C. M. Rick. It is largely due to his prodigious efforts that the TGC has prospered and the tomato has become the pre-eminent plant species for cytogenetic research. It is a pleasure, on the eve of his retirement, to express gratitude to Charley Rick for the research, service, and inspiration he has provided for tomato geneticists. Professor Charles M. Rick, 1915-2002 Written by his son, John Rick (Stanford Univ., Dept. of Anthropology)

Charles M. Rick, Jr., Professor Emeritus of the University of California, Davis and the world's foremost authority on tomato genetics, passed away peacefully in the early morning hours of Sunday, May 5th. Known worldwide for his major scientific contributions as a plant geneticist and botanist, the majority of Charlie Rick’s career focused on the genetic variability of the tomato, especially the wild tomato species distributed widely in western South America and the Galapagos Islands. In addition to the thorough studies of tomato genes and chromosomes, he organized numerous plant-collecting expeditions to the Andes to sample the wide range of genetic variation found in the wild species, but missing from the modern domestic tomato. Crisscrossing this rugged terrain, he managed to document and preserve an amazing diversity of tomato varieties with qualities such as disease resistance that can be bred back into the tomato we know. In his later years, Rick established and directed the C. M. Rick Tomato Genetics Resource Center at the Davis campus of the University of California, which serves as a permanent bank of genetic material for the tomato and other members of the nightshade family. This center distributes seeds to scientists world-wide, and its holdings include genetic varieties that have become extinct in the wild.

Born in Reading, Pennsylvania in 1915, Rick grew up working in orchards and enjoying nature study in the Boy Scouts. He took his B.S. degree at Penn State, where he met and married the late Martha Overholts, daughter of a well-known faculty expert on mushrooms. Together they moved to Cambridge, Massachusetts where he earned his Ph.D. at Harvard in 1940, concentrating on and plant genetics. He had previously established California connections by working with the Burpee seed company in Lompoc, and as soon as he finished at Harvard he joined the faculty of the Vegetable Crops Department at Davis, where he remained for his career of more than 60 years. He taught temporarily at other universities throughout the world, and remained active in the field of plant genetics until the age of 85, when health difficulties interfered with greenhouse and lab work. In the course of his career, Rick accumulated many honors, including membership in the National Academy of Sciences, and recognition from dozens of universities and learned societies. He received the Alexander von Humboldt Award, and was also the first recipient of the Filipo Maseri Florio World Prize in Agriculture in 1997.

An excellent lecturer, Rick was much sought after by universities who valued both his rigorous science and his humor and flair for storytelling. A perennial favorite involved his frustrations in trying to germinate wild tomato seeds collected from the Galapagos Islands. The emerging mystery of how the plants reproduce in the wild was only resolved after the seeds were ‘processed’ by passing through the digestive track of a Galapagos tortoise, resulting in vigorous seedlings. Much of Rick’s most fascinating work came from a firsthand perception of the plants’ roles in local environments and their evolving reproductive strategies. Over time, Rick’s work on tomato genetics established this plant as an important model organism in the era of genomics.

TABLE OF CONTENTS TGC REPORT 52, 2002 ______Table of Contents

Foreword………………………………………………………………………………………………...1 Announcements………………………………………………………………………………………..7

Research Reports Inheritance of resistance to Oidium lycopersici and molecular characterization of resistance gene in Lycopersicon esculentum var. cerasiforme Ambrico, A., Longo, O., Schiavone, D., and Ciccarese, F. …………………………….11 Evaluation of tomato breeding material for resistance against late blight pathogen Bagirova, S.F., Ignatova, S.I., Tereshonkova, T.A., and Gorshkova, N.S. ……………14 Some biochemical and physiological characteristics of transgenic tomato Lycopersicon esculentum Mill. cv. Ventura Mapelli, S., Rekoslavskaya, N.I., Salyaev, R. K., Kopytina, T.V., and Ostanina, Y.V. ..18 Introgression of resistance against Mi-1-virulent Meloidogyne spp. from Lycopersicon peruvianum into L. esculentum Moretti, A., Bongiovanni, M., Castagnone-Sereno, P., and Caranta, C. ………………21 Differences in susceptibility of pruning wounds and leaves to infection by Botrytis cinerea among wild tomato accessions Nicot, P.C., Moretti, A., Romiti, C., Bardin, M., Caranta, C., and Ferrière, H. ………..24 A rise of productivity of transgenic tomato (Lycopersicon esculentum Mill.) by transfer of the gene iaglu from corn Rekoslavskaya, N.I., Salyaev, R.K., Mapelli, S., Truchin, A.A., and Gamanetz, L.V. ..27 A new allele at the potato leaf locus derived from L. chilense accession LA 1932 is discovered in a geminivirus resistance project Scott, J. W. …………………………………………………………………………………..31

Varietal Pedigrees Amalia, Mariela Alvarez, M., Moya, C., Domini, M.E., and Arzuaga, J. ………………………………….35 Ohio OX150 Hybrid Processing Tomato Francis, D.M., Berry, S.Z., Aldrich, T., Scaife, K., and Bash, W. ….……………………36 Fla. 7771, a medium-large, heat-tolerant, jointless-pedicel tomato Scott, J.W. …………………………………………………………………………………….38 ‘Micro-Tina’ and ‘Micro-Gemma’ miniature dwarf tomatoes Scott, J.W., Harbaugh, B.K., and Baldwin, E.A. ………………………………………….39 Fla. 7775 and Fla. 7781: Tomato breeding lines resistant to fusarium crown and root rot. Scott, J.W. and Jones, J.P. ………………………………………………………………40

Stock Lists Revised List of Monogenic Stocks Chetelat, R. T. ……………………………………………………………………………….41

Membership List...……………………………………………………………………………………63 Author Index ………………………………………………………………………………………….69

THIS PAGE IS BLANK IN THE ORIGINAL DOCUMENT

ANNOUNCEMENTS TGC REPORT 52, 2002 ______From the editor

Regards to the TGC membership from your new editor! First, I would like to give credit for this report to Ms. Gail Cameron Somodi who has done a large part of the work. Gail (MS in Plant Pathology) has worked with me for more years than she would care to count in our bacterial resistance program, and also has superior editorial and organizational skills. If she was not working for me last year I may well have not taken on the editorship. I want to also thank former managing editor Theresa Fulton. I cannot think of anyone else I would rather take over from. She had things in good order to begin with, and every time we had a question she was quick to respond. Thanks also to all the contributors of reports for volume 52 because without you none of this is possible. Finally, thanks for everyone’s patience with us during the transition. Next year should be more routine.

The TGC Website has moved and there have been some changes in it. We will try to update it periodically to keep you abreast of current information and will be adding links to other relevant tomato genetics addresses. If you have any links to suggest, send me an email. Many of the old TGC issues are available at the website thanks to the scanning of Theresa Fulton, Steve Tanksley, and Co. We hope to keep adding more of them until all are available. The policy will be to wait a year to put the latest issue on-line, so volume 52 will be on-line in September, 2003. The new web address is:

http://gcrec.ifas.ufl.edu/tgc

There are no longer Associate Editors. I have been trying to set up a Gene List Committee and the people who have agreed to serve are listed below. The main function of this committee will be to approve the naming and symbols of new genes for integration into the tomato gene list. If you are publishing a paper where you have evidence for a new gene, please bring the paper to the attention of a committee member and the committee will officially evaluate your evidence and if approved, it will be listed in the next TGC report. You can also name genes directly in a TGC paper, of course, and the committee will consider them for approval.

Gene List Committee: Jay Scott, University of Florida, Bradenton, FL USA Roger Chetelat, TGRC, UC Davis, Davis, CA USA Mathilde Causse, INRA, Montfavet Cedex, France Pim Lindhout, Wageningen Agricultural Univ., Wageningen, The Netherlands Mikel Stevens, BYU, Provo UT, USA

7 ANNOUNCEMENTS TGC REPORT 52, 2002 ______

Managing Editor: Jay W. Scott Gulf Coast Research & Education Center 5007 60th Street East Bradenton, FL 34203 941-751-7636 ext. 241 e-mail: [email protected]

Tomato Breeders Roundtable meeting

The next meeting will be held in Park City, Utah, USA from 27-30 April, 2003. For information about the meeting contact: Mikel R. Stevens Department of Agronomy and Horticulture 287 WIDB Brigham Young University Provo, UT, 84602 801-378-4032 fax 801-378-2203 e-mail: [email protected]

First International Symposium on Tomato Diseases

This meeting will take place from 27-31 October, 2003 at Kusadasi, Turkey. To find out more about the conference and receive meeting announcements see the website below: http://plantdoctor.ifas.ufl.edu/istd.html

Announcement: USDA Funding for Tomato Germplasm Evaluation

Funding will again be available from the USDA, ARS in FY 2003 for evaluation of tomato germplasm. Evaluation funding will be used on germplasm maintained in or destined for the National Plant Germplasm System (NPGS). Relevant NPGS germplasm includes the tomato collection maintained by USDA’s Plant Genetic Resources Unit in Geneva, New York and the collection at the University of California, C.M. Rick Tomato Genetics Resource Center, Davis, California. Proposal guidelines are noted below.

All proposals will be evaluated on the need for evaluation data, national and/or regional interest in the problem, scientific soundness and feasibility of the proposal, the likelihood of success, germplasm to be screened, and the likelihood that data will be entered into NPGS databases and freely shared with the user community. Proposals will be reviewed by the Tomato Crop Germplasm Committee (CGC) and applicable ad hoc reviewers and ranked in priority order for funding. Funding for successful proposals has ranged from $5,000 to

8 ANNOUNCEMENTS TGC REPORT 52, 2002 ______$30,000. All proposals and CGC prioritization are forwarded to USDA for a final decision on funding. Multiple year projects are welcomed, but funding must be applied for each year and is subject to a progress review.

STANDARD EVALUATION PROPOSAL FORMAT FOR THE NPGS

I. Project title and name, title of evaluators.

II. Significance of the proposal to U.S. agriculture.

III. Outline of specific research to be conducted including the time frame involved – include the number of accessions to be evaluated.

IV. Funding requested, broken down item by item (no overhead charges are permitted).

V. Personnel: a. What type of personnel will be used to perform the research (e.g. ARS, State, or industry scientist; postdoc; grad student, or other temporary help). b. Where will personnel work and under whose supervision.

VI. Approximate resources contributed to the project by the cooperating institution (e.g. facilities, equipment, and funds for salaries).

The crop curator will enter evaluation data obtained into NPGS databases. Funding for data entry should be considered when developing proposals. Evaluation proposals covering several descriptors, such as several diseases, should give the cost and time frame for each descriptor along with the combined cost. Funding may only be available to cover one of the projects.

Submission deadline: Electronic submission of proposals is encouraged. Please submit electronic files (MS Word or WordPerfect) or 10 copies of your proposals by October 15, 2002 to:

[email protected]

John R. Stommel, Chair Tomato Crop Germplasm Committee USDA-ARS, Vegetable Laboratory 10300 Baltimore Ave. Bldg. 010A, BARC-West Beltsville, MD 20705

9

THIS PAGE IS BLANK IN THE ORIGINAL DOCUMENT

RESEARCH REPORTS TGC REPORT 52, 2002 ______

Inheritance of resistance to Oidium lycopersici and molecular characterization of resistance gene in Lycopersicon esculentum var. cerasiforme

Ambrico, A., Longo, O., Schiavone, D., and Ciccarese, F. Department of Biology and Plant Pathology - University of Bari, Italy Via G. Amendola 165/A, 70126 Bari, Italy, E-mail: [email protected]

Introduction Powdery mildew caused by Oidium lycopersici is a serious disease of glasshouse-grown tomato. The use of resistant cultivars is an economical and ecologically sustainable method of disease control. A resistance source, incompletely dominant (Ol-1), was found in Lycopersicon hirsutum (Lindhout and Pet, 1990). In screenings for powdery mildew resistance on numerous accessions of Lycopersicon species, supplied by the Tomato Genetics Cooperative, two plants of accession LA-1230 of L. esculentum var. cerasiforme, showed no symptoms of disease. One symptomless plant was selfed and progeny (designated LC-95) were resistant. In this paper, results of research aimed at characterization of a new source of resistance to powdery mildew are reported. Furthermore random amplified polymorphic DNA (RAPD) markers linked to resistance gene are screened.

Materials and Methods Tests on powdery mildew resistance were carried out in a glasshouse at 23±2°C and at 80±5% relative humidity. For studies on inheritance of resistance identified in L. esculentum var. cerasiforme, a plan of crosses and self-fertilization was set up. The tomato cultivar ‘Super Marmande’ as susceptible parent and LC- 95 line as resistant were used. The progenies of F1, F2 and backcrosses with the resistant parent (BC-R) and with susceptible parent (BC-S) were submitted to artificial inoculation with O. lycopersici. About 200 plants were used for all generations. Inoculations were carried out by dispersing pathogen conidia, removed from heavily infected tomato plants, on the leaves of tested plants at the six-leaf stage. Powdery mildew symptoms were evaluated 20 days after artificial inoculations considering the percentage of leaf area covered by colonies of O. lycopersici. For molecular characterization 240 different primers were tested. RAPD analysis on the F2 generation was performed according to bulked segregant analysis (Michelmore et al., 1991). Resistant (R) and susceptible (S) bulks were tested using DNA extracted from ten healthy (resistant) and ten diseased F2 plants which were seen to be homozygous for the powdery mildew resistant gene after segregation analysis on F3 plants.

Results and Discussion All plants of ‘Super Marmande’ cultivar were highly infected. Plants of LC- 95 line were resistant. F1 progeny was susceptible and F2 progeny segregated resistant/susceptible plants in a ratio of 1:3. All plants of BC-S were susceptible while the progeny of BC-R segregated in ratio of 1:1 (Tab. 1). The segregation ratios suggested that resistance to O. lycopersici in LC-95 line of L. esculentum var. cerasiforme is conferred by a single recessive gene designed ol-2. The screening on DNA extracted from parents allowed us to characterize only 45

11 RESEARCH REPORTS TGC REPORT 52, 2002 ______

polymorphic primers. On bulks, primer OPU3 (5’-CTATGCCGAC-3’ with a molecular weight of 2979 bp) showed polymorphism between bulks. With OPU3 primer, a DNA fragment of 1500 bp (designed OPU3 1500) was amplified and by agarose gel electrophoresis, a well defined band present in the susceptible bulk but not in the resistant bulk was observed (Fig. 1). The OPU3 marker was closely linked with susceptibility to O. lycopersici.

Literature cited Lindhout P. and Pet G., 1990. Resistance to Oidium lycopersici in Lycopersicon species. Tomato Genetics Cooperative Report 40, 19. Michelmore R. W., Paran I., Kesseli R. V., 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences USA 88: 9828-9832.

Table 1. - Observed segregation for powdery mildew resistance of LC-95 line of Lycopersicon esculentum var. cerasiforme and goodness of fit test.

Number of plants Expectedb Pedigree χ2 P Ra S ratio LC-95 72 0 72:0 - - Super Marmande 0 97 0:97 - -

F1 0 96 0:96 - -

F2 30 70 25:75 1.33 0.25-0.30 BC-R 49 51 50:50 0.04 0.80-0.90 BC-S 0 100 0:100 - - aR =resistant and S = susceptible bAssuming a single recessive gene for resistance

12 RESEARCH REPORTS TGC REPORT 52, 2002 ______

Figure 1. Agarose gel showing the RAPD pattern obtained with the OPU3 1500 primer linked to susceptibility to Oidium lycopersici in tomato.

13 RESEARCH REPORTS TGC REPORT 52, 2002 ______

Evaluation of tomato breeding material for resistance against late blight pathogen

1Bagirova, S.F., 2Ignatova, S.I., 2Tereshonkova, T.A., and 2Gorshkova, N.S. 1Department of Mycology and Algology, Moscow State University, Moscow 119899, Russia, e-mail: [email protected] 2All-Russian Research Institute for Vegetable Crops, Mitishi-18, Moscow Region 141018, Russia, e-mail: [email protected]

Key words: disease resistance, evaluation, late blight, Phytophthora infestans, , population structure, tomato

Abstract In three late blight epidemic years (1998-2000) selected tomato breeding material were evaluated under natural conditions of a severe epiphytotic in greenhouses in the Moscow Region. More than 1500 tomato lines or hybrids were screened for resistance against a new more aggressive population of the tomato late blight pathogen. Eighteen lines were created using different wild tomato species as resistant sources and these were found to show the greatest resistance to the late blight. Simultaneously, Phytophthora strains were collected from diseased plants and studied. High polymorphism of the new sexual population of the late blight pathogen that was similar to polymorphism of the Mexican populations was revealed. Our data concerning population diversity suggests that the monitoring of P. infestans in the Moscow Region is a good model for study of different aspects of population biology of P. infestans (the spread of new pathotypes, role of oospores in disease development, interrelationships between the tomato and potato populations) and for reevaluation of plant breeding material.

Introduction The most severe plant disease in Russia is late blight. Tomato crop losses in epidemic years in the Moscow Region can be greater than 80%. Russian populations of Phytophthora infestans, the causal agent of the late blight, are characterized by high polymorphism and variability. During the last 15 years there has been a change of population structure and increase of population size of strains adopted to parasitize tomatoes (Dyakov Y.T., Rybakova I.N., Dolgova A.V., Bagirova S.F., 1994). Marked differences between the populations attacking tomatoes and potatoes were found (Bagirova S.F., An Dzan Li, Dyakov Y.T., 1998). Until now only one clone has predominated. Tomato late blight has not been considered such a big problem in the Moscow Region. Variability of new populations is expressed in differences between strains in the mating types, virulence, resistance to fungicides, isozymes, mitochondrial and nuclear DNA (Vorobeva Y.V., Gridnev V.V., Bashaeva E.G., 1991, Gorbunova E. V., Bagirova S.F., Dolgova A.V., Dyakov Y.T., 1989; Maleeva Yu.V., Naumoff S.P., Yatsentiuk S.P., Dolgova A.V., Kolesnikov A.A., 1999). With the spread of new strains, the disease epidemics appeared earlier and developed rapidly. Abundant oospores are formed in foliage, stem and fruit tissue and are able to overcome cold Moscow winters (Bagirova S.F., Dyakov Y.T, 1998). The tomato cultivars that were previously characterized by moderate resistance are now very susceptible (Ignatova S.I., Gorshkova N.S., Bagirova S.F., 1999). Registered changes of population composition are similar to replacement of ”old” genotypes by “new”

14 RESEARCH REPORTS TGC REPORT 52, 2002 ______

ones that are detected in West Europe and North America (Fry W., Goodwin S., Matuszak J. et al, 1991; Drenth A., Turkensteen L., Govers F., 1993; Day J.P., Shattock R.C., 1997). This changed situation requires reevaluation of tomato patterns for resistance to the new populations of the late blight pathogen. Our study was aimed at evaluating tomato breeding material in naturally occurring epidemics in the Moscow Region.

Materials and methods During three epidemic years (1998–2000) we screened for resistance to the late blight tomato collection including more then 1500 tomato accessions of interspecies hybrids and selected lines. This plant material was obtained from VNIO (All-Russian Institute for Vegetable Crops, Mitichi, Moscow Region, Russia) and VIR (Vavilov Plant Research Institute, St. Petersburg, Russia). Evaluation was carried out in greenhouses of VNIO in Bukovo, the Moscow Region.

The susceptible control genotype was a commercial hybrid widely grown in Russia, provided by VNIO. The resistant control was West Virginia 63. The accessions were supplied by VIR. Tomato stem, fruit, and foliage infections were taken into account. Scale (0-4 marks) for each organ was involved. Simultaneously Phytophthora isolates were collected from different tomato organs, and isolated in pure culture on oatmeal agar. Obtained isolates were assessed for the mating types, resistance to fungicides: dimethomorph and metalaxyl, pathogenic features, and molecular markers. To assess the mating type the strains were crossed on oatmeal medium with both the A1 and A2 testers, obtained from the Dep. Mycology and Algology, Moscow State University. The mating type was determined by inspecting for presence or absence of oospores in a border zone between grown colonies. Resistance to fungicides was determined by growing of the isolates on oatmeal medium supplemented with dimethomorph in concentration 3mg/ml, or with metalaxyl in concentration 10 or 100 mg/ml. Tomato races of the pathogen were defined using a bioassay to inspect for disease symptom control patterns on Talallixin (Ph-0), Ottawa-30 (Ph- 1), and West Virginia 63 (Ph-2). PCR-tests to define mitochondrial and nuclear DNA-polymorphism were performed as described elsewhere (Drenth et al, 1993; Maleeva et al, 1999).

Results The pathogen attacked all above ground parts of tomato plants: stems, fruits, foliage branches and even flowers. Data on average severity accounted separately for each organ were obtained. Eighteen selective lines (Backcrosses, F3-F8 generations) showed the highest resistance for all organs (0-2 marks). Susceptible control plants were severely diseased (4 marks). The results are presented in Table 1. These lines were created involving different tomato wild species, such as: L. esculentum var. cerasiforme, L. pimpinellifolium, L. hirsutum, L. hirsutum var. glabratum, L. peruvianum, L. humboldtii, and L. cheesmanii.

15 RESEARCH REPORTS TGC REPORT 52, 2002 ______

Table 1 Tomato sample Disease severity, marks Foliage Stems Fruits Resistant control 2 1 2 Susceptible control 4 4 4 LLB 98/00-1 1 1 1 LLB98/00-2 2 1 1 LLB 98/00-3 1 0 1 LLB 98/00-4 2 1 1 LLB 98/00-5 1 0 1 LLB 98/00-6 1 0 0 LLB 98/00-7 1 1 2 LLB 98/00-8 2 1 1 LLB 98/00-9 2 1 1 LLB 98/00-10 1 1 1 LLB 98/00-11 2 1 1 LLB 98/00-12 1 0 1 LLB 98/00-13 1 1 2 LLB 98/00-14 2 1 1 LLB 98/00-15 1 0 1 LLB 98/00-16 2 1 1 LLB 98/00-17 1 1 1 LLB 98/00-18 1 1 1

Our data indicate that the most prospective tomato breeding material is based on a combination of different resistant sources. For example, lines combining features of interspecies hybrids L. esculentum x L. humboldtii, L. esculentum x L. pimpinellifolium, L. humboldtii x L.esculentum var. cerasiforme, L. peruvianum x L. hirsutum var. glabratum, L. hirsutum var. glabratum x L. esculentum var. cerasiforme, and L. cheesmanii x L. humboldtii.

Collected Phytophthora strains appeared to be susceptible to both metalaxyl in concentration 10 and 100 mg/ml and dimethomorph in concentration 3 mg/ml. Tomato strains were distinct from those isolated from the potato crops in the same region. Highly resistant metalaxyl strains predominated in those populations. Tested tomato strains differed in molecular markers and aggressiveness. Both A1 and A2 strains were found. Data on population structure confirm high polymorphism of Phytophthora in the new sexual population.

The most aggressive strains will be used in laboratory bio-assays for further screening selected tomato genotypes for the late blight resistance.

References:

Bagirova S.F., Dyakov Yu.T. 1998.Ob uchastii oospor v vesenem vozobnovlenii Infekcii fitoftoroza tomata (The role of oospores in overwintering of Phytophthora infestans on tomato crops).Selskoxozyistvennaya biologiya. 3: 69-72.

16 RESEARCH REPORTS TGC REPORT 52, 2002 ______

Bagirova S.F., An Zan Li, Dyakov Yu.T. 1998. Mexanizmy geneticheskoy izolycii specificheskix patogennyx form Phytophthora infestans v polovyx i bespolyx populyciyax (Mechanisms of genetic isolation for specific pathogenic forms of Phytophthora infestans in sexual and asexual populations). Mikologia i fitopatologia.32: 47-50. Day J.P., Shattock R.C. 1997 Aggressiveness and other factors relating to displacement of populations of Phytophthora infestans in England and Wales. Eur. J. Plant. Pathol. 103:379-391. Drenth A., Turkensteen L., Govers F. 1993 The occurrence of the A2 mating type of Phytophthora infestans in the Netherlands: significance and consequences. Netherlands J. Plant Pathology. 99: 57-67. Dyakov Yu.T., Rybakova I.N., Dolgova A.V. Bagirova S.F. 1994. Divergencia populyciy fitopatogennogo griba Phytophthora infestans v svyzi so specializaciey k rasteniym-xozyevam. (Divergent evolution of plant pathogenic fungi Phytophthora infestans in connection to specialization to host plants). Zurnal obshey biologii. 55:179-188. Fry W.E., Goodwin S.B., Matuszak J. et al. 1992. Population genetics and intercontinental migrations of Phytophthora infestans. Annu. Rev. Phytopathol. 30:107-129. Gorbunova E.V., Bagirova S.F., Dolgova A.V., Dyakov Yu.T. 1989.Vegetativnaya nesovmestimost y fitopatogennogo griba Phytophthora infestans (Vegetative incompatibility in Phytophthora infestans). DAN SSSR. 304: 1245-1248. Maleeva Yu.V., Naumoff D.G.., Yatsentiuk S.P., Dolgova A.V., Kolesnikov A.A. 1999. Changes in the composition of populations of Phytophthora infestans in Russia in the 1990s based on the results of mitochondrial DNA analysis. Genetika. 35:1170-1181. Vorobeva Yu.V., Gridnev V.V., Bashaeva E.G. et. al. 1991. O poyvlenii izolytov A2 tipa sovmestimosti Phytophthora infestans na territorii SSSR (About appearance of the A2 mating type of Phytophthora infestans in USSR). Mikologiya i fitopatologiya. 25: 62-67.

Acknowledgements:

The work was partly supported by ISTC. We acknowledge the support granted by RFFI “Leading scientific schools”.

17 RESEARCH REPORTS TGC REPORT 52, 2002 ______Some biochemical and physiological characteristics of transgenic tomato Lycopersicon esculentum Mill. cv. Ventura

2Mapelli S., 1Rekoslavskaya N. I., 1Salyaev R. K., 1Kopytina T. V., 1Ostanina Y. V. 1Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of RAS, PO Box 1243, Irkutsk, Russia, e-mail [email protected] 2Istituto Biologia Biotecnologia Agraria, C.N.R., via Bassini 15, Milan, Italy, e-mail [email protected]

The aim of the project was to create the transgenic plants with high energy of growth and improved productivity via the transfer of the gene iaglu encoding the enzyme UDPG-transferase in maturing corn endosperm (Zea mays L.). UDPG- transferase (indoleacetic acid glucose synthase by trivial name) is converted IAA to IAA- glucose, the stored, but easily transported and hydrolysable, form of this phytohormone. In a previous report transgenic tomato plants (Lycopersicon esculentum Mill.) were obtained in which there was a good correlation between the enhanced auxin status, higher growth activity and improved productivity of transgenic plants in comparison with controls. Here comparisons between control and transgenic to have indication of fruits quality are presented. Some biochemical and physiological characteristics were presented in Table 1. The dry matter of control plants were higher in leaves but not in fruits. The water content in leaves of transgenic plants was correlated with higher content of indoleacetic acid (IAA) which usually increased the hydraulic pressure in cells. Contents of sugars and organic acids were quite the same in fruits both from transgenic and control plants but the content of vitamin C was higher in control fruits.

Table 1. Characteristics of fruits of L. esculentum Mill. cv. Ventura

Dry matter (%)___ Sugars Organic acids* Vitamin C Leaves Fruits (% of d. m.) (% of d. m.) (% of d. m.)

Control 11.2±0.9 6.1±0.1 3.5±0.1 0.47±0.01 0.439±0.0033 Transgenic 8.9±0.5 6.3±0.1 3.5±0.1 0.51±0.01 0.369±0.0032 *Calculated as malic acid equivalents.

We reported that the yield of red fruits in transgenic Ventura tomato plants was up to 1.3 time of the control Ventura plants and the size of red mature fruits were larger. The dry matter data in Table 1 showed that fruit enlargement was not due to the water accumulation and dilution of cell contents. The quality and taste of transgenic tomato was appreciated to be about the same as in control ones. The total amino acids contents were measured in fruits and in leaves (Table 2), because leaves were suggested to be a source of amino acids for fruits. In green and red fruits the contents of total free amino acids were higher when excluding slightly lower content of Phe in green fruits. Analyzing the L-amino acids composition it was

18 RESEARCH REPORTS TGC REPORT 52, 2002 ______found that amounts of Lys, Arg, Asp, Glu, Val, Met, Leu, iLeu, Tyr and Phe were higher in transgenic fruits and the content of Pro, Gly and Ala were lower. If the change in amino acids composition in fruit and the increase in vitamin C can be accompanied with change in other substances (i.e. carotenoids) and influence the fruit nutritional value will be a point to investigate. Larger pool of lower molecular weight compounds, such as amino acids, in plants has the role to balance the osmotic pressure in cells in order to overcome water stress.

Table 2. Total amino acids contents in leaves and fruits of tomato cv. Ventura (nmol/g fresh weight).

Leaves Green fruits Red fruits Control 4206.2 5208.4 5557.5 Transgenic 4931.3 6349.1 8899.5

Leaves of transgenic plants cv Ventura contained more water then the control (Table 1), perhaps the abundance of low molecular weight compounds balanced the osmotic pressure in cells in order to maintain water content high and to overcome drought and water stress. Measurement of leaf gas exchange (Table 3) indicated that the Ventura transgenic plants have higher net carbon dioxide assimilation and lower stomatal conductance and water transpiration indicating a possible higher efficiency of water use.

Table 3. Comparison of leaf gas exchange between control and transgenic tomato.

Net Water vapor Stomatal

photosynthesis transpiration Conductance µmol m-2s-1 mmol m-2s-1 mol m-2s-1 30th June Control 11.20±0.2199 11.07±0.003483 1.791± 0.7129 Transgenic 13.35±0.2610 9.073±0.003649 0.8248±0.1983 31st July Control 12.56±0.6676 12.40±0.1264 1.647±0.6759 Transgenic 15.55±0.4139 9.888±0.09210 0.8225±0.2395

During Siberian summer the tomato cultivation occurred under a plastic greenhouse and hot temperatures occurred sometimes. In this condition both control and transgenic plants wilted but the recovery was faster in transgenic tomato plants than in control

19 RESEARCH REPORTS TGC REPORT 52, 2002 ______ones. This evidence supports the idea about more favorable relationship between water use and growth capacity of the iaglu transgenic tomato plants. Recently a tryptophan racemase was found in wheat leaves (Rekoslavskaya et al.1999) that was activated during drought and osmotic stresses. As a result the amino acid D-tryptophan appeared as if it was used for IAA biosynthesis as an additional and direct precursor source during period of recovery after drought. Preliminary studies of the tryptophan racemase activity were carried out in excised tomato leaves. In turgid control tomato leaves the activity was lower than in transgenic. Artificially wilting the leaves, placing on 0.5M mannitol solution, the activity of tryptophan racemase increased in leaves of transgenic plants and diminished in control leaves. As a whole the insertion of iaglu gene in tomato plants seems to have effects useful in tomato cultivation and productivity.

Literature Cited Rekoslavskaya N. I., Yurjeva O. V., Salyaev R. K., Mapelli S., Kopytina T. V., 1999. Bulgar. J. Plant Physiol. 25: 39-49.

20 RESEARCH REPORTS TGC REPORT 52, 2002 ______Introgression of resistance against Mi-1-virulent Meloidogyne spp. from Lycopersicon peruvianum into L. esculentum

1 Moretti, A., 2 Bongiovanni, M., 2 Castagnone-Sereno, P., 1 Caranta, C.

1 INRA, Genetics and Breeding of Fruits and Vegetable, Dom. St Maurice, BP94, 84143 Montfavet cedex, France. E-mail : [email protected] 2 INRA, Interactions Plantes Micro-organismes et Santé Végétale, 123 Boulevard F. Meilland, BP 2078, 06606 Antibes cedex, France. E-mail : [email protected]

Root-knot nematodes (Meloidogyne spp.) are one of the main pathogens of tomato crops worldwide. Up to now, all tomato cultivars with resistance to Meloidogyne originated from a single resistant L. peruvianum interspecific F1 plant carrying the dominant gene Mi-1 (Smith, 1944). Mi-1 is effective against M. incognita, M. arenaria and M. javanica but there have been several reports of field or laboratory-selected isolates from the three species able to reproduce on tomato plants with Mi-1 (Castagnone-Sereno et al., 2001). Moreover, the need for introgression of additional resistance genes against root-knot nematodes increased with the prohibition of the nematicide methyl bromide, from 2005 in all the European Union. Among the resistance sources and genes against nematodes available in wild tomato species, the Mi-3 gene from L. peruvianum family VWP2x4 is of particular interest since it is effective against M. incognita strains virulent on Mi-1 and also confers resistance at 32°C (Yaghoobi et al., 1995). Seeds from the L. peruvianum family VWP2x4 homozygous for Mi-3 (based on DNA marker NR14) were kindly provided by V. Williamson (Univ. California, Davis, USA). This material was also homozygous for Mi-1 as indicated by the DNA marker REX-1. Five plants VWP2x4 homozygous for both Mi-3 and Mi-1 were hybridized with L. esculentum Momor sp. (an INRA near isogenic line in the Moneymaker type containing the Ve, Frl and Tm-22 resistance genes and the sp gene, Laterrot, 1996) used as the female parent. Buds were emasculated and immediately pollinated with pollen from L. peruvianum; the same buds were pollinated at least two other times at 2-days intervals. Fruits were harvested 30-32 days after. The 371 fruits obtained presented 0 to 3 seeds per fruit; among them, a single one presented an immature embryo. Classical embryo rescue technique leads to a single F1 hybrid plant (Smith, 1944). Cuttings of the interspecific F1 hybrid were evaluated for resistance against M. incognita, M. arenaria, M. javanica using both Mi-1-avirulent and Mi-1-virulent isolates and also against M. hapla (not controlled by Mi-1) during two independent tests (Table 1). Resistance evaluation was performed as described in Castagnone-Sereno et al. (2001) and the behavior of the interspecific F1 hybrid was compared with those of the L. esculentum Saint Pierre (susceptible to Meloidogyne spp.) and Piersol (homozygous for Mi-1). As expected, L. esculentum Saint Pierre is highly susceptible to all strains of M. incognita, arenaria, javanica and hapla. L. esculentum Piersol is resistant only against M. incognita Antibes, M. arenaria Marmande and M. javanica Avignon ; this resistance spectrum results from the presence of Mi-1. On the contrary, the Mi-1-virulent isolates reproduce well on Piersol. Both the parental line L. peruvianum VWP2x4 and the

21 RESEARCH REPORTS TGC REPORT 52, 2002 ______

interspecific F1 hybrid are completely resistant to M. incognita, including strains able to overcome Mi-1. Interestingly, they are also partially resistant to M. arenaria and M. javanica strains able to overcome Mi-1. This resistance spectrum probably results from the presence of Mi-3 or other unknown resistance genes. As already known for Mi-1, Mi-3 does not control M. hapla. In order to continue introgression into L. esculentum and to better characterize resistance against Mi-1-virulent strains, the F1 hybrid was back-crossed with L. esculentum Momor sp. (used as the female parent). Among the 109 fruits obtained, the embryo rescue technique led to 10 BC1 plants. This material is currently being evaluated for resistance against Mi-1-virulent and -avirulent Meloidogyne spp.

Literature cited:

Castagnone-Sereno, P., Bongiovanni, M., Djian-Caporalino, C. 2001. New data on the specificity of the root-knot nematode resistance genes Mi1 and Mi3 in pepper. Plant Breeding 120 : 429-433. Laterrot, H. 1996. Twenty near isogenic lines in Moneymaker type with different genes for disease resistances. TGC Report 46. Smith, P.G. 1944. Embryo culture of a tomato species hybrid. Proc. Am. Soc. Hort. Sci. 44 : 413-416. Yaghoobi, J., Kaloshian, I., Wen, Y., Williamson, V.M. 1995. Mapping a new nematode resistance locus in Lycopsersicon peruvianum. Theor. Appl. Genet. 91 : 457-464.

22 RESEARCH REPORTS TGC REPORT 52, 2002 ______

Table 1 : Screening for Meloidogyne spp. resistance in the interspecific F1 hybrid (Momor sp X VWP2x4).

Nematode strains L. L. Interspecific F1 L. peruvianum esculentum esculentum (Momor sp x VWP2x4 Saint Pierre Piersol (Mi1) VWP2x4) M. incognita Antibes (avira.) 43b (6)c 0 (6) 0 (13)* Adiopodoumé 46.2 (12) 0 (12) 0 (29) (avir.) Adiopodoumé (vir.) 47.2 (12) 45.6 (12) 0.2 (26) N'Gorom (vir.) 30.6 (6) 19.3 (6) 0 (10) Valbonne (vir.) 46.2 (6) 46.3 (6) 0.2 (14)* 0.4 (27) M. arenaria Marmande (avir.) 40.2 (6) 0 (6) 0.1 (13)* Saint Vincent (vir.) 46 (12) 45.8 (10) 6.6 (25) Grau du Roi (vir.) 29.8 (6) 13.5 (6) 7.4 (13)* Chateau-Belair 31.3 (6) 28.4 (6) 9.5 (10) (vir.) M. javanica Avignon (avir.) 37 (6) 0 (6) 0 (13)* Canaries (vir.) 31.8 (6) 37.8 (6) 2.5 (13)* 15.8 (26) Turquie (vir.) 46 (6) 39.2 (6) 3.1 (10) M. hapla La Môle 14.7 (6) 30.2 (6) 15.3 (10)

* indicates that resistance was assessed during two independent tests. a Avir. indicates Meloidogyne isolates that are avirulent on tomato plants with Mi-1 ; vir. indicates Meloidogyne isolates that are virulent on tomato plants with Mi-1. b Average number of egg masses 8 weeks after inoculation with 50 J2. c number of evaluated cuttings.

23 RESEARCH REPORTS TGC REPORT 52, 2002 ______Differences in susceptibility of pruning wounds and leaves to infection by Botrytis cinerea among wild tomato accessions

1 Nicot, P. C., 2 Moretti A., 1 Romiti, C., 1 Bardin, M., 2 Caranta C., 1 Ferrière H.

INRA, 1 Plant Pathology Unit, and 2 Genetics and Breeding of Fruits and Vegetable, Domaine. St Maurice, BP 94, 84143 Montfavet cedex, France. E-mail : [email protected]

Control of gray mold caused by Botrytis cinerea, a key problem in greenhouse production of tomato, has mostly been focused on cultural methods and the use of fungicides and biological control agents (Nicot and Baille, 1996). Recent reports on possible sources of partial resistance in Lycopersicon esculentum and related species (Chetelat and Stamova, 1999, Egashira et al., 2000, Nicot et al., 2000) have prompted interest in the possibility of breeding tomatoes less susceptible to B. cinerea. The purpose of the present study was to explore the potential of different tomato accessions as possible sources of resistance in a germplasm collection maintained at the plant breeding unit of INRA-Avignon. Work was focused on wild tomatoes in the genus Lycopersicon. Plants were grown in a greenhouse in individual pots containing a type P3 horticultural mix (De Baat, Coevorden, The Netherlands) and watered daily with a nutrient solution. The plants were staked and axillary shoots were removed regularly to maintain a plant architecture (single stem) similar to that in commercial production. After 8 weeks of growth, the plants had 10-12 leaves for most accessions. Some species such as L. hirsutum and L. pimpinellifolium tended to have more (12-14) while others such as L. pennellii tended to have fewer (9) leaves per plant. To mimic leaf pruning, a common agricultural practice in greenhouse production, three leaves were removed from the lower part of each of five plants per accession, leaving 5-10 mm petiole stubs on the stems. Each pruning wound was inoculated with 10µl of a spore suspension containing 107 conidia of B. cinerea per ml from a 10-day old colony on Potato Dextrose Agar. To minimize genetic variability among spores of the pathogen, a mono-ascospore isolate was used (isolate SAR 11092, kindly provided by M. Boccara, University of Paris-6). After complete absorption of the inoculum into the wounds (10-15 minutes), the plants were transferred to a growth chamber and incubated in conditions conducive to disease development. The wounds were examined for infection and the length of each developing stem lesion was recorded 4, 7, and 14 days after inoculation. Sporulation occurred rapidly on lesions and the manipulation of plants for disease rating contributed to the dispersion of abundant secondary inoculum throughout the air of the growth chamber. The resulting leaf infections were recorded at 14 days after inoculation on a scale from 0 (no lesion) to 5 (up to 50% of necrotic leaf area). On many accessions, intumescences developed on stems and/or leaves, presumably in relation with the confined environment in the growth chamber (Moreau et al., 1997). They were rated as described by Moreau et al. (1997), on a scale from 0 (no intumescence) to 4 (up to 30% of leaf or stem surface covered). Three independent trials were conducted.

24 RESEARCH REPORTS TGC REPORT 52, 2002 ______Wound infection was recorded on all accessions. In all cases the pathogen was able to colonize the petiole stub, but significant quantitative differences were observed among accessions for the subsequent development of stem lesions (Table 1). Stem colonization was most severe on the fixed line Mospomorist of L. esculentum, used as a susceptible control, and it was least severe among accessions of L. hirsutum and L. peruvianum. For these less susceptible accessions, the size of the stem lesions rarely increased beyond the diameter of the petiole. Partial resistance was also observed on leaves. Compared to L. esculentum, symptoms were significantly reduced on several accessions such as L. chmielewskii 731089 and L. chilense LA1969 (Table 1). There was little correlation between susceptibility of stem and leaf tissue (r² < 0.04), and the accessions with significantly smaller stem lesions were equally or more susceptible to leaf infection than L. esculentum. However, the development of Botrytis lesions on the leaves appeared to be partially related to that of intumescences (Table 1). Stem lesions represent the most frequent and the most damaging of Botrytis symptoms in heated glasshouses where excess humidity is usually avoided. In this context, the high level of partial resistance to stem colonization found within the species L. hirsutum appears promising for breeding less susceptible tomatoes. Further work has been focused on the genetics, mechanisms and durability of partial resistance.

Literature cited : Chetelat, R.T., Stamova, L. 1999. Tolerance to Botrytis cinerea. Acta Horticulturae 487:313-316. Egashira, H., Kuwashima, A., Ishiguro, H., Fukushima, K., Kaya, T., Imanishi, S. 2000. Screening of wild accessions resistant to gray mold (Botrytis cinerea Pers.) in Lycopersicon. Acta Physiologiae plantarum 22:324-326. Moreau, P., Thoquet, P., Laterrot, H., Moretti, A., Olivier, J., Grimsley, N.H. 1997. A locus, ltm, controlling the development of intumescences, is present on 7. TGC Report 47:15-16. Nicot P.C., Baille A. 1996. Integrated control of Botrytis cinerea on greenhouse tomatoes. In: C.E. Morris, P.C. Nicot and C. Nguyen Thé (eds.). Aerial Plant Surface Microbiology. Plenum Publisher New York, ISBN 0-306-45382-7. pp 169- 189. Nicot P.C., Pellier A.L., Moretti A., Caranta C., Rousselle P. 2000. Resistance of tomato to Botrytis cinerea. 12th. International Botrytis Symposium, Reims, 2000/07/03-08. University of Reims Champagne-Ardenne, Reims, France. Abstract .P77.

Acknowledgements: This work was supported in part by private breeders: Gautier Graines, Rijk-Zwaan France SARL, Seminis Vegetable Seeds France S.A., Syngenta Seeds S.A.S., Takii Recherche France S.A., Tézier S.A., Vilmorin.

25 RESEARCH REPORTS TGC REPORT 52, 2002 ______Table 1 : Susceptibility of Lycopersicon accessions to Botrytis cinerea and to development of intumescences.

stem lesions1 leaf lesions2 intumescences3 L. hirsutum LA1777 2,0 a 2,7 cde 2,5 defg L. hirsutum PI247087 4,2 ab 3,5 def 3,4 ghi L. hirsutum H2 4,2 ab 2,3 bc 1,7 bcdef

L. hirsutum G11560 4,7 ab 2,9 cde 2,9 fghi L. hirsutum PI134417 5,1 ab 3,5 def 2,6 efgh L. peruvianum CMV - Sel 5,3 ab 2,7 cde 2,1 bcdef INRA L. peruvianum PI 128660 5,4 ab 2,4 bcd 2,2 cdefg L. hirsutum B 6,0 ab 3,6 ef 3,8 hi L. pimpinellifolium L3708 6,5 ab 3,0 cde 1,7 bcdef L. chilense LA1969 7,4 ab 0,1 a 0,4 ab L. peruvianum D4xD5 7,6 ab 3,0 cde 2,2 cdefg L. hirsutum PI134498 8,0 ab 1,0 ab 0,0 a L. pennellii Clayberg 8,5 ab 1,5 b 0,0 a L. chmielewskii 731089 8,6 ab 0,3 a 0,1 a L. pimpinellifolium WVA700 11,6 abc 2,7 cde 1,5 abcde L. hirsutum PI390660 13,4 bc 1,1 ab 1,0 abc L. pimpinellifolium WVA106 14,4 bc 3,0 cde 1,3 abcd L. pimpinellifolium hirsute 19,7 c 4,6 f 3,9 i L. pennellii LA716 19,9 c 1,9 bc 0,1 a L. esculentum Mospomorist 20,4 c 2,2 bc 0,0 a

1 lesion size (mm) 14 days after inoculation (average for 3 replicated independent tests); numbers followed by different letters were statistically different (p<0.05) according to Tukey's HSD test 2 average disease index 14 days after inoculation (average for 2 replicated independent tests); numbers followed by different letters were statistically different (p<0.05) according to Tukey's HSD test 3 average index of intumescence on leaves 7 days after inoculation (average for 2 replicated independent tests); numbers followed by different letters were statistically different (p<0.05) according to Tukey's HSD test

26 RESEARCH REPORTS TGC REPORT 52, 2002 ______A rise of productivity of transgenic tomato (Lycopersicon esculentum Mill.) by transfer of the gene iaglu from corn

1Rekoslavskaya N. I., 1Salyaev R. K., 2Mapelli S., 1Truchin A. A., 1Gamanetz L. V. 1Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of RAS, PO Box 1243, Irkutsk, Russia, e-mail: [email protected] 2Istituto Biologia Biotecnologia Agraria, C.N.R., via Bassini 15, Milan, Italy, e-mail [email protected]

The creation of transgenic plants with the aim to increase productivity and to gain resistance to unfavorable natural and abiotic factors as a result of transgenesis is currently a promising task. The transfer and integration of the maize iaglu gene into Solanum plants was shown earlier to improve an auxin status expressed in an elevated content of free and bound indoleacetic acid (IAA) and accelerated growth and root formation in transgenic plants (Zhukova et al. 1997; Gamanetz et al. 1998). Tomato seeds, of Ventura and Verlioka varieties, obtained from in vitro transformed plant were utilized to confirm gene insertion and evaluate the effect on plant morphology and productivity. Tomato seedlings cv. Bumerang were infected with transconjugant in planta without step of cultivation in vitro. The efficiency of plant transformation was assessed by the activity of the markers and target enzymes, β-glucuronidase (GUS) (Table 1), neomycinphosphotransferase (Table 2) and UDPG-transferase, respectively in leaves of adult plants.

Table 1. The activity of β-glucuronidase in leaves of tomato L. esculentum cv. Ventura

Fluorescence Impulses

(10 4/mg /hr) Control 6.2 Transgenic 428.6 The data from Sephadex G-25 column eluates of tomato leaves enzyme extracted in K/Na phosphate buffer.

In crude extracts from leaves of transgenic tomato cv. Verlioka, the activity of GUS was 284.1±59.1 x 10 4 fluorescence impulses/gram of dry matter, comparing to the activity of 62.5±4.2 x 10 4 fluorescence impulses/gram of dry matter measured in the controls. The transgenesis of tomato hybrid plants Bumerang was confirmed by expression of GUS-activity with color substrate 5-bromo-4-chloro-3-indolyl- β-glucuronide due to the appearance of blue zones in trichoblasts on stems of transgenic plants after incubation of small cuttings.

27 RESEARCH REPORTS TGC REPORT 52, 2002 ______

Table 2. Content of chlorophyll in leaves of tomato cv. Ventura exposed to kanamycin.

Kanamycin (mg/l) 0 50 100 200 300 Control 34.0±0.4 33.8±0.0 22.2±0.2 13.5±0.6 10.1±0.1 Transgenic 51.1±0.3 42.0±0.4 34.6±0.6 29.8±0.3 28.0±0.1

To check the presence of the nptII expression, the developed leaves of both types of plants were placed in kanamycin solution for seven day and differences between them were evaluated thereafter as a diminishing of chlorophyll content (Table 2). The integration of target iaglu gene in the tomato varieties was confirmed with PCR where the amplification products of corresponding size were found in electrophoresis agarose gels. The growth and productivity can be supported by strengthening of the auxin status expressed in enhanced IAA biosynthesis, IAA binding activity and IAA bounded hydrolysis (Table 3). The content of free endogenous IAA in leaves of the transgenic tomato was actually two-fold higher calculated by both fresh and dry weights. The activity of UDPG-transferase, the enzyme coded by iaglu gene, was higher in the cytosol from transgenic tomato plants. The activity of amidohydrolase in transgenic tomato leaves as compared to the control was 14 times higher in Sephadex G-25 purified enzyme fractions. The substrate of this enzyme is the product of iaglu UDPG- transferase. It is likely that the balance between synthesis, conjugation, transport and hydrolysis results in higher content and action of endogenous IAA in the transgenic tomato.

Table 3. The auxin status of control and transgenic tomato plants cv. Ventura

IAA UDPG-transferase Amidohydrolase

(nmol per g fr wt) (nmol/mg protein/hr) (nmol/mg protein/hr) Control 64±4 139.9 278±0.2 Transgenic 112±29 286.3 3875±22

Varieties of transgenic tomato plants obtained by transformation grew faster than the control ones, formed wider leaf blades, and had larger mass of shoots and stems and more developed root system (Table 4). The transgenic plants were distinguished by formation of a greater number of root primordia (more than 100) along the stem. They started blooming earlier and formed greater amount of trusses and fruits, as well the red fruits yield of the transgenic Ventura, Verlioka and Bumerang varieties were heavier (Table 5) and harvest time occurred 7-10 days earlier.

28 RESEARCH REPORTS TGC REPORT 52, 2002 ______

Table 4. A morphometric analysis of control and transgenic tomatoes growing in soil

Mean leaf Height Leaves Upper part Root area (cm) number (g) (g) (mm 2) Ventura cv. Control 70.6±4.7 9.1±0.7 281.3±8.3 310.0±35.7 37.8±6.5 Transgenic 88.8±6.5 10.7±0.8 351.7±19.5 423.3±60.0 64.5±8.0 Verlioka cv. Control 49.0±5.6 9.5±0.7 375.0±1.7 333.3±89.8 28.2±1.2 Transgenic 118.2±21.6 30.0±5.0 1250.0±5.4 1133.3±189.0 38.1±3.1 The determination was performed in the stage of fruit ripening. Fruit weight excluded.

Table 5. Characteristics of tomato fruits Yield per plant Weight of red fruit Number red fruits

(g) per plant (g) per plant Ventura cv. Control 6021 4613 224 Transgenic 8006 7023 301 Verlioka cv. Control 3159 1640 99 Transgenic 3974 2313 111 Bumerang hybrid Control 4649 3290 133 Transgenic 6316 4802 179

Therefore, transgenesis and expression of the iaglu gene enhanced the auxin status of the transgenic plants that appeared to be a stimulating factor providing faster plant growth, floral development as well as the improvement of productivity in genetically modified tomato plant.

29 RESEARCH REPORTS TGC REPORT 52, 2002 ______Literature Cited: − Rekoslavskaya, N. I., Gamanetz, L. V., Bryksina, I. V., Mapelli, S. and Salyaev, R. K. (1998). Obtaining of transgenic tomato (Lycopersicon esculentum Mill.) and potato (Solanum tuberosum L.) by transfer of the ugt gene from corn. Rep. Tom. Genet. Coop., 48: 40-42. − Zhukova, V. M., Rekoslavskaya, N. I., Salyaev, R. K. and Yurieva, O. V. (1997). Transformation of plants via shoot regeneration from infected with agrobacteria axillary buds of Solanum illustrated with the gene iaglu. (Russian), 5: 15-21.

30 RESEARCH REPORTS TGC REPORT 52, 2002 ______A new allele at the potato leaf locus derived from L. chilense accession LA 1932 is discovered in a geminivirus resistance project.

Scott, J.W.

University of Florida, IFAS, Gulf Coast Research & Education Center, Bradenton, FL 34203

The potato leaf (c) locus has been mapped to chromosome 6 near the sp and B loci Tanksley et al., 1992; Weide et al., 1993). In 1990 we discovered resistance to the geminivirus, tomato mottle virus (ToMoV), in several accessions of L. chilense (Scott and Schuster, 1991). Resistance was introgressed into tomato by crossing entirely with cut leaf recurrent parents. Nevertheless, we began to find potato leaf segregants in determinate plants derived from LA 1932 (and LA1961). The potato leaf trait seemed to be associated with ToMoV resistance and potato leaf was used along with sp to anchor RAPD markers linked to resistance loci (Griffiths, 1998; Griffiths and Scott, 2001). In that research it was observed that the potato leaf type observed was not as easily identified as with c genotypes.

To determine if the LA 1932 derived potato leaf was in fact an allele at the c locus, an inbred with the trait, 745-Y1, was crossed with c leaf accessions LA 2510 and LA 2513 and Fla. 7781 (c+). Subsequently, F2 seed was obtained for each cross. Parents, F1 and F2 generations were grown in Todd planter flats in a greenhouse in spring, 2002. Plants were rated as wild type (cut leaf), potato leaf (c), or LA 1932 potato leaf (Fig. 1) when seedlings were at the 2-3 leaf stage. The LA 1932 derived potato leaf is not as distinctive as c, the leaf generally has a lower length to width ratio, is more rounded than pointed, and has a small serration in the leaf margin (Fig. 1). As can be seen in Fig. 1d, the axillary leaflets often connect to the terminal leaflet unlike c where they are generally separate. The LA 1932

31 RESEARCH REPORTS TGC REPORT 52, 2002 ______potato leaf margin sometimes has a few rather wide and deep serrations (Fig 1e), but it can be accurately identified with practice. The new phenotype was a monogenic recessive to wild type based on the F1 and F2 results (Table 1). The new phenotype was a monogenic dominant to c. The data suggest the new phenotype is allelic to c although there were 2 plants that appeared to be wild type in the 745-Y1 x LA 2510 F2. These may have been misclassified (although they were grown out and checked later) or due to some type of error in the experiment. A closely linked gene to c can not be ruled out, but it is felt that another allele at the c locus provides the best fit to the data. The symbol c2 is thus proposed for the potato leaf allele derived from LA 1932.

It is surprising that this allele emerged from a cross of two non-potato leaf parents. Possibly LA 1932 (sp+) is heterozygous for c2, although I do not remember seeing indeterminate potato leaf plants in any of our work. Apparently LA 1932 has a gene linked on the opposite side of the sp locus (or very close to it) that is epistatic to c2 expression. The tomato yellow leaf curl virus (TYLCV) resistant variety ‘Tyking’ also has a potato leaf type. Furthermore, we tested Henri Laterrot’s CHILTYLIC94-3 population in 1995 and found a few plants showed ToMoV resistance. A few generations of resistance selection followed and derived homozygous resistant lines all had potato leaves. Since ‘Tyking’ is in the pedigree of the CHILTYLC94-3 population, this could have been the source of the potato leaf. No allelism work has been done with c2 and these other genotypes or with cint which has some similarity to c2 but a different length /width ratio (see images in the TGRC website). It does seem probable that these genotypes have a geminivirus resistance gene in the c region of chromosome 6. Lines derived from LA 1932 with ToMoV and TYLCV resistance without c2 have recently been developed, indicating the linkage between c2 and the resistance gene has been broken.

Literature Cited

Griffiths, P.D. 1998. Inheritance and linkage of geminivirus resistance genes derived from Lycopersicon chilense Dunal in tomato (Lycopersicon esculentum Mill.). PhD diss., Univ. of Florida, Gainesville.

Griffiths, P.D. and J.W. Scott. 2001. Inheritance and linkage of tomato mottle virus resistance genes derived from Lycopersicon chilense accession LA 1932. J. Amer. Soc. Hort. Sci. 126(4):462-467.

Scott, J.W. and D.J. Schuster. 1991. Screening of accessions for resistance to the Florida tomato geminivirus. TGC Rpt. 41:48-50.

Tanksley, S. et al. 1992. High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141-1160.

Weide, R. et al. 1993. Integration of the classical and molecular linkage maps of tomato chromosome 6. Genetics 135:1175-1186.

32 RESEARCH REPORTS TGC REPORT 52, 2002 ______

Table 1. Segregation of leaf type for two types of potato leaf parents, a wild type parent, derived F1 and F2 generations, and chi square analyses for goodness of fit to single dominant gene models.

Leaf Morphology Cut New Standard Expected Genotype Generation (c+) Potato Potato(c) Ratio χ2 p

LA 2510 (c) P1A 0 0 24 0:0:1 - - LA 2513 (c) P1B 0 0 24 0:0:1 - - 745-Y1 (from P2 0 24 0 0:1:0 - - LA1932) Fla. 7781 (7781)(c+) P3 23 0 0 1:0:0 - - (745-Y1 x 7781) F1 15 1 0 1:0:0 - - (745-Y1 x LA 2510) F1 0 23 0 0:1:0 - - (745-Y1 x LA 2513) F1 0 24 0 0:1:0 - - (745-Y1 x 7781)Bk F2 250 85 0 3:1:0 0.016 .9 (745-Y1 x LA F2 0 219 74 0:3:1 0.012 .9- 2510)Bk .975 z (745-Y1 x LA F2 2 226 84 0:3:1 0.727 .5-.1 2513)Bk zNot included in chi-square calculations.

33

THIS PAGE IS BLANK IN THE ORIGINAL DOCUMENT

VARIETAL PEDIGREES TGC REPORT 52, 2002 ______Alvarez, M.; Moya, C.; Dominí, M.E. and Arzuaga, J.; 2002. Instituto Nacional de Ciencias Agrícolas (INCA), La Habana, Cuba. Released 1997.

Amalia, Mariela

Pedigree:

INCA-3 Línea 35 Línea C-3 Campbell-28 Amalia INCA 3A HC-2580

Caraibe Mariela Campbell-28

Characteristics: Amalia Fruit: Red, slightly flattened globe, joint, tolerant to cracking and rots, high soluble solids, average weight 125 g. Plant: Determinate (sp), small, resistant to Fusarium (I) and Stemphylium (Sm), good fruit set. Utility and Maturity: Fresh market cultivar widely adapted to tropical environments, early maturity. Mariela Fruit: Red, flattened globe with slightly green - shouldered, joint, average weight 150g. Plant: Determinate (sp), good fruit protection, resistant to Fusarium (I) and Stemphylium (Sm). Utility and Maturity: Good for fresh market.

35 VARIETAL PEDIGREES TGC REPORT 52, 2002 ______Ohio OX150 Hybrid Processing Tomato

David M. Francis, Stan Z. Berry, Troy Aldrich, Ken Scaife, and Winston Bash Horticulture and Crop Science The Ohio State University, OARDC 1680 Madison Ave. Wooster, OH 44691

Introduction: Ohio OX150 is an early to early-mid season processing tomato (Lycopersicon esculentum Mill.) hybrid adapted to high population transplant culture, machine harvest, and bulk handling under humid growing environments. It is suited for the production of peeled, whole-canned, and diced tomato products.

Origin: Ohio OX150 is the F1 hybrid resulting from the cross of the inbred line O88119 described by Berry et al. (1995) and Ohio 9242. ‘Ohio 9242’ is an F8 selection derived by single seed decent from the F6 selection A1816. The selection A1816 is derived from a cross between ‘Ohio 832’ (Berry et al., 1986) variant ‘O9149’ (Montagno et al., 1988) and ‘Ohio 8556’ (Berry et. al., 1993). ______| O88119 | | ‘Ohio OX150’ ____ | | _____ | | Ohio 832 (variant O9149) | | |______Ohio 9242 ______| | |_____ Ohio 8556

Fig. 1. Pedigree of ‘Ohio OX150’

Description: Ohio OX150 vines are medium in size, semi-prostrate, and determinate (sp). Foliage cover is excellent for ensuring good fruit quality and at maturity the vines cover the row area uniformly. The average maturity from transplant to harvest of ‘Ohio OX150’ is 97.1 days over four years of field testing, comparable to the early season standard, ‘Ohio 7983’ (Berry et al., 1992). The average machine harvest yield of Ohio OX150 was 32.8 T/A over four years of testing, outperforming the major early season varieties open pollinated variety Ohio 7983 and comparing favorably to OX 52 (Francis et al., 2000) (though differences were not always significant). Yields of ‘Ohio OX150’ were comparable to the main-season open pollinated variety Ohio 8245 and the main-season hybrid Heinz 9423. Yields were somewhat less than the major main-season variety Peto 696 (Table 1).

36 VARIETAL PEDIGREES TGC REPORT 52, 2002 ______Fruit of ‘Ohio OX150’ average 2.1 oz with two to three locules. The shape is ovate. Fruit have a small stem scar and core, are uniform ripening (u), are attached by a jointless pedicel (j2), and are heterozygous for the crimson (ogc/+) locus. The color of fruit from ‘Ohio OX150’ is excellent.

Table 1. Summary statistics for maturity, mechanical harvest yield, and fruit quality for OX 150 over four years.

Days to Yield color Force to Variety Harvest T/A L Chroma Hue puncture (Kg) Brix O 7983 96.2 27.6 41.6 35.9 44.0 5.5 5.32 OX 52 97.1 36.1 41.9 36.1 45.1 5.0 4.72 OX 150 97.1 32.8 40.0 35.0 43.0 5.3 4.65 TR 12 98.2 33.1 40.1 36.2 42.6 5.6 5.11 H 9423 101.5 30.1 43.3 40.6 41.2 7.2 5.00 PS 696 101.8 36.8 42.6 37.3 44.8 5.6 5.02 O 9242 102.7 26.7 38.8 35.4 38.8 4.9 5.31 O 8245 103.7 29.7 42.8 37.3 44.6 5.8 5.16 mean 99.8 31.6 41.4 36.7 43.0 5.6 5.04 LSD NS NS 2.5 1.7 NS 0.6 0.31 (0.05) LSD 4.2 5.1 1.2 0.8 2.5 0.3 0.16 (0.30)

References: Berry, S.Z. and W.A. Gould. 1986. ‘Ohio 832’ Tomato. HortScience 21:334.

