Inferring Biological Networks from Genome-Wide Transcriptional And

Total Page:16

File Type:pdf, Size:1020Kb

Inferring Biological Networks from Genome-Wide Transcriptional And INFERRING BIOLOGICAL NETWORKS FROM GENOME-WIDE TRANSCRIPTIONAL AND FITNESS DATA By WAZEER MOHAMMAD VARSALLY A thesis submitted to The University of Birmingham for the degree of Doctor of Philosophy College of Life and Environmental Sciences School of Biosciences The University of Birmingham July 2013 I University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT In the last 15 years, the increased use of high throughput biology techniques such as genome-wide gene expression profiling, fitness profiling and protein interactomics has led to the generation of an extraordinary amount of data. The abundance of such diverse data has proven to be an essential foundation for understanding the complexities of molecular mechanisms and underlying pathways within a biological system. One approach of extrapolating biological information from this wealth of data has been through the use of reverse engineering methods to infer biological networks. This thesis demonstrates the capabilities and applications of such methodologies in identifying functionally enriched network modules in the yeast species Saccharomyces cerevisiae and Schizosaccharomyces pombe. This study marks the first time a mutual information based network inference approach has been applied to a set of specific genome-wide expression and fitness compendia, as well as the integration of these multi- level compendia. This work highlights how network inference can infer potentially novel biological relationships by identifying gene modules that exhibit similar response across samples. This information can then be used to identify strong candidate interactions which can be tested experimentally. In particular, this work has generated hypotheses in S. pombe that have led to a deeper understanding of the relationship between ribosomal proteins and energy metabolism, a recently discovered pathway termed riboneogenesis. To date, this link has only been reported in S. cerevisiae. Experimental validation of this hypothesis using ChIP-chip data has led to new theories on the role of energy metabolism enzymes in controlling ribosome II biogenesis in S. pombe, including the novel finding that fructose-1, 6-bisphosphatase (FBP1) may have roles in both gluconeogenesis and riboneogenesis. This thesis also demonstrates how the use of multi-level data allows for comprehensive insight into nuclear functions of the S. pombe nonsense-mediated mRNA decay protein, UPF1. This study provides a substantial amount of evidence demonstrating the role of UPF1 in DNA replication. The applicability of fitness data in identifying targets of metal and metalloid toxicity in S. cerevisiae has also been investigated. Ultimately, this thesis reports the effectiveness of using a systems biology and network inference approach to identify, elucidate and understand complex biological pathways in S. cerevisiae and S. pombe. III ACKNOWLEDGEMENTS First and foremost I want to dedicate my thesis to my parents, Reshad and Seeyreen Varsally. Without their unconditional love, support and sacrifice, I would not be where I am today. Their encouragement and motivation throughout the years, especially during the tougher times gave me the strength to continue pushing forward. I would also like to thank my brother Nadiim Varsally, who has always met me with a smile, no matter the situation. Professionally, I would like to thank my supervisors Dr. Francesco Falciani and Dr. Saverio Brogna for their guidance and support throughout both my undergraduate and PhD study. Their expertise and insight in their respective fields have been invaluable in helping me progress as a scientist. I would like to thank all my colleagues. Philipp Antczak, for his vast scientific insight, no matter what problem I had, he always had a solution. To Nil Turan-Jurdzinski for her listening skills and company, especially when the office was quiet. Anna Stincone for teaching me some Italian in our often very entertaining conversations. Jaanika Kronberg for her amazing cake baking skills, they always made my day brighter. Thanks to Harriet Davies whose energy and enthusiasm never failed to make me smile. To Sandip De for his exceptional experimental work in S. pombe which helped validate my results and I would also like to thank the rest of the group, Kim Clarke, Rita Gupta, Helani Munasinghe and Peter Davidsen. I wish to thank all my friends who have been there for me over the years. Special thanks to Anisah for her often humorous but trustworthy advice. To Vanica and Chahat for all the good times we’ve shared and to Yash, for our incredibly long conversations about life. IV LIST OF PUBLICATIONS [1] Varsally, Wazeer and Saverio Brogna. UPF1 involvement in nuclear functions. Biochemical Society Transactions 40.4 (2012): 778. [2] De, Sandip and Varsally, Wazeer and Falciani, Francesco and Brogna, Saverio. