William Ernest Castle, American Geneticist

Total Page:16

File Type:pdf, Size:1020Kb

William Ernest Castle, American Geneticist AN ABSTRACT OF THE THESIS OF H. Terry Taylor for the degree of Master of Arts in General Science (History of Science) presented onAugust 17, 1983 Title: William Ernest Castle: American Geneticist. A Case-Study in the Impact of the Mendelian Research Program Redacted for Privacy Abstract approved: In their modern context questions of heredity have come to be closely aligned with theories of evolution because all such theories require the presence of heritable variation. Thus the need for an understanding of a source of variation and a mechanism for its in- heritance became very apparent with the general acceptance of organic evolution among biologists in the 1870's. Yet no one theory of evolution or of heredity became generally accepted until the modern synthesis of the 1930's. This thesis ad- dresses the question of how this modern synthetic theory gained wide- spread acceptance and seeks to answer it by studying the development of a theory of heredity both before and after the rediscovery of Mendel ca. 1900. Those factors making possible the rediscovery in terms of the developments in heredity and evolution are treated as a background for the reception of Mendel. Theories discussed include those of Charles Darwin, August Weismann, Hugo de Vries and the American neo- Lamarckians. These theories also serve as a background against which to see the life and work of William Ernest Castle. This man was trained during the 1890's, receiving his Ph.D. under E.L. Mark at Harvard. In 1900 he became one of the very first to begin Mendelian experiments on animal material, working with small animals. Castle's life and work extended into the second half of the twen- tieth century and his career, therefore, reveals much of the development of genetics in the United States. Thus his work serves as a focus for an understanding of the impact of the Mendelian research program on the biological community. Castle was important as a popularizer of Mendel- iam, as a theoretician of sex-heredity, and as a mammalian geneticist. In addition, he did much to shape American genetics by his training of twenty Ph.D. geneticists at Harvard. The work of William Castle also included a lengthy series of selec- tion experiments which served to elucidate the function of selection in evolution. The controversies generated by these experiments were very influential in leading many Mendelians to become Darwinian evolu- tionists and thus stand as a milepost in the development of the modern synthetic theory of evolution. Castle's position in history has been very tenuous because he was perceived as "wrong" in a number of controversies. But his work elab- orated and clarified important principles of modern genetic and evo- lutionary theory. This thesis stands as a contribution to an under- standing of the development of these theories by its focus on the work of William Castle. William Ernest Castle: American Geneticist A Case-Study in the Impact of the Mendelian Research Program by H. Terry Taylor A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Arts Completed August 17, 1983 Commencement June, 1984 APPROVED: Redacted for Privacy Professor of History of Science in charge of major Redacted for Privacy Head of Department of General Science Redacted for Privacy Dean of Grad e School 0 Date thesis is presented August 17, 1983 Typed by Jane Tuor for H. Terry Taylor ACKNOWLEDGMENTS A Project of this size is not something any one person does. There are many whose help has been invaluable. I would like to thank my friends and fellow graduate students who have, more times than I can count, provided a listening ear or "gotten crazy" with me as I've tried to continue living as well as write a thesis. Among many others, I'd especially like to thank Lynn, Bob, and Ken & Marilyn without whose friendship and support this thesis could not have happened. Librairies and librarians have played an important role in my work and I gratefully acknowledge this help. The staff of the Kerr Library at Oregon State University has been unfailingly gracious and helpful; I have especially appreciated the speedy inter-library loan system. I also was privileged to have access to the library system of the Univer- sity of California at Berkeley. It was a pleasure to work with the staffs of the Bancroft Library and the Biology Library on that campus. Beth Carroll, Assistant Manuscript Librarian of the American Philosophi- cal Society Library in Philadelphia, aided me greatly in retrieving Castle's papers, working over long-distance and with short deadlines. To all these persons my thanks. My work in Berkeley was done as the guest of the office of History of Science and Technology under the direction of John Heilbron. I gratefully acknowledge the help of him and his staff in providing office space and access to the library system of the University. The environ- ment in that office was most enjoyable, largeley because of Jacqueline Craig and Amy Kivel, both of whom were never too busy to help in a multitude of ways. It was a pleasure to "rub shoulders" with scholars from around the world, as well as the other graduate students working there. I profited greatly by my time spent there. I would like to thank Dr. David Willis and the General Science Department for unfailing support and encouragement during my entire program. My thanks to Dr. Peter Dawson who read much of the manuscript and was instrumental in precluding mistakes in the technical areas of genetics and evolution as my "minor professor."My special thanks to Dr. Brookes Spencer who stepped into my committee at the last moment, cheerfully and graciously providing challenging input.My thanks also to Dr. James Morris whose help was invaluable along the way; especially important was his help in the more technical aspects of writing itself. Finally, it is a privilege to acknowledge Dr. Paul Farber, my major advisor. His role has been of a very special nature, for it was he who provided much of the environment and stimulus for my intellectual growth over the last two years. His ability to nurture and stimulate, even to direct, with no hint of control is almost uncanny -- and most appreciated. The freedom to choose my topic and develop it in my own way has been complete; but so also has been his support and encourage- ment at every step. To him must go the credit for whatever merit this thesis may possess; its deficiencies are entirely my own. TABLE OF CONTENTS INTRODUCTION 1 CHAPTER ONE: THE SCIENTIFIC BACKGROUND FOR THE RECEPTION OF MENDEL CA. 1900: I. THEORIES OF EVOLUTION 15 CHAPTER TWO: THE SCIENTIFIC BACKGROUND FOR THE RECEPTION OF MENDEL CA. 1900: II. THEORIES OF HEREDITY 42 CHAPTER THREE: THE LIFE AND WORK OF WILLIAM CASTLE 82 CHAPTER FOUR: WILLIAM CASTLE: CONTROVERSIAL GENETICIST AND DARWINIAN EVOLU- TIONIST 153 CHAPTER FIVE: SOME CONCLUSIONS REGARDING A SCI- ENTIST AND HIS SCIENCE 208 SELECTED BIBLIOGRAPHY 222 WILLIAM ERNEST CASTLE: AMERICAN GENETICIST A CASE-STUDY IN THE IMPACT OF THE MENDELIAN RESEARCH PROGRAM INTRODUCTION Prior to the publication by Charles Darwin (1809-1882) of his Origin of Species in 1859, few naturalists in the United States or Great Britain would have given much credence to the notion that species could be transmuted. Yet so persuasive was his argument (and the evidence he accumulated and presented to support it) that within a few years of its appearance, the Origin had transformed the thinking of many. The idea that extant species are the de- scendants of earlier, often extinct ones had, by 1870, come to be widely accepted. Organic evolution rapidly became a most important working hypothesis in the biological sciences. Darwin's mechanism for evolution was natural selection and largely by its operation, he supposed new species were created. Darwin's thesis was simple: As many more individuals of each species are born than can possibly survive; and as, consequently, there is a frequently recurring struggle for existence, it follows that any being, if it vary however slightly in any manner profitable to itself, under the complex and sometimes varying conditions of life, will have a better chance of surviving, and thus be naturally selected.1 1 Charles Darwin, On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life (London: John Murray, 1859), fascimile of the first edition with intro. by Ernst Mayr (Cambridge: Harvard University Press, 1964), p. 5. 2 But persuasive though he had been in convincing his fellows of evolu- tion, his proposed mechanism for its accomplishment was not so well received. In the years which followed the Origin, Darwin's theory was attacked and revised and condemned. From the voluminous discussion which ensued emerged an almost bewildering array of evolutionary theories. In them were suggested numerous other mechanisms, some auxiliary to and some alternative to natural selection. In his masterful survey of the then-current standing of Darwinism, Vernon L. Kellogg (1867-1937) required nearly 200 densely-packed pages to discuss these, bearing, as they did, names such as "heterogenesis, orthogenesis, metakinesis, geographic isolation, biologic isolation, 2 organic selection [and] . orthoplasy." Two theories attained the greatest ascendancy in the United States as the century drew to its end. One of these was the important revision of Darwin's hy- pothesis known as neo-Darwinism. The other, quite inimical to Darwinian evolution, was called by its adherents neo-Lamarckism. With so many theories, each with its own proponents, it seems remarkable that any kind of consensus ever was reached on evolution.
Recommended publications
  • Los Espacios De La Antropología En La Obra De Robert Lehmann-Nitsche, 1894-1938 Ballestero, Diego Alberto Doctor En Ciencias Naturales
    Naturalis Repositorio Institucional Universidad Nacional de La Plata http://naturalis.fcnym.unlp.edu.ar Facultad de Ciencias Naturales y Museo Los espacios de la antropología en la obra de Robert Lehmann-Nitsche, 1894-1938 Ballestero, Diego Alberto Doctor en Ciencias Naturales Dirección: Podgorny, Irina Facultad de Ciencias Naturales y Museo 2014 Acceso en: http://naturalis.fcnym.unlp.edu.ar/id/20140424001338 Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional Powered by TCPDF (www.tcpdf.org) Los espacios de la antropología en la obra de Robert Lehmann-Nitsche, 1894-1938 Diego Alberto Ballestero Directora: Dra. Irina Podgorny Facultad de Ciencias Naturales y Museo – UNLP 2013 Tomo I Resumen El propósito de esta Tesis Doctoral es el análisis de las condiciones de posibilidad para las prácticas y el trabajo antropológico en la Argentina de fines del siglo XIX y principios del siglo XX. Especialmente, se examina la cultura material, las redes de circulación de información, los espacios de encuentro así como las prácticas de observación y registro, a través del análisis de las producciones del antropólogo alemán Robert Lehmann-Nitsche. Se busca relevar cómo se constituyó el “trabajo de campo” a través de los distintos espacios de encuentro y actores que mediaron/intervinieron entre los objetos de estudio elegido, los distintos espacios involucrados y los sectores científicos. Asimismo se busca dar cuenta de las estrategias para obtener información y colecciones así como los distintos circuitos en los que participaron los objetos o individuos estudiados, tal como ferias o exposiciones. Estas cuestiones permiten vislumbrar diferentes aspectos de cómo trabajaron los científicos pero también hablan de la naturaleza colectiva de la producción de conocimientos y de las interacciones con ámbitos no académicos Agradecimientos Primeramente quiero agradecer a mi Directora, Irina Podgorny, por haberme dado la oportunidad de llevar adelante este proyecto con entera libertad.
    [Show full text]
  • Research Plant Geneticist, USDA-ARS Professor, Department
    ROGER PHILIP WISE Research Plant Geneticist, USDA-ARS Professor, Department of Plant Pathology and Microbiology Iowa State University Ames, IA 50011-1020 Phone: (515) 294-9756 Fax: (515) 294-9420 E-mail: [email protected] ; [email protected] Web: http://wiselab.org/ ; http://barleygenome.org/ Database: http://plexdb.org/ ; http://www.hordeumtoolbox.org/ A. Professional Preparation Michigan State University Physiology B.S. (High Honor), 1972-1976 Michigan State University Genetics Ph.D., 1978-1983 University of Florida Mol Plant-Microbe Interact Postdoctoral, 1984-1986 Max-Planck-Institut, Köln Plant Molecular Biology Postdoctoral, 1987-1989 B. Appointments 2015 – present ST-00 Cat 1 Research Geneticist, USDA-ARS / Professor, ISU 2003-2014 GS-15 Cat 1 Research Geneticist, USDA-ARS / Professor, ISU 2000-2002 GS-14 Cat 1 Research Geneticist, USDA-ARS / Professor, ISU 1998-2000 GS-14 Cat 1 Research Geneticist, USDA-ARS / Associate Professor, ISU 1994-1998 GS-13 Cat 1 Research Geneticist, USDA-ARS / Associate Professor, ISU 1989-1993 GS-12 Cat 1 Research Geneticist, USDA-ARS / Assistant Professor, ISU Iowa State Interdepartmental Program Affiliations: 1990-present Interdepartmental Genetics 1999-present Interdepartmental Bioinformatics & Computational Biology Iowa State Plant Sciences Institute – Center Membership: 1999-present Center for Plant Responses to Environmental Stresses 1999-present Center for Plant Genomics 1999-present Center for Plant Transformation and Gene Expression C. PROFESSIONAL AFFILIATIONS American Association for the Advancement of Science American Phytopathological Society International Society for Molecular Plant-Microbe Interactions Genetics Society of America American Association of Plant Biologists D. HONORS AND AWARDS 2015: Elected Fellow of AAAS 2011: USDA Secretary's Honor Award: Helping America promote sustainable agricultural production and biotechnology exports as America works to increase food security.
    [Show full text]
  • Karl Jordan: a Life in Systematics
    AN ABSTRACT OF THE DISSERTATION OF Kristin Renee Johnson for the degree of Doctor of Philosophy in History of SciencePresented on July 21, 2003. Title: Karl Jordan: A Life in Systematics Abstract approved: Paul Lawrence Farber Karl Jordan (1861-1959) was an extraordinarily productive entomologist who influenced the development of systematics, entomology, and naturalists' theoretical framework as well as their practice. He has been a figure in existing accounts of the naturalist tradition between 1890 and 1940 that have defended the relative contribution of naturalists to the modem evolutionary synthesis. These accounts, while useful, have primarily examined the natural history of the period in view of how it led to developments in the 193 Os and 40s, removing pre-Synthesis naturalists like Jordan from their research programs, institutional contexts, and disciplinary homes, for the sake of synthesis narratives. This dissertation redresses this picture by examining a naturalist, who, although often cited as important in the synthesis, is more accurately viewed as a man working on the problems of an earlier period. This study examines the specific problems that concerned Jordan, as well as the dynamic institutional, international, theoretical and methodological context of entomology and natural history during his lifetime. It focuses upon how the context in which natural history has been done changed greatly during Jordan's life time, and discusses the role of these changes in both placing naturalists on the defensive among an array of new disciplines and attitudes in science, and providing them with new tools and justifications for doing natural history. One of the primary intents of this study is to demonstrate the many different motives and conditions through which naturalists came to and worked in natural history.
    [Show full text]
  • 150 Years of Research at the United States Department of Agriculture
    United States Department of Agriculture Agricultural Research Service 150 Years of Research at June 2013 the United States Department of Agriculture: Plant Introduction and Breeding I Cover photo: The stately building that once housed the U.S. Department of Agriculture in Washington, D.C., ca. 1890. (This photo is preserved in the USDA History Collection, Special Collections, National Agricultural Library.) II United States Department of Agriculture Agricultural Research Service 150 Years of Research at June 2013 the United States Department of Agriculture: Plant Introduction and Breeding R.J. Griesbach Griesbach is Deputy Assistant Administrator, Office of Technology Transfer, USDA, Agricultural Research Service, Beltsville, MD. i Abstract Griesbach, R.J. 2013. 150 Years of Research at the While supplies last, single copies of this publication United States Department of Agriculture: can be obtained at no cost from Robert J. Griesbach, Plant Introduction and Breeding. U.S. Department USDA-ARS, Office of Technology Transfer, 5601 of Agriculture, Agricultural Research Service, Sunnyside Avenue, Room 4-1159, Beltsville, MD Washington, DC. 20705; or by email at [email protected]. The U.S. Department of Agriculture celebrated its Copies of this publication may be purchased in various 150th anniversary in 2012. One of the primary formats (microfiche, photocopy, CD, print on demand) functions of the USDA when it was established in 1862 from the National Technical Information Service, 5285 was “to procure, propagate, and distribute among the people new Port Royal Road, Springfield, VA 22161, (800) 553- and valuable seeds and plants.” The U.S. Government first 6847, www.ntis.gov. became involved in new plant introductions in 1825 when President John Quincy Adams directed U.S.
    [Show full text]
  • Monism and Morphology at the Turn of the Twentieth Century
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by IUScholarWorks From a draft. May differ from the published version, which appeared in Monism: Science, Philosophy, Religion, and the History of a Worldview, ed. Todd Weir, 135–158, New York: Palgrave USA, 2012. Monism and Morphology at the Turn of the Twentieth Century SANDER GLIBOFF Indiana University Abstract. Ernst Haeckel’s monistic worldview and his interpretation of Darwin’s theory of evolution worked together to help him rule out any role for divine providence or any non-material mind, spirit, will, or purpose in the organic world. In his account of 1866, the impersonal, unpredictable, and purposeless external environment was what drove evolutionary change. By around the turn of the twentieth century, however, new theories of evolution, heredity, and embryology were challenging Haeckel’s, but Haeckel no longer responded with his earlier vigor. Younger monistically oriented evolutionary biologists had to take the lead in modernizing and defending the monistic interpretation and the external causes of evolution. Three of these younger biologists are discussed here: Haeckel’s student, the morphologist-turned-theoretician Richard Semon (1859–1918); Ludwig Plate (1862–1937), who took over Haeckel’s chair at the University of Jena and became an influential journal editor and commentator on new research on heredity and evolution; and Paul Kammerer (1880–1926), whose experimental evidence for the modifying power of the environment was hotly debated. Despite their very different social, political, and religious backgrounds, their contrasting research methods and career trajectories, and their disagreements on the precise mechanisms of evolution, these three were united by their adherence to Haeckelian monistic principles.
    [Show full text]
  • Barbara Mcclintock
    Barbara McClintock Lee B. Kass and Paul Chomet Abstract Barbara McClintock, pioneering plant geneticist and winner of the Nobel Prize in Physiology or Medicine in 1983, is best known for her discovery of transposable genetic elements in corn. This chapter provides an overview of many of her key findings, some of which have been outlined and described elsewhere. We also provide a new look at McClintock’s early contributions, based on our readings of her primary publications and documents found in archives. We expect the reader will gain insight and appreciation for Barbara McClintock’s unique perspective, elegant experiments and unprecedented scientific achievements. 1 Introduction This chapter is focused on the scientific contributions of Barbara McClintock, pioneering plant geneticist and winner of the Nobel Prize in Physiology or Medicine in 1983 for her discovery of transposable genetic elements in corn. Her enlightening experiments and discoveries have been outlined and described in a number of papers and books, so it is not the aim of this report to detail each step in her scientific career and personal life but rather highlight many of her key findings, then refer the reader to the original reports and more detailed reviews. We hope the reader will gain insight and appreciation for Barbara McClintock’s unique perspective, elegant experiments and unprecedented scientific achievements. Barbara McClintock (1902–1992) was born in Hartford Connecticut and raised in Brooklyn, New York (Keller 1983). She received her undergraduate and graduate education at the New York State College of Agriculture at Cornell University. In 1923, McClintock was awarded the B.S.
    [Show full text]
  • The Medical & Scientific Library of W. Bruce
    The Medical & Scientific Library of W. Bruce Fye New York I March 11, 2019 The Medical & Scientific Library of W. Bruce Fye New York | Monday March 11, 2019, at 10am and 2pm BONHAMS LIVE ONLINE BIDDING IS INQUIRIES CLIENT SERVICES 580 Madison Avenue AVAILABLE FOR THIS SALE New York Monday – Friday 9am-5pm New York, New York 10022 Please email bids.us@bonhams. Ian Ehling +1 (212) 644 9001 www.bonhams.com com with “Live bidding” in Director +1 (212) 644 9009 fax the subject line 48 hrs before +1 (212) 644 9094 PREVIEW the auction to register for this [email protected] ILLUSTRATIONS Thursday, March 7, service. Front cover: Lot 188 10am to 5pm Tom Lamb, Director Inside front cover: Lot 53 Friday, March 8, Bidding by telephone will only be Business Development Inside back cover: Lot 261 10am to 5pm accepted on a lot with a lower +1 (917) 921 7342 Back cover: Lot 361 Saturday, March 9, estimate in excess of $1000 [email protected] 12pm to 5pm REGISTRATION Please see pages 228 to 231 Sunday, March 10, Darren Sutherland, Specialist IMPORTANT NOTICE for bidder information including +1 (212) 461 6531 12pm to 5pm Please note that all customers, Conditions of Sale, after-sale [email protected] collection and shipment. All irrespective of any previous activity SALE NUMBER: 25418 with Bonhams, are required to items listed on page 231, will be Tim Tezer, Junior Specialist complete the Bidder Registration transferred to off-site storage +1 (917) 206 1647 CATALOG: $35 Form in advance of the sale.
    [Show full text]
  • 'Great Is Darwin and Bergson His Poet': Julian Huxley's Other
    This is a repository copy of ‘Great is Darwin and Bergson his poet’: Julian Huxley's other evolutionary synthesis. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/124449/ Version: Accepted Version Article: Herring, E (2018) ‘Great is Darwin and Bergson his poet’: Julian Huxley's other evolutionary synthesis. Annals of Science, 75 (1). pp. 40-54. ISSN 0003-3790 https://doi.org/10.1080/00033790.2017.1407442 (c) 2018 Informa UK Limited, trading as Taylor & Francis Group. This is an Accepted Manuscript of an article published by Taylor & Francis in Annals of Science on 04 Jan 2018, available online: http://www.tandfonline.com/10.1080/00033790.2017.1407442 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ “Great is Darwin and Bergson his poet”: Julian Huxley’s Other Evolutionary Synthesis. Emily Herring School of Philosophy, Religion and History of Science, University of Leeds, Leeds, United Kingdom Email: [email protected] Address: School of Philosophy, Religion and History of Science, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom Orcid id: orcid.org/0000-0002-8377-6319 1 “Great is Darwin and Bergson his poet”: Julian Huxley’s Other Evolutionary Synthesis.
    [Show full text]
  • Is the Germline Immortal and Continuous? a Discussion in Light of Ipscs and Germline Regeneration
    Is the Germline Immortal and Continuous? A Discussion in Light of iPSCs and Germline Regeneration 1 1 Kate MacCord and​ B. Duygu Özpolat ​ ​ 1 - Marine Biological Laboratory, Woods Hole, MA, USA 1 ABSTRACT The germline gives rise to gametes, is the hereditary cell lineage, and is often called immortal and continuous. However, what exactly is immortal and continuous about the germline has recently come under scrutiny. The notion of an immortal and continuous germline has been ​ around for over 130 years, and has led to the concept of a barrier between the germline and soma (the “Weismann barrier”). One repercussion of such a barrier is the understanding that when the germline is lost, soma cannot replace it, rendering the organism infertile. Recent research on induced pluripotent stem cells (iPSCs) and germline regeneration raise questions about the impermeability of the Weismann barrier and the designation of the germline as immortal and continuous. How we conceive of the germline and its immortality shapes what we perceive to be possible in animal biology, such as whether somatic cells contribute to the germline in some metazoans during normal development or regeneration. We argue that reassessing the universality of germline immortality and continuity across all metazoans leads to big and exciting open questions about the germ-soma cell distinction, cell reprogramming, germline editing, and even evolution. 2 1.0 Introduction The germline is the lineage of reproductive cells that includes gametes and their precursors, including primordial germ cells and germline stem cells. Because the germline gives rise to the gametes, it is the hereditary cell lineage, and is ultimately responsible for all cells in an organism’s body, including the next generation of the germline, stem cells, and other somatic cells.
    [Show full text]
  • Reader 19 05 19 V75 Timeline Pagination
    Plant Trivia TimeLine A Chronology of Plants and People The TimeLine presents world history from a botanical viewpoint. It includes brief stories of plant discovery and use that describe the roles of plants and plant science in human civilization. The Time- Line also provides you as an individual the opportunity to reflect on how the history of human interaction with the plant world has shaped and impacted your own life and heritage. Information included comes from secondary sources and compila- tions, which are cited. The author continues to chart events for the TimeLine and appreciates your critique of the many entries as well as suggestions for additions and improvements to the topics cov- ered. Send comments to planted[at]huntington.org 345 Million. This time marks the beginning of the Mississippian period. Together with the Pennsylvanian which followed (through to 225 million years BP), the two periods consti- BP tute the age of coal - often called the Carboniferous. 136 Million. With deposits from the Cretaceous period we see the first evidence of flower- 5-15 Billion+ 6 December. Carbon (the basis of organic life), oxygen, and other elements ing plants. (Bold, Alexopoulos, & Delevoryas, 1980) were created from hydrogen and helium in the fury of burning supernovae. Having arisen when the stars were formed, the elements of which life is built, and thus we ourselves, 49 Million. The Azolla Event (AE). Hypothetically, Earth experienced a melting of Arctic might be thought of as stardust. (Dauber & Muller, 1996) ice and consequent formation of a layered freshwater ocean which supported massive prolif- eration of the fern Azolla.
    [Show full text]
  • Advances in Photosynthesis and Respiration, Volume 23: Structure and Function of Plastids
    Photosynth Res (2006) 89:173–177 DOI 10.1007/s11120-006-9070-z ANNOUNCEMENT Advances in Photosynthesis and Respiration, Volume 23: Structure and Function of Plastids Govindjee Published online: 8 July 20061 Ó Springer Science+Business Media B.V. 2006 I am delighted to announce the publication, in Ad- Volume1: Molecular Biology of Cyanobacteria (28 vances in Photosynthesis and Respiration (AIPH) Chapters; 881 pages; 1994; edited by Donald A. Bryant, Series, of The Structure and Function of Plastids,a from USA; ISBN: 0-7923-3222-9); book covering the central role of plastids for life on Volume 2: Anoxygenic Photosynthetic Bacteria (62 earth. It deals with both the structure and the func- Chapters; 1331 pages; 1995; edited by Robert tion of these unique organelles, particularly of chlo- E. Blankenship, Michael T. Madigan, and Carl E. roplasts. Two distinguished authorities have edited Bauer, from USA; ISBN: 0-7923-3682-8); this volume: Robert R. Wise of the University of Volume 3: Biophysical Techniques in Photosynthesis Wisconsin at Oshkosh, Wisconsin, and J. Kenneth (24 Chapters; 411 pages; 1996; edited by the late Jan Hoober of the Arizona State University, Tempe, Amesz and the late Arnold J. Hoff, from The Arizona. Two of the earlier AIPH volumes have in- Netherlands; ISBN: 0-7923-3642-9); cluded descriptions of plastids: Volume 7 (The Volume 4: Oxygenic Photosynthesis: The Light Molecular Biology of Chloroplasts and Mitochondria Reactions (34 Chapters; 682 pages; 1996; edited by in Chlamydomonas, edited by Jean-David Rochaix, Donald R. Ort and Charles F. Yocum, from USA; Michel Goldschmidt-Clermont and Sabeeha Mer- ISBN: 0-7923-3683-6); chant); and Volume 14 (Photosynthesis in Algae, Volume 5: Photosynthesis and the Environment (20 edited by Anthony Larkum, Susan Douglas, and John Chapters; 491 pages; 1996; edited by Neil R.
    [Show full text]
  • Evolution, Development, and the Units of Selection (Epigenesis/Modern Synthesis/Preformation/Somatic Embryogenesis/Weismann's Doctrine) LEO W
    Proc. Nat. Acad. Sci. USA Vol. 80, pp. 1387-1391, March 1983 Evolution Evolution, development, and the units of selection (epigenesis/Modern Synthesis/preformation/somatic embryogenesis/Weismann's doctrine) LEO W. Buss Department of Biology and Peabody Museum of Natural History, Yale University, New Haven, Connecticut 06511 Communicated by G, Evelyn Hutchinson, December 17, 1982 ABSTRACT The "Modern Synthesis" forms the foundation of those working with the comparative embryology of vertebrates, current evolutionary theory. It is based on variation among indi- saw strong evidence for Weismann's scheme in the sequestering viduals within populations. Variations within individuals are be- of germ cells during early embryology. Finally, several inves- lieved to hold no phylogenetic significance because such variation tigators studying wound-healing had clearly illustrated that many cannot be transmitted to the germ line (i.e., Weismann's doctrine). somatic cells were, in fact, incapable of regeneration. Weismann's doctrine, however, does not apply to protists, fungi, Support for Weismann's doctrine was by no means universal. or plants and is an entirely unsupported assumption for 19 phyla Botanists were Weismann's earliest critics (5). Debate over the of animals. This fact requires that the Modern Synthesis be reex- issue was central in the development of the continuing rift be- amined and modified. tween botanists and zoologists despite the commonality of their interests (G. E. Hutchinson, personal communication). Al- The Darwinian notion of evolution as a process directed by se- though Weismann's doctrine was the subject of two very critical lection acting upon heritable variation has not been challenged reviews in the 20th century (6, 7), these criticisms fell on deaf seriously since Darwin first articulated it.
    [Show full text]