Berry, S.Z. K.L. Weise, and W.A. Gould. 1992. “Ohio 7983” Processing Tomato. Hortscience 27: 939.

Berry, S.Z., K.L. Wiese, and T.S. Aldrich. 1993. “Ohio 8556” Processing Tomato. HortScience 28:751.

Berry, S. Z., T.S. Aldrich, K.L. Wiese, and W.D. Bash. 1995. ‘Ohio OX38” Hybrid Processing Tomato. Hortscience 30:159.

Francis, D. M., S. Berry, T. Aldrich, K. Scaife, W. Bash. 2000. ‘Ohio OX 52’ Processing Tomato. Report of the Tomato Genetics Cooperative Vol 50

Montagno, T. J., R.D. Lineberger, and S.Z. Berry. 1989. Somaclonal and radiation induced variation in Lycopersicon esculentum. Environmental and Experimental Botany. 29:401-408.

37 VARIETAL PEDIGREES TGC REPORT 52, 2002 ______

Scott, J.W. 2000. Fla. 7771, a medium-large, heat-tolerant, jointless-pedicel tomato. HortScience 35(5):968-969.

FLORIDA 7771

Pedigree: Horizon 7182 Fla. 1C F 5 7095 6120 F 5 F6 648 7546B F 5 Fla. 1B F4 F7 Cl 123 Burgis Fla. 7771 7340 F7 F5 7060 648 F3 F5 648 F6 F1 C-28 C-28 7340 Suncoast F7 F5 Hayslip F4 7319 E03 F5 Horizon F7 Suncoast

Characteristics:

Fruit: flat-round shape, light green shoulder, slightly pale interior color, medium-large fruit, medium firmness, n-2

Plant: sp, I, I-2, Sm, medium vine with erect leaves in top

Utility and maturity: Early-midseason fresh market breeding line combining jointless pedicel, medium large fruit size and heat-tolerance (33-22 C, high relative humidity) with minimal fruit defects for breeding of same

38 VARIETAL PEDIGREES TGC REPORT 52, 2002 ______Scott, J.W., B.K. Harbaugh, and E.A. Baldwin. 2000. ‘Micro-Tina’ and ‘Micro-Gemma’ miniature dwarf tomatoes. HortScience 35(4):774-775.

MICRO-TINA MICRO-GEMMA

Pedigree: Micro-Tom Micro-Tina F10 PI270248 (‘Sugar’)

Fla. 7565 (related to ‘Micro-Gold’) Micro-Gemma F10

PI270248 (‘Sugar’)

Characteristics:

Fruit: Very small (7g), tri-locular, flat-round shape, u, Micro-Gemma has gold color (r,Y), sweeter flavor than Micro-Tom or Micro-Gold (plus 1 Brix)

Plant: sp, d, I, Sm, diminutive size of plant organs similar to ‘Micro-Tom’

Utility and maturity: Micro-Tina is 1 week earlier than Micro-Gemma and Micro-Tom, for small pots or hanging baskets and patio gardens

39 VARIETAL PEDIGREES TGC REPORT 52, 2002 ______Scott, J.W. and John Paul Jones. 2000. Fla. 7775 and Fla. 7781: Tomato breeding lines resistant to fusarium crown and root rot. HortScience 35(6):1183-1184.

FLORIDA 7775 FLORIDA 7781

Pedigree: 7182 F9 7647B F8 7340 7182 Horizon F5 F5 Hayslip Fla. 7781 F4 E01 F13 7440 F 5 Suncoast 7197 NC 8276 F3 F3 F5 F3 Suncoast Horizon F 7198 6 NC 8276 F 4 F 7228 3 Suncoast 7464 F 8 7181 F Fla. 7775 6 F Suncoast F 5 9 F4 Suncoast F4 7182 Ohio 89-1 F9 7647B F8 7340 F5 Characteristics:

Fruit: flat-round shape, light-green shoulder, ogc, Fla. 7775 has medium size, jointless (j- 2) pedicels and is very firm, Fla. 7781 is medium-large, has jointed pedicels, and is firm

Plant: sp, I, I-2, Ve, Sm, Frl, Fla. 7775 also has Tm-2 (OPB 12 SCAR marker) and a open vine, Fla. 7781 has a larger vine

Utility and maturity: Midseason fresh market breeding lines for fusarium crown and root rot resistance breeding

40 STOCK LISTS TGC REPORT 52, 2002 ______

Revised List of Monogenic Stocks

Chetelat, R. T.

C.M. Rick Tomato Genetics Resource Center, Dept. of Vegetable Crops, Univ. of California, Davis, CA 95616

The following list of 994 monogenic stocks (at 614 loci) is a revision of the list issued in TGC 49. For other types of accessions, see TGRC stock lists published in TGC vols. 51 (Wild Species Stocks), and 50 (Miscellaneous Stocks). Certain obsolete or unavailable items have been deleted, newly acquired stocks have been added, inaccuracies corrected, and gene symbols revised to reflect allele tests or other information. Recently acquired morphological mutants include a stock of Xa-2 that forms twin spots due to chromosome breakage (provided by M. Koornneef), and a source of yvms, an unstable allele characterized by yellow/green sectoring (M. Ramanna). New alleles and NIL stocks of hp and hp-2 (A. van Tuinen) and the corolla intensifier Bco (R. Chetelat) were also added. Introgressed disease resistance genes include I-3 for Fusarium wilt (J. Scott) and Cmr for CMV (B. Stamova). Other genes introgressed from wild relatives include sucr for sucrose accumulation (R. Chetelat) and Rg-1 for enhanced shoot regeneration from tissue culture (M. Koornneef). Instances of demonstrated allelism between mutants are incorporated into this list. These include the old gold (og) and crimson (ogc) mutations, which are null alleles at the Beta (B) locus, recessive to both the dominant (B) and wild type (B+) alleles (PNAS 97:11102), for which we propose the symbols Bog and Bc, respectively. Other new allele designations include comin (TGC 46:15) and PtoPto-2 (TGC 41:27). Conversely, the hairless mutation in accession 3- 417, which is not allelic to hl (TGC 37:43), is listed herein as hl-2. Finally, the symbol for the gene encoding resistance to Fusarium oxysporum f. sp. radicis-lycopersici (FORL) has been corrected from Fr-1 to Frl. This stock list includes only accessions we consider to be the primary sources for individual mutations: usually the original source (often isogenic in a known background), and any nearly isogenic lines into which the mutation has been bred. Most stocks are homozygous and true-breeding. However, male-steriles, other inherited sterilities, homozygous-inviable mutants, and other stocks that are too difficult to maintain as homozygotes, are propagated via heterozygotes (seed usually provided as F2’s). Additional information on these stocks, including phenotypes, references, images, chromosomal locations, etc., can be obtained through our website (http://tgrc.ucdavis.edu). TGC members are encouraged to submit stocks of verified monogenic mutants not listed here to the TGRC for maintenance and distribution.

Table 1. List of monogenic stocks, including gene and allele symbols, locus name, synonyms, phenotypic classes, source of mutation, background genotype, isogenicity, and accession number. The original mutant allele at a locus is designated by ‘--‘, and provisional alleles by ‘prov#’; under SYNONYMS, superscripted alleles are indicated by ‘^’. Abbreviations used for phenotypic categories (CLASS) and background genotypes (BACK) are defined in Tables 2 and 3 respectively. Sources of mutations are spontaneous (SPON), or induced by chemical agents (CHEM) or irradiation (RAD). Isogenicity (ISO) indicates whether a mutation is isogenic (IL), nearly isogenic (NIL), or nonisogenic (NON) in a particular accession.

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# a -- anthocyaninless a1 A* SPON X NON LA0291 a -- anthocyaninless a1 A* SPON AC NIL LA3263 a prov2 anthocyaninless a A* CHEM VF36 IL 3-414

41 STOCK LISTS TGC REPORT 52, 2002 ______

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# a prov3 anthocyaninless a A* CHEM VF36 IL 3-415 aa -- anthocyanin absent A* SPON MD IL LA1194 aa -- anthocyanin absent A* SPON AC NIL LA3617 Abg -- Aubergine P* SPON X NON LA3668 abi -- aborted inflorescence M* CHEM CSM NON 3-803 Aco-1 1 Aconitase-1 V* SPON pen NON LA2901 Aco-1 2 Aconitase-1 V* SPON pim NON LA2902 Aco-1 3 Aconitase-1 V* SPON pim NON LA2903 Aco-2 1 Aconitase-2 V* SPON pim NON LA2904 Aco-2 2 Aconitase-2 V* SPON chm NON LA2905 acr -- acroxantha acr1 D*JK RAD CR IL LA0933 ad -- Alternaria alternata resistance Q* SPON X NON LA1783 Adh-1 1 Alcohol dehydrogenase-1 V* SPON VCH NON LA2416 Adh-1 2 Alcohol dehydrogenase-1 V* SPON par NON LA2417 Adh-1 n Alcohol dehydrogenase-1 V* CHEM MM IL LA3150 Adh-2 1 Alcohol dehydrogenase-2 V* SPON hir NON LA2985 adp -- adpressa K*J RAD AC NIL LA3763 adp -- adpressa K*J RAD CR IL LA0661 adu -- adusta adu1 H*K RAD CR IL LA0934 ae -- entirely anthocyaninless a332 A* RAD CG NIL LA3018 ae -- entirely anthocyaninless a332 A* RAD AC NIL LA3612 ae -- entirely anthocyaninless a332 A* RAD KK IL LA1048 ae 2 entirely anthocyaninless A* CHEM UC82B IL 3-706 ae afr entirely anthocyaninless afr, ap A* RAD CT IL LA2442 ae prov3 entirely anthocyaninless ae A* CHEM VCH IL 3-620 aeg -- aegrota H* RAD CR IL LA0537 aer -- aerial roots R* SPON X NON LA3205 aer-2 -- aerial roots-2 R* SPON X NON LA2464A af -- anthocyanin free a325 A*I RAD RCH IL LA1049 af -- anthocyanin free a325 A*I RAD AC NIL LA3610 Af -- Anthocyanin fruit P* SPON X NON LA1996 afe -- afertilis afe1 N*CJK RAD RR IL LA0935 afl -- albifolium af B*G SPON XLP IL 2-367 afl -- albifolium af B*G SPON AC NIL LA3572 ag -- anthocyanin gainer A* SPON GS5 NON LA0177 ag -- anthocyanin gainer A* SPON AC NIL LA3163 ag 2 anthocyanin gainer A* SPON che NON LA0422 ag 2 anthocyanin gainer A* SPON AC NIL LA3164 ag-2 -- anthocyanin gainer-2 A* SPON AC NIL LA3711 ah -- Hoffman’s anthocyaninless ao, a337 A* SPON OGA IL LA0260 ah prov2 Hoffman’s anthocyaninless ah A* CHEM MM IL 3-302 ah prov3 Hoffman’s anthocyaninless ah A* CHEM VCH IL 3-607 ah prov4 Hoffman’s anthocyaninless ah A* CHEM VCH IL 3-628 ah prov5 Hoffman’s anthocyaninless ah A* CHEM VCH IL 3-629 ah prov6 Hoffman’s anthocyaninless ah A* SPON PSN IL LA0352 ah prov7 Hoffman’s anthocyaninless ah A* CHEM MM IL 3-343 ai -- incomplete anthocyanin a342 A* RAD KK IL LA1484 ai -- incomplete anthocyanin a342 A* RAD AC NIL LA3611 ai 2 incomplete anthocyanin am, a340 A* RAD KK IL LA1485 al -- anthocyanin loser a2 A* SPON AC NIL LA3576 alb -- albescent G*C SPON AC NIL LA3729 alb prov2 albescent alb G*C CHEM VCH IL 3-625 alc -- alcobaca P* SPON X NON LA2529

42 STOCK LISTS TGC REPORT 52, 2002 ______

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# alc -- alcobaca P* SPON RU NIL LA3134 alu -- alutacea alu1 C*K RAD CR IL LA0838 an -- anantha an^1, an^2, ca L*N RAD CR IL LA0536 ap -- apetalous L*N SPON ESC IL 2-009 ap -- apetalous L*N SPON AC NIL LA3673 apl -- applanata J*K RAD LU IL LA0662 apn -- albo-punctata G*BJK CHEM VF36 IL 3-105 Aps-1 1 Acid phosphatase-1 V* SPON VCH NIL LA1811 Aps-1 2 Acid phosphatase-1 V* SPON chm NON LA1812 Aps-1 n Acid phosphatase-1 V* SPON pim NON LA1810 Aps-2 1 Acid phosphatase-2 V* SPON SM NON LA1814 Aps-2 2 Acid phosphatase-2 V* SPON che NON LA1815 Aps-2 3 Acid phosphatase-2 V* SPON par NON LA1816 Aps-2 n Acid phosphatase-2 V* SPON che NON LA1813 are -- anthocyanin reduced A* CHEM VF36 NON 3-073 Asc -- Alternaria stem canker resistance Q* SPON X NON LA2992 at -- apricot P* SPON AC NIL LA3535 at -- apricot P* SPON X NON LA0215 at -- apricot P* SPON RU NIL LA2998 atn -- attenuata at E*AJK RAD AC NIL LA3829 atn -- attenuata at E*AJK RAD RR IL LA0587 atv -- atroviolacium A* SPON AC NIL LA3736 au -- aurea C*B RAD AC NIL LA3280 au (1s) aurea au^2, au, brac C*B RAD CR IL LA0538 au 6 aurea yg^6, yg-6, C*B SPON RCH IL LA1486 au^yg-6, yo au 6 aurea yg^6, yg-6, C*B SPON AC NIL LA2929 au^yg-6, yo au tl aurea C*B SPON VF145 IL 2-655A au w aurea w616 C*B CHEM MM IL LA2837 aus -- austera J*KT RAD LU IL LA2023 aut -- aureata C*F SPON X NON LA1067 aut -- aureata C*F SPON AC NIL LA3166 auv -- aureate virescent F*C CHEM VF36 IL 3-075 avi -- albovirens avi1 C*BGN RAD CR IL LA0936 aw -- without anthocyanin aba, ab, a179 A* SPON AC NIL LA3281 aw -- without anthocyanin aba, ab, a179 A* SPON per NON LA0271 aw prov3 without anthocyanin aw A* CHEM VF36 IL 3-121 aw prov4 without anthocyanin aw A* CHEM VCH NON 3-603 aw prov5 without anthocyanin aw A* CHEM VCH NON 3-627 B -- Beta-carotene P* SPON X NON LA2374 B -- Beta-carotene P* SPON RU NIL LA3000 B -- Beta-carotene P* SPON E6203 NIL LA3898 B -- Beta-carotene P* SPON O8245 NON LA3899 B og Beta-carotene og L*P SPON chi NON LA0294 B og Beta-carotene og L*P SPON PSN NIL LA0348 B og Beta-carotene og L*P SPON unk NON LA0500 B c Beta-carotene og^c, Crn, Cr, P*L SPON AC NIL LA3179 crn-2, cr-2 B c Beta-carotene og^c, Crn, Cr, P*L SPON X NON LA4025 crn-2, cr-2 B c Beta-carotene og^c, Crn, Cr, P*L SPON PCV NON LA0806 crn-2, cr-2 B c Beta-carotene og^c, Crn, Cr, P*L SPON X NON LA4026

43 STOCK LISTS TGC REPORT 52, 2002 ______

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# crn-2, cr-2 bc -- bicolor bi U*JKT RAD CR IL LA0588 Bco -- Brilliant corolla L* SPON M82 NON LA4067 bi -- bifurcate inflorescence M* SPON X NON LA1786 bip -- bipinnata J* RAD LU IL LA0663 bip -- bipinnata J* RAD AC NIL LA3765 bip prov2 bipinnata bip J* CHEM VCH IL 3-602 bk -- beaked O* SPON X NON LA0330 Bk-2 -- Beaked-2 O* SPON X NON LA1787 bl -- blind K* SPON X NON LA0059 bl -- blind K* SPON AC NIL LA3745 bl 2 blind to^2 K* SPON LU IL LA0980 bl to blind to K*JLO RAD CR IL LA0709 bls -- baby lea syndrome alm A*K SPON X NON LA1004 bls -- baby lea syndrome alm A*K SPON AC NIL LA3167 bls prov2 baby lea syndrome bls A*K CHEM VCH IL 3-610 Bnag-1 1 Beta-N-acetyl-D-glucosaminidase-1 V* SPON pen NON LA2986 br -- brachytic K* SPON X NON LA2069 brt -- bushy root R* SPON X NON LA2816 brt-2 -- bushy root-2 R* SPON X NON LA3206 bs -- brown seed S* CHEM AC NIL LA2935 bs-2 -- brown seed-2 S* SPON PLB IL LA1788 bs-4 -- brown seed-4 S* RAD MM IL LA1998 btl -- brittle stem J*Y SPON X NON LA1999 bu -- bushy fru K*JM SPON AC NIL LA2918 bu -- bushy fru K*JM SPON X NON LA0897 bu ab bushy fru^ab K*JM RAD RR IL LA0549 bu cin bushy cin K*JM SPON HSD IL LA1437 bu cin-2 bushy cin-2 K*JM SPON HSD IL LA2450 bu hem bushy fru^hem K*JM RAD CR IL LA0604 bul -- bullata C*JK RAD CR IL LA0589 buo -- bullosa buo1 J*O RAD pim IL LA2000 c -- potato leaf J* SPON AC NIL LA3168 c int potato leaf int J* RAD CR IL LA0611 c int potato leaf int J* RAD AC NIL LA3728A c prov2 potato leaf c J* CHEM MM IL 3-345 c prov3 potato leaf c J* CHEM VCH IL 3-604 c prov4 potato leaf c J* CHEM VCH IL 3-609 c prov5 potato leaf c J* CHEM VCH IL 3-626 c prov6 potato leaf c J* CHEM VCH IL 3-631 car -- carinata J*DLO RAD CR IL LA0539 car-2 -- carinata-2 car2 J*K RAD pim IL LA2001 cb -- cabbage J*K AC NIL LA3819 cb-2 -- cabbage leaf-2 J*K RAD X NON LA2002 cb-2 -- cabbage leaf-2 J*K RAD AC NIL LA3169 ccf -- cactiflora N*LO CHEM CSM IL 3-805 Cf-1 -- Cladosporium fulvum resistance-1 Cf, Cf1, Cfsc Q* SPON X NON LA2443 Cf-1 3 Cladosporium fulvum resistance-1 Cf-5, Cf5 Q* SPON X NON LA2447 Cf-1 3 Cladosporium fulvum resistance-1 Cf-5, Cf5 Q* SPON MM NIL LA3046 Cf-2 -- Cladosporium fulvum resistance-2 Cf2, Cfp1 Q* SPON X NON LA2444 Cf-2 -- Cladosporium fulvum resistance-2 Cf2, Cfp1 Q* SPON MM NIL LA3043 Cf-3 -- Cladosporium fulvum resistance-3 Cf3, Cfp2 Q* SPON X NON LA2445 Cf-3 -- Cladosporium fulvum resistance-3 Cf3, Cfp2 Q* SPON MM NIL LA3044

44 STOCK LISTS TGC REPORT 52, 2002 ______

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# Cf-4 -- Cladosporium fulvum resistance-4 Cf-1^2, Cf4 Q* SPON MM NIL LA3045 Cf-4 -- Cladosporium fulvum resistance-4 Cf-1^2, Cf4 Q* SPON X NON LA2446 Cf-4 -- Cladosporium fulvum resistance-4 Cf-1^2, Cf4 Q* SPON AC NIL LA3267 Cf-6 -- Cladosporium fulvum resistance-6 Q* SPON X NON LA2448 Cf-7 -- Cladosporium fulvum resistance-7 Q* SPON X NON LA2449 Cf-9 -- Cladosporium fulvum resistance-9 Q* SPON MM NIL LA3047 cg -- congesta cg1 K*J RAD RR IL LA0831 ch -- chartreuse L* SPON PSN IL 2-253 ch -- chartreuse L* SPON AC NIL LA3720 ci -- cincta ci1 K* RAD CR IL LA0938 cit -- citriformis O*JK RAD RR IL LA2024 cjf -- confunctiflora L*N SPON PTN IL LA1056 ck -- corky fruit O* SPON X NON LA2003 cl-2 -- cleistogamous-2 cl2 L*N SPON SM IL 2-185 cla -- clara C*A RAD LU IL LA0540 clau -- clausa ff, vc J*LO RAD LU IL LA0591 clau -- clausa ff, vc J*LO RAD X NON LA0719 clau -- clausa ff, vc J*LO RAD AC NIL LA3583 clau ff clausa J*LO SPON VFSM IL 2-505 clau ics clausa ics J* SPON PTN IL LA1054 clau ics clausa ics J* SPON AC NIL LA3713 clau prov2 clausa clau J*LO SPON X IL LA0509 clau vc clausa J*LO SPON X NON LA0896 cls -- clarescens C*K RAD RR IL LA2025 clt -- coalita J* RAD LU IL LA2026 cm -- curly mottled G*JNO SPON PCV NON LA0272 cm -- curly mottled G*JNO SPON AC NIL LA2919 cma -- commutata K*DHJ RAD RR IL LA2027 Cmr -- Cucumber mosaic resistance Q* SPON X NON LA3912 cn -- cana ca D*K RAD RR IL LA0590 co -- cochlearis J*D RAD CR IL LA0592 coa -- corrotundata coa1 J*KLT RAD CR IL LA0940 com -- complicata K*J RAD CR IL LA0664 com in complicata in K*DJ RAD CR IL LA0610 com in complicata in K*DJ RAD AC NIL LA3715 con -- convalescens E*FK RAD CR IL LA0541 con -- convalescens E*FK RAD AC NIL LA3671 cor -- coriacea K*J RAD CR IL LA0666 cor -- coriacea K*J RAD AC NIL LA3743 cpa -- composita cpa1 M*K RAD RR IL LA0833 cpt -- compact K*EJ SPON XLP IL 2-377 cpt -- compact K*EJ SPON AC NIL LA3723 Cri -- Crispa H*JU RAD CR IL LA0667 Crk -- Crinkled J*T SPON X NON LA1050 crt -- cottony-root R* SPON RCH NON LA2802 cta -- contaminata cta1 K*HJN RAD RR IL LA0939 ctt -- contracta K*J RAD LU IL LA2028 Cu -- Curl J*KT SPON STD IL LA0325 Cu -- Curl J*KT SPON AC NIL LA3740 cu-2 -- curl-2 cu2 J* RAD CT IL LA2004 cu-3 -- curl-3 J*KT SPON pim NON LA2398 cul -- culcitula K*U RAD RR IL LA2029 cur -- curvifolia J*EK RAD RR IL LA0668

45 STOCK LISTS TGC REPORT 52, 2002 ______

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# cv -- curvata cu K*JT RAD LU IL LA0593 cv 2 curvata acu K*JT RAD CR IL LA0660 cva -- conversa K*D RAD CR IL LA0665 cvl -- convoluta cvl1 K*J RAD RR IL LA0830 Cvx -- Convexa J* SPON X NON LA1151 d -- dwarf rob^imm K*JT SPON GRD NIL LA3031 d -- dwarf rob^imm K*JT SPON STN NIL LA0313 d -- dwarf rob^imm K*JT SPON FB NIL LA3022 d b dwarf K*JTL SPON RR IL LA3865 d cr dwarf rob^crisp K*JT RAD CR IL LA0570 d im dwarf K*JT RAD CR IL LA0571 d prov2 dwarf d K*JT CHEM VCH IL 3-623 d provcr-2 dwarf d^cr K*JT CHEM VF36 IL 3-420 d provcr-3 dwarf d^cr K*JT CHEM VF36 IL 3-422 d x dwarf K*JT SPON PCV NON LA1052 d x dwarf K*JT SPON AC NIL LA3615 d x dwarf K*JT SPON VAN NIL LA3902 d x dwarf K*JT SPON SPZ IL LA0160 d-2 -- dwarf-2 rob2, rob II, d2 K*N RAD RR IL LA0625 dc -- decomposita dc1 J* RAD RR IL LA0819 dd -- double dwarf d^xx K*J SPON X NON LA0810 de -- declinata K*JU RAD RR IL LA0594 de -- declinata K*JU RAD AC NIL LA3742 deb -- debilis H*BCJ RAD CR IL LA0542 deb -- debilis H*BCJ RAD AC NIL LA3727 dec -- decumbens K*R RAD LU IL LA0669 def -- deformis J*LN RAD RR IL LA0543 def -- deformis J*LN RAD AC NIL LA3749 def 2 deformis vit J* RAD CR IL LA0634 def-2 -- deformis J*LN RAD AC NIL LA2920 Del -- Delta P* SPON RU NIL LA2996A Del -- Delta P* SPON M82 NON LA4099 Del -- Delta P* SPON AC NIL LA2921 deli -- deliquescens K*CJ RAD RR IL LA0595 dep -- deprimata T*J RAD CR IL LA0544 depa -- depauperata K*CJ RAD RR IL LA0596 depa -- depauperata K*CJ RAD AC NIL LA3725 det -- detrimentosa C*KF RAD RR IL LA0670 det 2 detrimentosa C*KF RAD RR IL LA0820 Df -- Defoliator Y*H SPON par NON LA0247 dg -- dark green T* SPON MP IL LA2451 dgt -- diageotropica lz-3 K*R SPON VFN8 IL LA1093 Dia-2 1 Diaphorase-2 V* SPON pen NON LA2987 Dia-3 1 Diaphorase-3 V* SPON X NON LA3345 dil -- diluta D*JK RAD CR IL LA0545 dil -- diluta D*JK RAD AC NIL LA3728 dim -- diminuta A*DK RAD LU IL LA0597 dim-2 -- diminuta-2 dim2 A*K RAD AC NIL LA3170 dis -- discolor D*F RAD CR IL LA0598 div -- divaricata C*AJK RAD CR NON LA0671 div -- divaricata C*AJK RAD AC NIL LA3818 dl -- dialytic I*LN SPON SM IL 2-069 dl -- dialytic I*LN SPON AC NIL LA3724

46 STOCK LISTS TGC REPORT 52, 2002 ______

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# dl S dialytic L*N SPON VF36 NIL LA3906 dlb -- dilabens dlb1 C*JK RAD CR IL LA0829 dm -- dwarf modifier d2 K* SPON X NON LA0014 dmd -- dimidiata K*JU RAD LU IL LA2033 dmt -- diminutiva K* CHEM VF36 IL 3-007 dp -- drooping leaf J*KT RAD CT IL LA2526 dps -- diospyros P* SPON X NON LA1016 dpy -- dumpy K*J SPON X NON LA0811 dpy -- dumpy K*J SPON AC NIL LA3171 dpy prov2 dumpy dpy K*J CHEM VCH IL 3-630 dpy prov3 dumpy dpy K*J SPON ANU IL LA1053 drt -- dwarf root R* CHEM X NON LA3207 ds -- dwarf sterile N*K SPON EPK IL 2-247 ds -- dwarf sterile N*K SPON AC NIL LA3767 dt -- dilatata dt1 C*JK RAD CR IL LA0828 dtt -- detorta J*K RAD LU IL LA2030 du -- dupla J*KU RAD LU IL LA2034 dv -- dwarf virescent F*D SPON X NON LA0155 e -- entire b J* SPON AC NIL LA2922 e prov3 entire e J* CHEM VCH IL 3-616 eca -- echinata K* RAD RR IL LA2035 el -- elongated e O* SPON AC NIL LA3738 ele -- elegans E*JK RAD CR IL LA0546 ele -- elegans E*JK RAD AC NIL LA3825 ele 2 elegans ang E*JK RAD CR IL LA0586 elu -- eluta E*K RAD LU IL LA0547 em -- emortua em1 H*K RAD AC NIL LA3817 em -- emortua em1 H*K RAD RR IL LA0827 en -- ensiform J* SPON X NON LA1787 ep -- easy peeling O* RAD MM IL LA1158 ep -- easy peeling O* RAD AC NIL LA3616 Epi -- Epinastic J*K SPON VFN8 IL LA2089 er -- erecta K*JT RAD CR IL LA0600 era -- eramosa era1 B*JK RAD CR IL LA0850 Est-1 1 Esterase-1 V* SPON pim NON LA1818 Est-1 1 Esterase-1 V* SPON cer IL LA2415 Est-1 2 Esterase-1 V* SPON pim NON LA1819 Est-1 3 Esterase-1 V* SPON pim NON LA1820 Est-1 4 Esterase-1 V* SPON par NON LA1821 Est-1 5 Esterase-1 V* SPON pen NON LA2419 Est-1 n Esterase-1 V* SPON pim NON LA1817 Est-2 1 Esterase-2 V* SPON pen NON LA2420 Est-3 1 Esterase-3 V* SPON par NON LA2421 Est-4 1 Esterase-4 V* SPON par NON LA2422 Est-4 2 Esterase-4 V* SPON pim NON LA2423 Est-4 4 Esterase-4 V* SPON PCV NON LA2425 Est-4 5 Esterase-4 V* SPON pim NON LA2426 Est-4 6 Esterase-4 V* SPON pim NON LA2427 Est-4 7 Esterase-4 V* SPON cer NON LA2428 Est-4 8 Esterase-4 V* SPON pim NON LA2429 Est-5 1 Esterase-5 V* SPON pen NON LA2430 Est-6 1 Esterase-6 V* SPON pen NON LA2431 Est-7 1 Esterase-7 V* SPON par NON LA2432

47 STOCK LISTS TGC REPORT 52, 2002 ______

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# Est-7 2 Esterase-7 V* SPON pen NON LA2433 Est-8 1 Esterase-8 V* SPON pen NON LA2988 ete -- extenuata ete1 K*JN RAD CR IL LA0942 ex -- exserted stigma L*N SPON SM IL 2-191 exl -- exilis ex D*JK RAD CR IL LA0601 exs -- excedens exs1 K*J RAD CR IL LA0852 f -- fasciated fruit O*L SPON ESC NON LA0517 f D fasciated fruit O*L SPON PCV NON LA0767 fa -- falsiflora fa1 M*N RAD RR IL LA0854 fcf -- fucatifolia fcf1 D*CK RAD CR IL LA0945 fd -- flecked dwarf G*DK RAD BK NON LA0873 fd -- flecked dwarf G*DK RAD AC NIL LA3750 Fdh-1 1 Formate dehydrogenase-1 V* SPON pen IL LA2989 fe -- fertilis J*LO RAD LU IL LA0672 fer -- fe inefficient B* X NON LA2994 fgv -- fimbriate gold virescent F*CJ SPON VF36 IL LA1143 fir -- firma K*JM RAD CR IL LA0602 fl -- fleshy calyx O* SPON X NON LA2372 fla -- flavescens D*JK RAD LU IL LA0548 fla -- flavescens D*JK RAD AC NIL LA3565 flav -- flavida C* RAD LU IL LA0603 flc -- flacca K*HW RAD RR IL LA0673 flc -- flacca K*HW RAD AC NIL LA3613 fld -- flaccida fld1 K*HJT RAD RR IL LA0943 fle -- flexifolia fle1 A*J RAD AC NIL LA3764 fn -- finely-netted D* RAD X NON LA2481 fn -- finely-netted D* RAD PSP IL LA2005 fr -- frugalis K*JT RAD CR IL LA0674 frg -- fragilis frg1 D*CJK RAD CR IL LA0864 fri 1 far red light insensitive AY* CHEM MM IL LA3809 Frl -- FORL resistance Fr1, Fr-1 Q* SPON AC NIL LA3273 Frl -- FORL resistance Fr1, Fr-1 Q* SPON VGB NON LA3841 Frs -- Frosty spot Nec H* SPON X NON LA2070 frt -- fracta K*JT RAD LU IL LA2038 fsc -- fuscatinervis dkv E* SPON VF145 IL LA0872 ft -- fruiting temperature O* SPON X NON LA2006 fu -- fusiformis C*JK RAD CR IL LA0605 fu -- fusiformis C*JK RAD AC NIL LA3070 fua -- fucata fua1 E*K RAD CR IL LA0944 fug -- fulgida fug1 E*BK RAD RR IL LA0946 ful -- fulgens E* RAD CR IL LA0550 ful 2 fulgens ful1^2 E* RAD RR IL LA0843 ful-3 -- fulgens-3 E* SPON VF36 IL LA1495 fus -- fulgescens E* RAD LU IL LA2039 Fw -- Furrowed J*KN SPON AC NIL LA3300 Fw -- Furrowed J*KN SPON PSN IL LA0192 fx -- flexa K* RAD LU IL LA2037 fy -- field yellow E* SPON AC NIL LA3295 ga -- galbina ga1 D*BE RAD CR IL LA0836 ga -- galbina ga1 D*BE RAD AC NIL LA3828 gas -- gamosepala gas1 D*JL RAD RR IL LA0947 gbl -- globula K*JU RAD LU IL LA2032 Ge c Gamete eliminator N* SPON CR NON LA0533

48 STOCK LISTS TGC REPORT 52, 2002 ______

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# Ge p Gamete eliminator N* SPON PSN NON LA0012 gf -- green flesh P* SPON PCV NON LA2071 gf -- green flesh P* SPON RU NIL LA2999 gf -- green flesh P* SPON AC NIL LA3534 gfl -- globular flower L* SPON X NON LA2984 gh -- ghost ab B*G SPON SM IL LA0295 gh-2 -- ghost-2 C*G CHEM SX IL LA2007 gi -- gibberosa J*K RAD RR IL LA2040 gib-1 -- gibberellin deficient-1 K*Y CHEM MM IL LA2893 gib-2 -- gibberellin deficient-2 K*Y CHEM MM IL LA2894 gib-3 -- gibberellin-deficient-3 K*Y CHEM MM IL LA2895 gib-3 x gibberellin-deficient-3 K*Y CHEM X NON LA2993 gl -- glauca J*F RAD CR IL LA0675 glau -- glaucescens E*JK RAD CR IL LA0606 glb -- globularis K*CJ RAD RR IL LA0677 glc -- glaucophylla D*JK RAD RR IL LA0676 glf -- globiformis glf1 K*M RAD CR IL LA0948 glg -- galapagos light green D* SPON X NON LA1059 glm -- glomerata K* RAD LU IL LA2031 glo -- globosa K* RAD CR IL LA0551 glo 2 globosa inx, intro K* RAD LU IL LA0612 glo 2 globosa inx, intro K* RAD AC NIL LA3618 glu -- glutinosa glu1 O*P RAD RR IL LA0842 gm -- gamosepalous L* RAD SX IL LA2008 Got-1 1 Glutamate oxaloacetate transaminase-1 V* SPON pim NON LA1822 Got-1 2 Glutamate oxaloacetate transaminase-1 V* SPON pim NON LA1823 Got-2 1 Glutamate oxaloacetate transaminase-2 V* SPON pim NON LA1825 Got-2 2 Glutamate oxaloacetate transaminase-2 V* SPON che NON LA1826 Got-2 3 Glutamate oxaloacetate transaminase-2 V* SPON par NON LA1827 Got-2 4 Glutamate oxaloacetate transaminase-2 V* SPON pim NON LA1828 Got-2 n Glutamate oxaloacetate transaminase-2 V* SPON pim NON LA1824 Got-3 2 Glutamate oxaloacetate transaminase-3 V* SPON pim NON LA1831 Got-3 3 Glutamate oxaloacetate transaminase-3 V* SPON par NON LA1832 Got-3 n Glutamate oxaloacetate transaminase-3 V* SPON che NON LA1829 Got-4 1 Glutamate oxaloacetate transaminase-4 V* SPON par NON LA1834 Got-4 2 Glutamate oxaloacetate transaminase-4 V* SPON pim NON LA1835 Got-4 n Glutamate oxaloacetate transaminase-4 V* SPON cer NON LA1833 gq -- grotesque L*O SPON X NON LA0137 Gr -- Green ripe gr P* SPON X NON LA2453 gra -- gracilis K*J RAD CR IL LA0607 grc -- gracillama grc1 E*JK RAD RR IL LA0950 grf -- grandifructa grf1 K*O RAD LU IL LA0951 grl -- gracilenta grl1 E*JK RAD RR IL LA0949 grn -- granulosa I* CHEM CSM IL 3-804 gro -- grossa J*DK RAD LU IL LA2041 gs -- green stripe P* SPON AC NIL LA3530 gs -- green stripe P* SPON GSM IL LA0212 h -- hairs absent H I* SPON X NON LA0154 h -- hairs absent H I* SPON AC NIL LA3172 he -- heteroidea D*JK RAD CR IL LA0679 Hero -- Heterodera rostochiensis resistance Q* SPON pim NON LA1792 hg -- heterogemma hg1 K*M RAD CR IL LA0837 hi -- hilara K*DJT RAD CR IL LA0952

49 STOCK LISTS TGC REPORT 52, 2002 ______

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# hl -- hairless I*X SPON AC NIL LA3556 hl 2 hairless cal, cal1 I*X RAD CR IL LA0937 hl prov3 hairless hl I*X CHEM VCH IL 3-095 hl prov4 hairless hl I*X CHEM VCH IL 3-126 hl prov5 hairless hl I*X CHEM VCH IL 3-605 hl-2 -- hairless-2 hl^prov6 I*OX CHEM VF36 IL 3-417 hp-1 -- high pigment-1 hp, hp1, hp2, P*T SPON AC NIL LA3538 bs, dr hp-1 -- high pigment-1 hp, hp1, hp2, P*T SPON X NON LA0279 bs, dr hp-1 -- high pigment-1 hp, hp1, hp2, P*T SPON RU NIL LA3004 bs, dr hp-1 w high pigment-1 P*T CHEM GT IL LA4012 hp-2 -- high pigment-2 hp P*T CHEM SM NIL LA3006 hp-2 -- high pigment-2 hp P*T CHEM MM NON LA4013 hp-2 j high pigment-2 hp P*T SOMA MM NON LA4014 Hr -- Hirsute I* SPON CT IL LA0895 Hrt -- Hirtum I* SPON X NON LA0501 ht -- hastate J*L SPON SM IL 2-295 hy -- homogeneous yellow E* SPON cer NON LA1142 hy -- homogeneous yellow E* SPON AC NIL LA3308 I -- Immunity to Fusarium wilt race 0 Q* SPON GRD NIL LA3042 I -- Immunity to Fusarium wilt race 0 Q* SPON VD NIL LA3025 I-2 -- Immunity to Fusarium wilt race 2 Q* SPON MM NIL LA2821 I-3 -- Immunity to Fusarium wilt race 3 Q* SPON X NON LA4025 I-3 -- Immunity to Fusarium wilt race 3 Q* SPON X NON LA4026 ic -- inclinata J*CK RAD RR IL LA0682 ica -- icana B*JK RAD RR IL LA2042 icn -- incana B*F SPON X NON LA1009 icn -- incana B*F SPON AC NIL LA3173 id -- indehiscens L*JO RAD RR IL LA0684 ida -- inordinata K*JT RAD RR IL LA2043 Idh-1 1 Isocitrate dehydrogenase-1 V* SPON hir NON LA2906 ig -- ignava D*K RAD CR IL LA0608 ig -- ignava D*K RAD AC NIL LA3752 im -- impatiens im1 K*UW RAD RR IL LA0863 imb -- imbecilla E*DK SPON CR IL LA0552 imb -- imbecilla E*DK SPON AC NIL LA3566 imp dia impedita E*K SPON CR IL LA0680 imp eg impedita E*K SPON CR IL LA0681 ina -- inflexa ina1 K* RAD LU IL LA0840 ina -- inflexa ina1 K* RAD AC NIL LA3732 inc -- incurva K*J RAD CR IL LA0609 inc -- incurva K*J RAD AC NIL LA3730 inf -- informa J*K RAD CR IL LA0553 inf -- informa J*K RAD AC NIL LA3726 ini -- inquieta ini1 I*DJK RAD RR IL LA0953 ino -- involuta ino1 K* RAD CR IL LA0954 ins -- inconstans ins1 K* RAD RR IL LA0841 inv -- invalida F*EJK RAD CR IL LA0554 inv -- invalida F*EJK RAD AC NIL LA3439 Ip -- Intense pigment P* SPON VF145 NIL LA1563 irr -- irregularis J*CT RAD CR IL LA0613

50 STOCK LISTS TGC REPORT 52, 2002 ______

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# irr -- irregularis J*CT RAD AC NIL LA3747 ita -- inquinata ita1 H*G RAD RR IL LA0839 j -- jointless lf M* SPON GRD NIL LA3033 j -- jointless lf M* SPON FB NIL LA3023 j-2 -- jointless-2 j2 M* SPON PSN NON LA0315 j-2 -- jointless-2 j2 M* SPON O8245 NON LA3899 j-2 in jointless-2 j2^in M* SPON X NON LA0756 Jau -- Jaundiced E* SPON AC NIL LA3174 jug -- jugata K*LO RAD CR IL LA0555 jug 2 jugata jug1^2 K*LO RAD LU IL LA0834 l -- lutescent g C* SPON AC NIL LA3717 l 2 lutescent rub C* RAD LU IL LA0572 l prov3 lutescent l C* SPON ROMA IL 2-491 l prov4 lutescent l C* SPON EPK NIL LA3009 l-2 -- lutescent-2 l-3, l2 C*Y SPON LRD IL LA0643 l-2 -- lutescent-2 l-3, l2 C*Y SPON AC NIL LA3581 La -- Lanceolate J* SPON PCV NON LA0335 lae -- laesa H*JK RAD RR IL LA0685 lan -- languida D*F RAD RR IL LA2044 lap -- lamprochlora lap1 J*K RAD RR IL LA0955 lat -- lata K* RAD CR IL LA0556 le -- lembiformis le1 K*ACJR RAD RR IL LA0956 lep -- leprosa lep1 H*K RAD RR IL LA0957 lg -- light-green lme D* SPON AC NIL LA3175 lg-5 -- light green-5 lg5, lm, fy, yt D* SPON AC NIL LA3176 lg-5 -- light green-5 lg5, lm, fy, yt D* SPON X NON LA0757 li -- limbrata J* RAD LU IL LA2045 Ln -- Lanata I* CHEM VF36 IL 3-071 Ln G Lanata I* CHEM FLD IL LA3127 lop -- longipes lop1 J*DK RAD CR IL LA0958 Lpg -- Lapageria J*LNT SPON VF36 IL 2-561 Lpg -- Lapageria J*LNT SPON AC NIL LA3739 ls -- lateral suppresser K*LN SPON X NON LA2892 ls -- lateral suppresser K*LN SPON AC NIL LA3761 ls -- lateral suppresser K*LN SPON AMB NON LA0329 ls 2 lateral suppresser K*LN PRI NIL LA3901 lt -- laeta lt1 E*DK RAD CR IL LA0835 ltf -- latifolia J* CHEM VF36 IL 3-035A lu -- luteola L* RAD LU IL LA0686 luc -- lucida C*F RAD CR IL LA0557 lur -- lurida lur1 E*D RAD RR IL LA0959 lut -- lutea E*F RAD CR IL LA0558 lut -- lutea E*F RAD AC NIL LA3714 Lv -- Leveillula taurica resistance Q* SPON X NON LA3118 Lv -- Leveillula taurica resistance Q* SPON X NON LA3119 Lx -- Lax J* SPON LK NON LA0505 Lx -- Lax J* SPON AC NIL LA3177 lyr -- lyrate J*NO SPON AC NIL LA2923 lyr -- lyrate J*NO SPON PCV NON LA0763 lz -- lazy K* RAD AC NIL LA3762 lz-2 -- lazy-2 K* CHEM SM NIL LA2924 lz-2 -- lazy-2 K* CHEM AC NIL LA3710 m -- mottled K* RAD AC NIL LA3568

51 STOCK LISTS TGC REPORT 52, 2002 ______

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# m-2 -- mottled-2 m2, mo, md F*D RAD AC NIL LA3574 ma -- macrocarpa J*O RAD LU IL LA0687 mac -- maculata mac1 H*K RAD CR IL LA0960 mad -- marcida mad1 T*K RAD CR IL LA0961 mar -- marcescens T*K RAD LU NON LA0688 marm -- marmorata G*D RAD CR IL LA0559 marm 2 marmorata marm1^2 G*D RAD CR IL LA0844 mc -- macrocalyx L*M SPON X NON LA0159 mcn -- maculonecrotic G*H*CF CHEM VF36 IL 3-045 mcr -- multicolor B*CH RAD LU IL LA2047 mcs -- macrosepala L*J RAD LU IL LA2046 Mdh-1 2 Malate dehydrogenase-1 V* SPON lyc NON LA3344 Mdh-4 1 Malate dehydrogenase-4 V* SPON pen NON LA2990 Me -- Mouse ears J*K SPON RU IL LA0324 Me -- Mouse ears J*K SPON AC NIL LA3552 med -- mediocris med1 K* RAD CR IL LA0962 mel -- melongenoida mel1 O*K RAD LU IL LA0963 mgn -- marginal necrotic H*C CHEM VF36 IL 3-025 Mi -- Meloidogyne incognita resistance Q* SPON VFN8 NON LA1022 Mi -- Meloidogyne incognita resistance Q* SPON MM NIL LA2819 Mi-3 -- Meloidogyne incognita resistance-3 Q* SPON per NON LA3858 mic -- microcarpa mic1 D*GLO RAD CR IL LA0845 mn -- minuta mi K*CJ RAD CR IL LA0614 mn -- minuta mi K*CJ RAD AC NIL LA3082 mon -- monstrosa K*J RAD CR IL LA0615 mon -- monstrosa K*J RAD AC NIL LA3826 mor -- morata mor1 E*K RAD RR IL LA0848 ms-2 -- male-sterile-2 ms2 N* SPON PSN IL 2-031 ms-3 -- male-sterile-3 ms3 N* SPON SM IL 2-032 ms-5 -- male-sterile-5 ms5 N* SPON SM IL 2-039 ms-6 -- male-sterile-6 ms6 N* SPON SM IL 2-044 ms-7 -- male-sterile-7 ms7 N* SPON SM IL 2-089 ms-9 -- male-sterile-9 ms9 N* SPON SM IL 2-121 ms-10 -- male-sterile-10 ms10 N* SPON SM IL 2-132 ms-10 35 male-sterile-10 ms-35, ms35 N* SPON VF11 IL 2-517 ms-10 36 male-sterile-10 ms-36 N* SPON VF36 IL 2-635 ms-11 -- male-sterile-11 ms11 N* SPON SM IL 2-152 ms-12 -- male-sterile-12 ms12 N* SPON SM IL 2-161 ms-13 -- male-sterile-13 ms13 N* SPON SM IL 2-165 ms-14 -- male-sterile-14 ms14 N* SPON ERL IL 2-175 ms-15 -- male-sterile-15 ms15 N* SPON SM IL 2-193 ms-15 26 male-sterile-15 ms26, ms-26 N* SPON VE IL 2-327 ms-15 47 male-sterile-15 ms-47 N* SPON UC82B NIL 2-837 ms-16 -- male-sterile-16 ms16 N* SPON PRT IL LA0062 ms-17 -- male-sterile-17 ms17 N* SPON ACE IL 2-225 ms-18 -- male-sterile-18 ms18 N* SPON C255 IL 2-233 ms-23 -- male-sterile-23 ms23 N* SPON EPK IL 2-273 ms-24 -- male-sterile-24 ms24 N* SPON EPK IL 2-277 ms-25 -- male-sterile-25 ms25 N* SPON RTVF IL 2-313 ms-27 -- male-sterile-27 ms27 N* SPON VE IL 2-331 ms-28 -- male-sterile-28 ms28 N* SPON XLP IL 2-355 ms-29 -- male-sterile-29 ms29 N* SPON CPC2 IL 2-423 ms-30 -- male-sterile-30 ms30 N* SPON SM IL 2-455

52 STOCK LISTS TGC REPORT 52, 2002 ______

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# ms-31 -- male-sterile-31 ms31 N* SPON VF6 IL 2-461 ms-32 -- male-sterile-32 ms32 N* SPON M167 NIL LA2713 ms-32 -- male-sterile-32 ms32 N* SPON M168 NIL LA2714 ms-32 -- male-sterile-32 ms32 N* SPON MNB NIL LA2712 ms-32 -- male-sterile-32 ms32 N* SPON cer NON LA0359 ms-32 -- male-sterile-32 ms32 N* SPON POR NIL LA2715 ms-33 -- male-sterile-33 ms33 N* SPON VF11 IL 2-511 ms-34 -- male-sterile-34 ms34 N* SPON VF11 IL 2-513 ms-38 -- male-sterile-38 ms38 N* SPON VF36 IL 2-539 ms-38 40 male-sterile-38 ms-40 N* SPON VF36 IL 2-553 ms-39 -- male-sterile-39 N* SPON VF36 IL 2-549 ms-44 -- male-sterile-44 N* CHEM SM IL LA2090 ms-45 -- male-sterile-45 N* SPON VFN8 IL 2-659 ms-46 -- male-sterile-46 N* SPON VFN8 IL 2-681 Ms-48 -- Male-sterile-48 N* CHEM VCH NIL LA3199 Ms-48 -- Male-sterile-48 N* CHEM VF36 NIL LA3191 Ms-48 -- Male-sterile-48 N* CHEM CSM IL 2-839 Ms-48 -- Male-sterile-48 N* CHEM T5 NIL LA3198 ms-49 -- male-sterile-49 N* SPON per NON LA1161 mt -- midget K*N SPON NRT IL LA0282 mta -- mutata mta1 K*EFJ RAD RR IL LA0965 mts -- mortalis mts1 K*JM RAD RR IL LA0849 mu -- multinervis D*J RAD CR IL LA0690 mu -- multinervis D*J RAD AC NIL LA3573 mu 3 multinervis rv-3 D*J CHEM VF36 IL 3-033 mua -- multifurcata mua1 K*M RAD CR IL LA0851 muf -- multifolia J*DK RAD RR IL LA0689 mult -- multiflora M* RAD CR IL LA0560 mup -- multiplicata mup1 M*L RAD RR IL LA0846 mut -- mutabilia mut1 K*DT RAD RR IL LA0866 muv-2 -- multivalens-2 mus1 C*FJK RAD CR IL LA0964 muv-2 -- multivalens-2 mus1 C*FJK RAD AC NIL LA3758 mux -- multiplex mux1 L*KM RAD CR IL LA0847 n -- nipple-tip nt O* SPON X NON LA2353 n -- nipple-tip nt O* SPON X NON LA2370 na -- nana K*J RAD CR IL LA0561 nc -- narrow cotyledons J* SPON AC NIL LA3178 nd -- netted m-4 F* RAD AC NIL LA3584 ndw -- necrotic dwarf H*JK SPON M82 NIL LA4061 ndw -- necrotic dwarf H*JK SPON X NON LA3142 ne -- necrotic H* SPON X NON LA2350 ne -- necrotic H* SPON AC NIL LA3084 neg -- neglecta H*DK RAD CR IL LA0562 neg -- neglecta H*DK RAD AC NIL LA3746 neg ne-2 neglecta ne-2, ne2 H*DK RAD AC NIL LA3621 neg ne-2 neglecta ne-2, ne2 H*DK RAD X NON LA2489 neg ne-2 neglecta ne-2, ne2 H*DK RAD CT IL LA2454 Nir-1 1 Nitrate reductase-1 V* SPON pen IL LA2908 nor -- non-ripening P* SPON X NON LA1793 nor -- non-ripening P* SPON RU NIL LA3013 nor -- non-ripening P* SPON AC NIL LA3770 not -- notabilis W*EHJY RAD LU IL LA0617 not -- notabilis W*EHJY RAD AC NIL LA3614

53 STOCK LISTS TGC REPORT 52, 2002 ______

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# Nr -- Never ripe P* SPON PSN IL LA0162 Nr -- Never ripe P* SPON RU NIL LA3001 Nr -- Never ripe P* SPON AC NIL LA3537 Nr-2 -- Never ripe-2 P* SPON X NON LA2455 nv -- netted virescent E*F SPON X NON LA0786 o -- ovate O* SPON AC NIL LA3543 O 1 Oval ol O* SPON X NON LA0271 ob -- obscura T*K RAD RR IL LA0691 obl -- oblate fruit O* RAD MM NIL LA1159 oc -- ochroleuca G*BK RAD RR IL LA0692 Od -- Odorless K* SPON PCV NON LA0292 oli -- olivacea -- RAD AC NIL LA3722 op -- opaca D*CF RAD CR IL LA0618 op -- opaca D*CF RAD AC NIL LA3567 opa -- opacata opa1 E*K RAD CR IL LA0966 or -- ordinata D*F RAD RR IL LA2048 Ora -- Orobanche aegyptica resistance Q* SPON X NON LA2530 os -- oligosperma os1 K*JT RAD CR IL LA0868 ovi -- oviformis ovi1 J*O RAD LU IL LA0967 p -- peach O*I SPON X NON LA2357 pa-2 -- parva-2 pa1, pa2 K*J RAD CR IL LA0970 pal -- pallida D*L RAD CR IL LA0563 pap -- paupercula J*W RAD RR IL LA2050 pas -- pallescens pas1 D*K RAD CR IL LA0968 pat -- parthenocarpic fruit S* CHEM ROMA IL LA2013 pat-2 -- parthenocarpic fruit-2 S* SPON X NON LA2413 pau -- pauper K* RAD CR NON LA0877 pct -- polycot J*KLMS SPON MM NON LA2896 pcv -- polychrome variegated G*BDJ SPON X NON LA1199 pdc -- pudica K*JT CHEM VF36 IL 3-047 pds -- phosphorus deficiency syndrome Ph-oid A*CY SPON X NON LA0813 pdw -- pale dwarf V* SPON X NON LA2457 pdw -- pale dwarf V* SPON X NON LA2490 pe -- sticky peel O* SPON X NON LA0759 pen -- pendens J*C RAD CR IL LA0694 pen -- pendens J*C RAD AC NIL LA3293 per -- perviridis A*KT RAD RR IL LA0564 pet -- penetrabile pet-2, pet2 K*J RAD CR IL LA0971 Pgdh-2 1 6-Phosphogluconate dehydrogenase-2 V* SPON pen NON LA2991 Pgdh-3 1 6-Phosphogluconate dehydrogenase-3 V* SPON pen NON LA2434 Pgi-1 1 Phosphoglucoisomerase-1 V* SPON pen NON LA2435 Pgi-1 2 Phosphoglucoisomerase-1 V* SPON par NON LA2436 Pgm-1 1 Phosphoglucomutase-1 V* SPON hir NON LA2437 Pgm-2 1 Phosphoglucomutase-2 V* SPON pen NON LA2438 Ph -- Phytophthora infestans resistance PiT, TR1 Q* SPON X NON LA2009 Ph-2 -- Phytophthora infestans resistance Q* SPON UC82 NIL LA3151 Ph-2 -- Phytophthora infestans resistance Q* SPON MNB NIL LA3152 pi -- pistillate L*N SPON SM IL 2-137 pi-2 -- pistillate-2 N*LM CHEM CSM IL 3-802 pic -- picta H*C RAD CR IL LA0620 pl -- perlucida pl1 D*CJ RAD AC NIL LA3296 pl -- perlucida pl1 D*CJ RAD CR IL LA0867 pla -- plana D*CK RAD CR IL LA0695

54 STOCK LISTS TGC REPORT 52, 2002 ______

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# pli -- plicata K*ABJ RAD LU IL LA0696 pli -- plicata K*ABJ RAD AC NIL LA3672 pm -- praematura pm1 Z*CJK RAD RR IL LA0855 Pn -- Punctate A*I SPON X NON LA0812 Pn -- Punctate A*I SPON AC NIL LA3089 pol -- polylopha K*JO RAD LU IL LA0697 Pox -- Poxed fruit P* SPON X NON LA2366 pp -- polyphylla pp1 J*D RAD RR IL LA0860 ppa -- purpurea A* RAD LU IL LA2054 pr -- propeller J* RAD X NON LA0326 pr -- propeller J* RAD AC NIL LA2925 prc -- procumbens K*CJ RAD CR IL LA0698 pre -- pressa K*J RAD RR IL LA2053 pro -- procera J*Z RAD CR IL LA0565 pro -- procera J*Z RAD AC NIL LA3283 prt -- protea prt1 C*JK RAD CR IL LA0972 prun -- prunoidea O*J RAD LU IL LA0566 Prx-1 1 Peroxidase-1 V* SPON pim NON LA1837 Prx-1 2 Peroxidase-1 V* SPON pim NON LA1838 Prx-1 3 Peroxidase-1 V* SPON pim NON LA1839 Prx-1 4 Peroxidase-1 V* SPON chm NON LA1840 Prx-1 5 Peroxidase-1 V* SPON pim NON LA1841 Prx-1 n Peroxidase-1 V* SPON pim NON LA1836 Prx-2 1 Peroxidase-2 V* SPON cer NON LA1843 Prx-2 3 Peroxidase-2 V* SPON pim NON LA1845 Prx-2 n Peroxidase-2 V* SPON pim NON LA1842 Prx-3 1 Peroxidase-3 V* SPON pim NON LA1847 Prx-3 2 Peroxidase-3 V* SPON pim NON LA1848 Prx-3 a1 Peroxidase-3 V* SPON chm NON LA1849 Prx-3 n Peroxidase-3 V* SPON pim NON LA1846 Prx-4 1 Peroxidase-4 V* SPON pim NON LA1850 Prx-4 2 Peroxidase-4 V* SPON pim NON LA1851 Prx-4 3 Peroxidase-4 V* SPON pim NON LA1852 Prx-4 4 Peroxidase-4 V* SPON chm NON LA1853 Prx-4 5 Peroxidase-4 V* SPON chm NON LA1854 Prx-4 6 Peroxidase-4 V* SPON par NON LA1855 Prx-4 7 Peroxidase-4 V* SPON STN NON LA1856 Prx-4 8 Peroxidase-4 V* SPON pim NON LA1857 Prx-4 9 Peroxidase-4 V* SPON pim NON LA1858 Prx-4 10 Peroxidase-4 V* SPON cer NON LA1859 Prx-4 11 Peroxidase-4 V* SPON pim NON LA1860 Prx-4 12 Peroxidase-4 V* SPON pim NON LA1861 Prx-4 13 Peroxidase-4 V* SPON pim NON LA1862 Prx-4 14 Peroxidase-4 V* SPON pim NON LA1863 Prx-4 15 Peroxidase-4 V* SPON pim NON LA1864 Prx-4 17 Peroxidase-4 V* SPON pim NON LA1866 Prx-4 18 Peroxidase-4 V* SPON pim NON LA1867 Prx-4 19 Peroxidase-4 V* SPON pim NON LA1868 Prx-4 20 Peroxidase-4 V* SPON cer NON LA1869 Prx-4 21 Peroxidase-4 V* SPON pim NON LA1870 Prx-4 22 Peroxidase-4 V* SPON pim NON LA1871 Prx-4 23 Peroxidase-4 V* SPON pim NON LA1872 Prx-7 1 Peroxidase-7 V* SPON pim NON LA1873

55 STOCK LISTS TGC REPORT 52, 2002 ______

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# Prx-7 2 Peroxidase-7 V* SPON pim NON LA1874 Prx-7 n Peroxidase-7 V* SPON pim NON LA1875 ps -- positional sterile va L*N SPON JBR IL LA0063 ps prov2 positional sterile ps L*N SPON PSN IL 2-303 ps-2 -- positional sterile-2 L*N SPON STR24 IL LA3632 ps-2 -- positional sterile-2 L*N SPON X NON LA2010 ps-2 -- positional sterile-2 L*N SPON VRB IL LA3631 psa -- perspicua D*J RAD LU IL LA2051 pst -- persistent style O* SPON ESC IL 2-005 pt -- petite D* RAD AC NIL LA3768 pta -- partiaria J* RAD RR IL LA2049 ptb -- protuberant O* SPON X NON LA1017 ptb -- protuberant O* SPON X NON LA1018 Pto -- Pseudomonas syringae pv tomato resis. Q* SPON X NON LA2396 Pto -- Pseudomonas syringae pv tomato resis. Q* SPON RG NIL LA3342 Pto -- Pseudomonas syringae pv tomato resis. Q* SPON MM NIL LA3472 Pto 2 Pseudomonas syringae pv tomato resis. Q* SPON RH13 NON LA3129 Pto Pto-2 Pseudomonas syringae pv tomato resis. Pto-2 Q* SPON pim NON LA2934 Pts -- Petroselinum leaf J* SPON VF36 NIL LA2532 pu -- pulvinata pul K*J RAD RR IL LA0621 pu 2 pulvinata pu2 K*J RAD CR IL LA0973 pum -- pumila K* RAD CR IL LA0567 pum -- pumila K* RAD AC NIL LA3741 pun -- punctata pun1 J*DGKT RAD RR IL LA0974 pur -- purilla K*C RAD CR NON LA0568 px -- praecox px1 K*JOZ RAD LU IL LA0856 py -- pyramidalis K*CJT RAD RR IL LA2055 pyl -- Pyrenochaeta lycopersici resistance py, py-1 Q* SPON X NON LA2531A r -- yellow flesh P* SPON C37 NIL LA3003 r -- yellow flesh P* SPON AC NIL LA3532 r -- yellow flesh P* SPON RU NIL LA2997 r (2s) yellow flesh r^3, r-2, r2 P* RAD RR IL LA2056 r prov4 yellow flesh r P* SPON PSN IL 2-141 r prov5 yellow flesh r P* SPON EPK IL LA0353 ra -- rava D*CIJK RAD CR IL LA0569 ra 2 rava gri D*CIJK RAD RR IL LA0678 rd -- reduced K* SPON X NON LA2459B re -- reptans K* RAD RR IL LA0624 rela -- relaxata K*D RAD AC NIL LA3757 rela -- relaxata K*D RAD CR IL LA0622 rep -- repens K*J RAD CR IL LA0623 rep-2 -- repens-2 K*J RAD LU IL LA2057 res -- restricta res1 C*ADJK RAD RR IL LA1085 res -- restricta res1 C*ADJK RAD AC NIL LA3756 Rg-1 -- Regeneration-1 SPON GT NON LA4136 ri -- ridged rl J*R RAD X NON LA1794 ri -- ridged rl J*R RAD AC NIL LA3180 ria -- rigidula ria1 C*JKT RAD CR IL LA0825 ria 2 rigidula ria1^2 C*JKT RAD LU IL LA0975 rig -- rigida C*K RAD CR IL LA0699 rig 2 rigida pca, pca1 C*K RAD LU IL LA0822 rig-2 -- rigida-2 C*K RAD AC NIL LA3716 rin -- ripening inhibitor P* SPON X NON LA1795

56 STOCK LISTS TGC REPORT 52, 2002 ______

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# rin -- ripening inhibitor P* SPON AC NIL LA3754 rin -- ripening inhibitor P* SPON RU NIL LA3012 rl -- radial cracking resistance ra O* SPON AC NIL LA3092 ro -- rosette K* RAD X NON LA0270 roa -- rotundata roa1 J*DK RAD CR IL LA0976 rot -- rotundifolia J*K RAD RR IL LA0700 rot -- rotundifolia J*K RAD AC NIL LA3751 Rs -- Root suppressed R* RAD X NON LA1796 rt -- potato virus Y resistance Q* SPON SCZ IL LA1995 rtd -- retarded dwarf J*K SPON X NON LA1058 ru -- ruptilis J*D RAD CR IL LA0626 ru -- ruptilis J*D RAD AC NIL LA3440 ru prov2 ruptilis ru J*D CHEM VF36 IL 3-081 rust -- rustica K*J RAD LU IL LA0573 rust -- rustica K*J RAD AC NIL LA3766 rv-2 -- reticulate virescent-2 D*C CHEM SX IL LA2011 rvt -- red vascular tissue X* SPON X NON LA1799 s -- compound inflorescence M* SPON X NON LA0330 s -- compound inflorescence M* SPON AC NIL LA3181 sa -- sphacelata sa1 H*CK RAD CR IL LA0865 sar -- squarrulosa sar1 K* RAD CR IL LA0978 scf -- scurfy J* SPON PCV NON LA0767 scl -- seasonal chlorotic lethal C* SPON X NON LA1007 sd -- sundwarf K* SPON X NON LA0015 sd -- sundwarf K* SPON AC NIL LA3182 Se -- Septoria lycopersici resistance Q* SPON X NON LA1800 sem -- semiglobosa K*JT RAD CR IL LA0701 ses -- semisterilis ses1 C*DKN RAD LU IL LA0826 sf -- solanifolia J*LO SPON PSN IL 2-311 sf -- solanifolia J*LO SPON AC NIL LA3674 sf wl solanifolia wl, wr J*LO CHEM ROMA IL LA2012 sfa -- sufflaminata sfa1 C*AEK RAD RR IL LA0862 sfa 2 sufflaminata par C*AEK RAD CR IL LA0969 sft -- single flower truss M* SPON PTN IL LA2460 sh -- sherry P* RAD CX IL LA2644 sha -- short anthers L*N CHEM ROMA IL LA2013 si -- sinuata E*JK RAD RR IL LA0993 si -- sinuata E*JK RAD AC NIL LA3728B sig-1 -- signal transduction-1 JL1 Y* CHEM CSM IL LA3318 sig-2 -- signal transduction-2 JL5 Y* CHEM CSM IL LA3319 sit -- sitiens W*HJKY RAD RR IL LA0574 Skdh-1 1 Shikimic acid dehydrogenase-1 V* SPON pen NON LA2439 sl -- stamenless L*N SPON X NON LA0269 sl -- stamenless L*N SPON AC NIL LA3816 sl cs stamenless cs, sl^5, sl5 L*N SPON ONT IL LA1789 sl-2 -- stamenless-2 sl2 L*N SPON X NON LA1801 slx -- serrate lax leaf J* SPON PCV NON LA0503 Sm -- Stemphyllium resistance Q* SPON MM IL LA2821 Sm -- Stemphyllium resistance Q* SPON X NON LA1802 sn -- singed I* SPON CX IL LA2015 so -- soluta J* RAD LU IL LA2058 Sod-1 1 Superoxide dismutase-1 V* SPON pen NON LA2909 Sod-2 1 Superoxide dismutase-2 V* SPON pen NON LA2910

57 STOCK LISTS TGC REPORT 52, 2002 ______

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# sp -- self-pruning K* SPON X NON LA0490 sp -- self-pruning K* SPON GRD NIL LA3133 sp -- self-pruning K* SPON X NON LA0154 sp prov2 self-pruning K* RAD spVCH IL LA2705 spa -- sparsa E*BK RAD CR IL LA0703 spe -- splendida spe1 C*K RAD RR IL LA0977 sph -- sphaerica K*T RAD CR IL LA0704 sph -- sphaerica K*T RAD AC NIL LA3744 Spi 2 Sympodial index K* SPON pen NON LA0716 spl -- splendens spl1 C*DJ RAD LU IL LA0821 spl -- splendens spl1 C*DJ RAD AC NIL LA3282 squa -- squarrosa D*KU RAD LU IL LA0627 sr -- slender stem sm J*KU RAD CT IL LA1803 ss -- spongy seed S* RAD AC NIL LA3619 sta -- stabilis K* RAD RR IL LA2060 ste -- sterilis J*DKN RAD CR IL LA0705 stri -- stricta J*K RAD LU IL LA0575 stu -- stunted J* SPON X NON LA2461 su -- suffulta C*JM RAD LU IL LA0628 su 2 suffulta exa C*JM RAD RR IL LA0853 su 3 suffulta di C*J RAD CR IL LA0599 su ni suffulta di^ni, ni C*J RAD CR IL LA0616 sua -- suffusa D*CK RAD RR IL LA0707 sub -- subtilis J*K RAD LU IL LA0576 suc -- succedanea C*JK RAD CR IL LA0706 sucr -- sucrose accumulator TIV1 P* SPON chm NIL LA4104 suf -- sufflava D* RAD AC NIL LA3569 suf -- sufflava D* RAD CR IL LA0577 sup -- superba K*JT RAD RR IL LA2061 Sw-5 -- Spotted wilt resistance-5 Q* SPON X NON LA3667 sy -- sunny ye F*CE RAD AC NIL LA3553 syv -- spotted yellow virescent F*CG SPON PCV NON LA1096 t -- tangerine P*L SPON X NON LA0030 t -- tangerine P*L SPON AC NIL LA3183 t v tangerine P*L RAD CX IL LA0351 t v tangerine P*L RAD RU NIL LA3002 ta -- tarda D*JK RAD CR IL LA0708 tab -- tabescens E*HJK RAD RR IL LA0629 tab -- tabescens E*HJK RAD AC NIL LA3734 tc -- turbinate corolla L*K CHEM SM IL LA2017 te -- terminata te1 K*LMO RAD LU IL LA0861 tem -- tempestiva tem1 K*DJ RAD CR IL LA0979 ten -- tenuis Y*DK RAD CR IL LA0578 ten -- tenuis Y*DK RAD AC NIL LA3748 tf -- trifoliate ct, tri J*KN SPON X NON LA0512 tf 2 trifoliate tri J*KN RAD CR IL LA0579 ti -- tiny plant K* SPON X NON LA1806 tl -- thiaminless Y*C SPON AC NIL LA3712 Tm -- Tobacco mosaic virus resistance Q* SPON X NON LA2369 Tm-2 -- Tobacco mosaic virus resistance-2 Tm2 Q* SPON VD NIL LA3027 Tm-2 a Tobacco mosaic virus resistance-2 Tm-2^2 Q* SPON MM NIL LA3310 Tm-2 a Tobacco mosaic virus resistance-2 Tm-2^2 Q* SPON AC NIL LA3769 Tm-2 a Tobacco mosaic virus resistance-2 Tm-2^2 Q* SPON VD NIL LA3028

58 STOCK LISTS TGC REPORT 52, 2002 ______

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# tmf -- terminating flower K*M SPON X NON LA2462 tn -- tenera K*U RAD LU IL LA2062 tp -- tripinnate leaf J*K RAD AC NIL LA3184 tp -- tripinnate leaf J*K RAD CT IL LA0895 Tpi-2 1 Triosephosphate isomerase-2 V* SPON pen NON LA2440 tr -- truncata tr1 D*CJK RAD CR IL LA0710 tri 1 temporarily red light insensitive AKY* CHEM GT IL LA3808 trs -- tristis J* CHEM NON 3-057 Ty-1 -- TYLCV resistance Q* SPON X NIL LA3473 u -- uniform ripening u1 P* SPON AC NIL LA3247 u -- uniform ripening u1 P* SPON LRD IL LA0643 u -- uniform ripening u1 P* SPON GRD NIL LA3035 u G uniform ripening P* SPON X NON LA1018 ub -- umbraculiformis J*K RAD LU IL LA2063 uf -- uniflora M* SPON PTN IL LA1200 uf -- uniflora M* SPON AC NIL LA2936 ug -- uniform gray-green u2 P* SPON OGA IL LA0021 ug -- uniform gray-green u2 P* SPON AC NIL LA3539 ul -- upright leaf K* SPON X NON LA2463 um -- umbrosa K*JRT RAD CR IL LA0630 um -- umbrosa K*JRT RAD AC NIL LA3733 uni -- unicaulis K* RAD CR IL LA0580 up -- upright pedicel L* SPON FLD IL LA2397 upg -- upright growth K* SPON X NON LA2464A v-2 -- virescent-2 v2 F*D SPON X NON LA2465 v-2 -- virescent-2 v2 F*D SPON AC NIL LA3185 v-3 -- virescent-3 V3 F*B SPON PSN IL LA2707 va dec varia F*E RAD CR IL LA0581 va dec varia F*E RAD AC NIL LA3669 va virg varia F*E RAD CR IL LA0582 var -- variabilis D*EK RAD CR IL LA0583 Ve -- Verticillium resistance Q* SPON MM NIL LA2818 Ve -- Verticillium resistance Q* SPON GRD NIL LA3038 Ve -- Verticillium resistance Q* SPON AC NIL LA3277 ven -- venosa J*BDK RAD AC NIL LA3564 ven -- venosa J*BDK RAD LU IL LA0888 ver -- versicolor yv-4, ver1 G*C RAD CR IL LA0632 ves-2 -- versiformis-2 vf C*JK RAD LU IL LA1078 vg -- vegetative L*N SPON AC NIL LA2916 vga -- virgulta vga1 D*EFK RAD RR IL LA0858 vi -- villous I* SPON X NON LA0759 vio -- violacea D*A RAD LU IL LA0633 vio -- violacea D*A RAD AC NIL LA3734A vir -- viridis T*J RAD CR IL LA0585 vlg -- virescent light green F*D CHEM VF36 IL 3-128 vms -- variable male-sterile N*L SPON SM IL 2-219 vo -- virescent orange F*CP SPON ROVF IL LA1435 vo -- virescent orange F*CP SPON RU NIL LA2995 vra -- viridula vra1 D*JK RAD CR IL LA0857 vt -- vieta J*CFK RAD LU IL LA2064 w -- wiry J*LN RAD CX NON LA0274 w-3 -- wiry-3 w3, w2 J*LN RAD FEY NON LA1498 w-4 -- wiry-4 w4 J*LN SPON PSN IL 2-237

59 STOCK LISTS TGC REPORT 52, 2002 ______

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# w-6 -- wiry-6 J* RAD RR IL LA2065 Wa -- White anthers L* SPON VF36 NIL LA3906 wd -- wilty dwarf R*K SPON SM IL 2-110 wf -- white flower L* RAD AC NIL LA3575 Wlt -- Wilty W* SPON LGPL NON LA3203 Wo -- Wooly I* SPON X IL LA0053 Wo -- Wooly I* SPON AC NIL LA3186 Wo m Wooly I* SPON AC NIL LA3718 Wo m Wooly I* SPON RU IL LA0258 Wo mz Wooly I* SPON VF145 IL LA1908 Wo v Wooly I* SPON RU IL LA1531 Wo v Wooly I* SPON AC NIL LA3560 wt -- wilty J*W SPON X NON LA0030 wv -- white virescent F*B SPON X NON LA0659 wv -- white virescent F*B SPON AC NIL LA3187 wv-2 -- white virescent-2 F*B SPON X NON LA1150 wv-3 -- white virescent-3 F*B SPON X NON LA1432 x -- gametophytic factor N* SPON X NON LA2348 Xa -- Xanthophyllic C* SPON X NON LA2470 Xa -- Xanthophyllic C* SPON AC NIL LA3579 Xa-2 -- Xanthophyllic-2 Xa2, A C* RAD AC NIL LA3188 Xa-2 -- Xanthophyllic-2 Xa2, A C* RAD X NON LA2471 Xa-2 -- Xanthophyllic-2 Xa2, A C* RAD X NON LA4134 Xa-3 -- Xanthophyllic-3 Xa3 C* RAD AC NIL LA3430 Xa-3 -- Xanthophyllic-3 Xa3 C* RAD CR IL LA2472 xan-2 -- xantha-2 xan2 C* RAD AC NIL LA3759 xan-4 -- xantha-4 xan4 C* RAD AC NIL LA3760 y -- colorless fruit epidermis P* SPON AC NIL LA3189 yg-2 -- yellow-green-2 yc, yg282, yg2 E* RAD AC NIL LA3551 yg-2 -- yellow-green-2 yc, yg282, yg2 E* RAD KK IL LA2469A yg-2 aud yellow-green-2 yg-2^r, aud E* SPON AC NIL LA3165 yg-2 aud yellow-green-2 yg-2^r, aud E* SPON X NON LA1008 yg-3 -- yellow-green-3 yg3, yg330, ye E* RAD KK NIL LA2926 yg-4 -- yellow-green-4 yg4, yl, yg333 E*J RAD KK NIL LA2927 yg-4 -- yellow-green-4 yg4, yl, yg333 E*J RAD AC NIL LA3731 yg-5 -- yellow-green-5 yw, yg388, E* RAD AC LA2928B yg5 yg-5 -- yellow-green-5 yw, yg388, E* RAD RCH NIL LA2928 yg5 yg-5 -- yellow-green-5 yw, yg388, E* RAD AC NIL LA2928A yg5 yg-9 -- yellow-green-9 E* SPON C28 IL LA2708 yv -- yellow virescent E* SPON AC NIL LA3554 yv -- yellow virescent E* SPON SM IL LA0055 yv 2 yellow virescent vel^2, vel1^2 E* RAD CR IL LA0981 yv 3 yellow virescent vel E* RAD CR IL LA0631 yv ms yellow virescent E*N X LA3907 yv-2 -- yellow virescent-2 E* SPON AC NIL LA3190 yv-4 -- yellow virescent-4 E* SPON AC NIL LA3570

60 STOCK LISTS TGC REPORT 52, 2002 ______

Table 2. Definition of phenotypic classes of mutants. The primary phenotypic category of each allele is indicated by a ‘*’ in Table 1.

CLASS DESCRIPTION A Anthocyanin modifications: intensification, reduction, elimination B Chlorophyll deficiency: white or whitish C Chlorophyll deficiency: yellow or yellowish D Chlorophyll deficiency: light, grey, or dull green E Chlorophyll deficiency: yellow-green F Virescent: chlorophyll deficiency localized at growing point G Variegation, flecking or striping H Leaf necrosis I Hair modifications: augmentation, reduction, distortion, elimination J Leaf form and size K Plant habit and size L Flower form and color M Inflorescence (exclusive of L) N Sterility: any condition leading to partial or complete unfruitfulness O Fruit form and surface texture P Fruit color and flavor, ripening modification Q Disease resistance R Root modification S Seed T Foliage color: dark U Foliage color, miscellaneous: olive, brown, blue-green V Allozyme variant W Overwilting stomatal defect X Vascular modification Y Nutritional or hormonal disorder Z Precocious development

61 STOCK LISTS TGC REPORT 52, 2002 ______

Table 3. Definition of abbreviations used for background genotypes in Table 1, and corresponding accession numbers. na=not available.

BACK GENOTYPE ACC# BACK GENOTYPE ACC# A-1 A-1 LA0818 per L. peruvianum many AC Ailsa Craig LA2838 pim L. pimpinellifolium many ACE Ace LA0516 PLB Pieralbo na ALA Alabama na POR Porphyre LA2715 AMB Antimold-B LA3244 PRI Primabel LA3903 ANU Anahu LA3143 PRN Prairiana LA3236 BK Budai Korai na PRT Pritchard LA3233 BOD Break O'Day LA1499 PSN Pearson LA0012 C255 Cal 255 LA0198 PSP Prospero LA3229 C28 Campbell 28 LA3317 PTN Platense LA3243 cer L. esc. var. cerasiforme many RCH Red Cherry LA0337 CG Chico Grande LA3121 RG Rio Grande LA3343 che L. cheesmanii many RH13 Rehovot 13 LA3129 chi L. chilense many RNH Rouge Naine Hative na chm L. chmielewskii many ROMA Roma na CR Condine Red LA0533 ROVF Roma VF na CRGL Craigella LA3247 RR Rheinlands Ruhm LA0535 CSM Castlemart LA2400 RSWT Roumanian Sweet LA0503 CT Chatham na RTVF Red Top VF LA0276 CX Canary Export LA3228 RU Rutgers LA1090 E6203 E-6203 LA4024 SCZ Santa Cruz LA1021 EPK Earlipak LA0266 SM San Marzano LA0180 ERL Earliana LA3238 spVC VFNT Cherry (sp) LA2705 ESC Early Santa Clara LA517 SPZ San Pancrazio na FB Fireball LA3024 STD Stokesdale LA1091 FEY First Early na STN Stone LA1506 FLD Flora-Dade LA3242 STR2 Start 24 LA3632 GRD Gardener LA3030 SX Sioux LA3234 GSM Gulf State Market LA3231 T338 UC-T338 LA2939 H100 Hunt 100 LA3144 T-5 T-5 LA2399 hir L. hirsutum many TGR Targinnie Red LA3230 HSD Homestead 24 LA3237 TR44 UC-TR44 LA2940 JBR John Baer LA1089 TR51 UC-TR51 LA2941 KK Kokomo LA3240 TVD Vendor (Tm-2a) LA2968 LGPL Large Plum LA3203 UC82 UC-82B LA3772 LK Laketa LA0505 VCH VFNT Cherry LA1221 LRD Long Red LA3232 VD Vendor LA3122 LU Lukullus LA0534 VE Van's Early na lyc S. lycopersicoides many VF11 VF-11 LA0744 M167 Montfavet 167 LA2713 VF145 VF-145 78-79 LA1222 M168 Montfavet 168 LA2714 VF36 VF-36 LA0490 MD Marmande LA1504 VF6 VF-6 LA0743 MGB Marglobe LA0502 VFN8 VFN-8 LA1022 MM Moneymaker LA2706 VFSM VF San Marzano na MNB Monalbo LA2818 VGB Vagabond LA3246 MP Manapal LA2451 VRB Vrbikanske nizke LA3630 MR20 UC-MR20 LA2937 VTG Vantage LA3905 N28 UC-N28 LA2938 WA Walter LA3465 NRT Norton na X unknown or hybrid na O8245 Ohio 8245 na XLP XL Pearson na OGA Ohio Globe A LA1088 ONT Ontario na par L. parviflorum many PCV primitive cultivar na pen L. pennellii many

62 MEMBERSHIP LIST TGC REPORT 52, 2002 ______Membership list

Aarden, Harriette, Western Seed Semillas S.A., Apdo Correos 22, 35240 - Carrizal - Ingenio, Las Palmas de Gran Canaria, Spain, [email protected] Adams, Dawn, Campbell R&D, 28065 County Road 104, Davis, CA, 95616, [email protected] Alvarez, Marta, Instituto Nacional de Ciencias Agricolas (INCA), Gaveta Postal 1, 32700 San Jose de las Lajas, La Habana, CUBA, [email protected] Anand, N., Namdhari Seeds, #119 9th Main Road Arasappa Complex, Ideal Homes Township Rajarajeswarinagar, Bangalore 560 098, INDIA, [email protected] Angell, Frederick, Pearl Seed Company, 7281 Miller Avenue, Gilroy, CA, 95020, [email protected] Augustine, Jim, BHN Research, 16750 Bonita Beach Rd., Bonita Springs, FL, 34135, [email protected] Ayuso, Ma Cruz, Petoseed Iberica, Carretera de Malaga 34, 04710 Santa Maria del Aguila, Almeria, SPAIN Baas, Jeroen, Hortigenetics research (SE Asia Ltd.), 33 Moo 4, Tambon Nongbor, Amphur Songphinong, 72190 Suphanburi, THAILAND, [email protected] Baker, Barbara, USDA-ARS-PGEC, 800 Buchanan St., Albany, CA, 94710 Bar, Moshe, Zeraim Gedera Ltd, Seed Company, POB 103, Gedera 70750, ISRAEL, [email protected] Barker, Susan, The University of Western Australia, School of Plant Biology, 35 Stirling Highway, Crawley 6009, Western Australia Beck Bunn, Teresa, Seminis Vegetable Seeds, 37437 State Highway 16, Woodland, CA, 95695, [email protected] Bergamini, Leopoldo, ESASEM SPA., Via San Biagio 25, 37052 CASALEONE VR, ITALY, [email protected] Bessey, Paul, 2602 E. Arroyo Chico, Tucson, AZ, 85716, [email protected] Bistra, Atanassova, Inst. Gen. & Plant Breeding, Sofia 1113, BULGARIA, [email protected] Bowler, Chris, Stazione Zooligica, Molecular Plant Biology, Villa Communale, I 80121 Napoli, ITALY, [email protected] Briggs, Carroll, Shamrock Seed, P.O. Box 1318, San Juan Bautista, CA, 95045-1318, [email protected] Burdick, Allan, 3000 Woodkirk Drive, Columbia, MO, 65203 Carrijo, Iedo Valentim, Seminis Vegetable Seeds, Caixa Postal 28, 32.920-000 Sao Joaquim de Bicas, MG, BRAZIL, [email protected] Castagnoli, Franca, S.A.I.S. seed, Via Ravennate 214,Postbox 154, 47023, Cesena, ITALY, [email protected] Causse, Mathilde, Station d'Amelioration des, Plantes Maraicheres, BP94, 84143 Montfavet, Cedex, FRANCE Chaisson, Leo P., 36 Greenwold Dr, Antigonish NS, N.S. B2G 2H8, CANADA Chetelat, Roger, University of California, Dept. Veg. Crops, One Shields Avenue, Davis, CA 95616, [email protected] Cirulli, Matteo, Universita degli Studi di Bari, Dipartimento di Biol. E Patologia Veget., Via Amendola 165-A, 70126 Bari, ITALY, [email protected]

63 MEMBERSHIP LIST TGC REPORT 52, 2002 ______Cuartero, Jesus, C.S.I.C., Estacion Exp. "La Mayora", 29750 Algarrobo-Costa (Malaga), SPAIN Della Vecchia, Paulo, Agroflora, Caixa Postal 427, Braganca Paulista - SP, 12.900-000, BRAZIL Dhaliwal, M.S., Department of Vegetable Crops, P.A.U. Ludhiana 141004, PANJAB, INDIA Dick, Jim, 23264 Mull Rd, RR 4, Chatham, ONT N7M 5J4, CANADA, [email protected] Egashira, Hiroaki, Yamagata University 1-23, Faculty of Agriculture, Wakaba-machi, Tsuruoka City 997-8799, JAPAN Eyberg, Dorothy, Seminis Vegetable Seeds, 4110 Enterprise Avenue, Suite #200, Naples, FL, 34104, [email protected] Falconer, Rick, American Takii, Inc., 301 Natividad Road, Salinas, CA, 93906, [email protected] Fernandez-Munoz, Rafael, CSIC Estacion Exp. "La Mayora", 29750 Algarrabo, Costa (Malaga, Spain, [email protected] Foolad, Majid, Penn State University, Department of Horticulture, 102 Tyson Building, University Park, PA 16802, [email protected] Fowler, C. W., Seminis Vegetable Seeds, 4110 Enterprise Avenue, Suite #200, Naples, FL, 34104, [email protected] Frampton, Anna, Seminis Vegetable Seeds, 37437 State Highway 16, Woodland, CA, 95695, [email protected] Francis, David, Ohio State University, Horticulture and Crop Science, 1680 Madison Ave, Wooster, OH, 44691 Fulton, Theresa, Director of Outreach, Institute for Genomic Diversity, 135 Biotechnology Bldg., Cornell University, Ithaca, NY 14853, [email protected] Gabor, Brad, Seminis Vegetable Seeds, Research Center, 37437 State Highway 16, Woodland, CA, 95695, [email protected] Ganal, Martin, TraitGenetics GmbH, Am Schwabeplan 1b, D-06466 Gatersleben, GERMANY, [email protected] Garvey, T.Casey, Hunt Foods Company, 1111 E. Covell Blvd., Davis, CA, 95616-1209, [email protected] George, B. F., H.J. Heinz Co., Manager, Agricultural Research, P. O. Box 57, Stockton, CA, 95201, [email protected] Gidoni, David, The Volcani Center, Dept. of Plant Genetics, PO Box 6, Bet-Dagan 50250, ISRAEL Hagan, William, 17493 Oak Canyon Place, Castro Valley, CA, 94546, [email protected] Hanson, Peter, AVRDC, PO Box 42, Shanhua, Tainan, Taiwan 741, Republic of China, [email protected] Hassan, Ahmed Abdel-Moneim, Cairo University, Dept. of Horticulture, Giza, EGYPT Herlaar, Frits, Enza Zaden, De Enkuizer Zaadhandel B.V., Postbus 7, 1600 AA Enkhuizen, THE NETHERLANDS Himmel, Phyllis, Seminis Vegetable Seeds, 37437 State Highway 16, Woodland, CA, 95695 Hoa, Vu Dinh, Hanoi Agricultural University, Dept.Plant Breeding and Genetics, Gialam, Hanoi, VIETNAM Hoogstraten, Jaap, S.V.S Holland B.V., Postbus 97, 6700 AB Wageningen, THE NETHERLANDS Ignatova, Svetlana, Moscow E-215, Box 15, 105215, RUSSIA, [email protected]

64 MEMBERSHIP LIST TGC REPORT 52, 2002 ______Imanishi, Shigeru, Yamagata University, Bioresource Engineering, 1-23,Wakaba- cho,Tsuruoka, Yamagata, JAPAN Izk, Nadejda Ganeva, "Maritza"-Biblioteka, U1 "Brezovsko Shosse" 32, K1 3 Pk 20, 4003 PLOVID, BULGARIA Jacoby, Daniel, 5655 Gulf of Mexico Drive (C104), Longboat Key, FL, 34228-1911 Johannessen, George, 333 Hartford RD, Danville, CA, 94526 Kedar, N., Hebrew Univ of Jerusalem, Faculty of Agriculture, P. O. Box 12, Rehovot 76-100, ISRAEL, [email protected] Kim, Ji-kwang, Buyo Tomato Expt. Station, 325-48 Nohwari, Gyuammyeon, Buyo 323-810, KOREA, [email protected] Kimiko, Takizawa, Nihon Horticultural Production Inst., 207 Kamishiki, Matsudo-shi, Chiba-ken 270-2221, JAPAN, [email protected] Kuehn, Michael, Harris Moran Seed Co., 9241 Mace Blvd., Davis, CA, 95616, [email protected] Linde, David, BHN Research, 16750 Bonita Beach Rd., Bonita Springs, FL, 34135, [email protected] Lindhout, Pim, Wageningen Agricultural University, Postbus 386, 6700 AJ, Wageningen, THE NETHERLANDS Lineberger, Dan, Texas A&M Univ., Dept. Horticultural Sciences, College Station, TX, 77843- 2133 Lundin, Marianne, Svalof Weibull AB, Cereal Breeding Dept., S-268 81 Svalov, SWEDEN Mapelli, Sergio, Consiglio Nazionale delle Ricerche, Istituto Biologia Biotecnologia Agraria, Via Bassini 15, 20133 Milano, ITALY, [email protected] Marciano, David, Seeds Technologi DM LTD, Kefar Ruth, 73196, ISRAEL, [email protected] Martin, Gregory, Cornell University, Plant Pathology, 323 Boyce Thompson, Ithaca, NY, 14853, [email protected] McCarthy, William, Seminis Vegetable Seeds, PO Box 249, Felda, FL, 33930, [email protected] McGlasson, W. B., Univ of Western Sydney, Hawkesbury Campus, Horticulture, Locked Bag 1797, Penrith South DC NSW1797, AUSTRALIA, [email protected] McGrath, D. J., Horticulture Research Station, P. O. Box 538, Bowen, Queensland 4805, AUSTRALIA Meshi, Tetsuo, Kyoto University, Dept of Botany, Sakyo-ku, Kyoto 606-8502, JAPAN, [email protected] Min, Chai, PO Box 2443, Beijing 100089, PEOPLES REPUBLIC of CHINA Mochizuki, Tatsuya, National Agricultural Research Center, for Kyushu Okinawa Region, Suya, Nishigoshi, Kumamoto 861-1192, JAPAN, [email protected] Murao, Kazunori, Sakata Seed Co., Kimitsu Station, 358 Uchikoshi, Sodegaura,Chiba, 299- 0217, JAPAN Myers, James, Oregon State University, Dept of Horticulture, Dept of Horticulture,4017 ALS, Corvallis, OR, 97331-7304, [email protected] Nakata, Kengo, Kagome Co. Ltd., 17 Nishitomiyama, Nishinasuno-machi, Nasu-gun, Tochigi Pref.329-2762, JAPAN, [email protected] Niemirowicz-Szczyt, Katarzyna, Agricultural Univ of Warsaw, Dept Plant Breeding & Genetics, Ul. Nowoursynowska 166, 02-766 Warsaw, POLAND

65 MEMBERSHIP LIST TGC REPORT 52, 2002 ______Ozminkowski, Richard, Heinz North America, Sr.Plant Breeder, P.O.Box 57, Stockton, CA, 95201, [email protected] Palomares, Gloria, Universidad Politecnica de Valencia, Departmento de Biotecnologia, Camino de Vera, s/n, E-46022 Valencia, SPAIN, [email protected] Paredes, Maria Ines, EE La Consulta-INTA, Biblioteca, Casilla de Correo 8, (5567)La Consulta-Mendoza, ARGENTINA, [email protected] Peters, Susan, Sunseeds, 7087 E. Peltier Rd., Acampo, CA, 95220, [email protected] Pilowsky, Meir, Agricultural Research Organization, The Volcani Center, PO Box 6, Bet Dagan 50250, ISRAEL Postma, E, Deruiterzonen CV, Director Research and Development, Postbus 1050 2660 BB Bergschenhoek, THE NETHERLANDS Poysa, Vaino, Agriculture Canada, Research Station, Harrow, Ontario N0R 1G0, CANADA Provvidenti, Rosario, Cornell University, New York State Agr. Expt. Sta., Geneva, NY, 14456, [email protected] Rekoslavskaya, Natalya I., Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of RAS, PO Box 1243, Irkutsk, RUSSIA Reynaerts, Arlette, Plant Genetic Systems, J Plateaustraat 22, 9000 Gent, BELGIUM Rivara, Charles, CA Tomato Research Inst., 18650 East Lone Tree Rd., Escalon, CA, 95320- 9759, [email protected] Rotem, Yaniv, Hazera Genetics Ltd., R&D Division, Mivhor M.P. Lakhish Darom, 79354, ISRAEL, [email protected] Sasaki, Seiko, Plant Breeding Station of Kaneko Seeds, 50-12, Furuichi-machi 1-chome, Maebashi City, Gunma 371-0844, JAPAN, [email protected] Sayama, Haruki, Nippon Del Monte Corp., Research and Development, 3748 Shimizu-Cho, Numata,Gumma 378-0016, JAPAN, [email protected] Schroeder, Steve, Sunseeds, 7087 E. Peltier Rd., Acampo, CA, 95220, [email protected] Scott, J.W., University of Florida, Food and Agricultural Science, 5007 60th Street East, Bradenton, FL, 34203, [email protected] Shimizu, Yoshitomi, Nagano Tomato Co. Ltd., 223 Yoshikawa Murai-Machi, Matsumoto, Nagano, JAPAN Shintaku, Yurie, 2-10-2, Shimizu, Suginami-ku, Tokyo 167-0033, JAPAN Sjerps, Jacobus, Vilmorin, Calle Galera, 9, Calabardina 30880 AGUILAS, SPAIN Smith, Dale, H. J. Heinz Co. of Canada, Erie Street South, Leamington, Ontario N8H 3W8, CANADA, [email protected] Stack, Stephen, Colorado State University, Department of Biology, Fort Collins, CO, 80523- 1878, [email protected] Stein, Ira, Campbell Research & Development, 28605 County Rd 104, Davis, CA, 95616, [email protected] Stevens, Mikel, Brigham Young Univ., 275 Widtsoe Bldg, PO. Box 25183, Provo, UT, 84602, [email protected] Stoeva-Popova, Pravda, Winthrop University, Dept. of Biology, 202 Life Science Building, Rock Hill, SC, 29733, [email protected] Stommel, John, USDA-ARS Vegetable Lab, Beltsville Ag. Res. Ctr., 10300 Baltimore Avenue, Beltsville, MD, 20705, [email protected]

66 MEMBERSHIP LIST TGC REPORT 52, 2002 ______Summers, William, Iowa State University, Department of Horticulture, Horticulture Building, Ames, IA, 50011-1100 Suzuki, Tohru, NIVOT, Natl.Res.Inst.Veg,Orn Plant&Tea, Ano, Mie 5142392, JAPAN, [email protected] Tal, Moshe, Ben-Gurion University, Department of Life Sciences, P. O. Box 653, Beer Sheva 84 105, ISRAEL Tanksley, Steven, Plant Breeding Department, 248 Emerson Hall, Cornell University, Ithaca, NY 14853, [email protected] Tarry, Jerry, Orsetti Seed Co.Inc, 2125 Wylie Drive, Suite 10, Modesto, CA, 95355, [email protected] Thomas, Paul, 4 Juniper Court, Woodland, CA, 95695 Thome, Catherine, Enza Zaden North America, 525 Lucy Brown Lane PO BOX 866, San Juan Bautista, CA, 95045, [email protected] Tong, Nankui, Heinz USA, Agricultural Research, PO Box 57, Stockton, CA, 95201 Vardi, Eyal, Hazera Ltd., Research Dept, Mivhor M.P. Lakhish Darom, 79354, ISRAEL, [email protected] Vecchio, Franco, Sementi Nunhems s.r.l., Via Ghiarone,2, 40019 S.Agata Bolognese, ITALY, [email protected] Verhoef, Ir. Ruud, Rijk Zwaan Breeding B.V., Burgemeester Crezeelaan 40, PO Box 40, 2678 ZG De Lier, THE NETHERLANDS, [email protected] Verschave, Philippe, Vilmorin, 30210 LEDENON, FRANCE Volin, Ray, 15165 Dulzura Court, Rancho Murieta, CA, 95683-9120, [email protected] von Wettstein-Knowles, Penny, Copenhagen University, Molecular Biology Institute, Oester Farimagsgade 2A, DK-1353 Copenhagen K, DENMARK, [email protected] Zischke, Jeff, Sakata Seed America, 105 Boronda Rd, Salinas, CA, 93907, [email protected]

Libraries, Institutions, etc.

Academic Book Center, Inc., 5600 N.E. Hassalo Street, Portland OR, 97213-3640 Albert R. Mann Library, Cornell University, Serials unit/Acq Div, Ithaca, NY, 14853-4301 AVRDC Librarian, Chen, Fang Chin, Information and Documentation, PO Box 42, Shanhua, Tainan, Taiwan 741, Republic of China, [email protected] Biblioteca Centr Fac Agraria Goidanich, Order 11883734 Swets Blackwell Inc., 440 Creamery Way Suite A, Exton, PA, 19341 Blackwell's Book Services, New Title Department, 100 University Court, Blackwood, NJ, 08012 Calgene Inc., Information Center, 1920 Fifth St, Davis, CA, 95616 Centre de Recherche Tezier, Documentation, Domaine du Manimet, Route de Beaumont, F 26000 Valence, FRANCE CIDA, Agroalimentario, Bibloteca, Apartado Oficial, 30150 La Alberca, Murcia, SPAIN Colorado State University, Serial Department, The Libraries, Fort Collins, CO 80523-1019, [email protected] Cons. Embrapa, c/o Martinus Nijhoff Int., PO Box 1853, 2700 CZ Zoetermeer, THE NETHERLANDS

67 MEMBERSHIP LIST TGC REPORT 52, 2002 ______CSIRO, The Librarian, Black Mountain, Library, G.P.O. Box 109.,Canberra A.C.T. 2601, AUSTRALIA Dipartimento di Sciencze e Technologie Agroambientali, Via Filippo R-8, 40126, Bologna, ITALY Frank A. Lee Library, New York State Agr. Expt. Sta., Cornell University, 630 W. North Street, Geneva, NY, 14456-0462, [email protected] Genetique & Amelioration Des, Fruits and Legumes (I-836EBS), (I-863EBS), BIBLIOTHE.- Domaine St. Maurice, ALLEE DES CHENES B.P. 94, 84140 Montfavet, FRANCE Gift Section, Exchange and Gift Division, Library of Congress, Washington, D. C., 20540 Graines Gautier SA, 13630 Eyragues, FRANCE, [email protected] Horticulture Research International, Library Manager-Claire Singleton, Wellesbourne, Warwick, CV35 9EF, UK, [email protected] Indian Institute of Hort.Research, c/o.Schenker/Informatics, IIHR-20001210, PO Box 306,Folcroft Indu Area, Folcroft, PA, 19032 INRA Antilles Guyane, Order #A845618/001, Unite du President de centre, Domaine Duclos- Prise d'Eau, 97170 Petit-Bourg, GUADELOUPE FWI, [email protected] Inst of Veg and Flowers, Chinese Academy of Agricultural Sciences, Attn: Li Junming, 12 Zhongguancun Nandajie, Beijing 100081, CHINA J.S. Gericke Library, P.O. Box 830661, Birmingham, AL, 35283-0661 Kmetijski Institut Slovenije, Knjiznica, HACQUETOVA 17, 1000 Ljubljana, SLOVENIA Library Serials Unit, University of New Hampshire, 18 Library Way, Durham, NH, 03824-3592 Medizin, Natur, ULB Bonn-Abteilungsbibliothek, wissenschaft und Landbau, Order 37535579, Nussallee 15 a, 53115 Bonn, GERMANY Memorial Library-SCI-CTS, University of Wisconsin, 728 State St., Madison, WI 53706-1494 North Carolina State University, Acquisitions Dept C, DH Hill Library, D. H. Hill Library, P. O. Box 7111, Raleigh, NC, 27695-7111 Nunhems Zaden BV, Attn: Leon Broers, PO Box 4005, 6080 AA Haelen, NETHERLANDS Semillas Fito, Selva de Mar, 111, 08019 Barcelona, SPAIN Serials Acquisitions, Purdue University Libraries, 1535 Stewart Center, West Lafayette, IN, 47907-1535 Takii Plant Breeding and Expt Sta., Kosei, Kohka, Shiga, 520-3231, JAPAN, [email protected] U.S.D.A. Nat'l Agric. Library, Proc. Sec./Current Ser. Rec., Beltsville, MD, 20705 University of California, Science Library, Attn: Gail Moore, Serials Department-P.O. Box 5900, Riverside, CA, 92517-5900, [email protected] University of Minnesota, Magrath Library Serials Dept., 1984 Buford Avenue, St. Paul, MN, 55108-1012 W.S.U. Library, SEA Serials Rec Holland Library, Order#15698095, 100 Dairy Road, Pullman, WA, 99164-5610 Young Library Serials-Ag, Univ. of Kentucky, 500 S. Limestone, Lexington, KY, 40506-0001

68 AUTHOR INDEX TGC REPORT 52, 2002 ______

AUTHOR INDEX

Aldrich, T., 36 Alvarez, M., 35 Ambrico, A., 11 Arzuaga, J., 35 Bagirova, S.F., 14 Baldwin, E.A., 39 Bardin, M., 24 Bash, W., 36 Berry, S.Z., 36 Bongiovanni, M., 21 Caranta, C., 21, 24 Castagnone-Sereno, P., 21 Chetelat, R., 41 Ciccarese, F., 11 Domini, M.E., 35 Ferriére, H., 24 Francis, D.M., 36 Gamanetz, L.V., 27 Gorshkova, N.S., 14 Harbaugh, B.K., 39 Ignatova, S.I., 14 Jones, J.P., 40 Kopytina, T.V., 18 Longo, O., 11 Mapelli, S., 18, 27 Moretti, A., 21, 24 Moya, C., 35 Nicot, P.C., 24 Ostanina, Y.V., 18 Rekoslavskaya, N.I., 18, 27 Romiti, C., 24 Salyaev, R.K., 18, 27 Scaife, K., 36 Schiavone, D, 11 Scott, J.W., 31, 38, 39, 40 Tereshonkova, T.A., 14 Truchin, A.A., 27

69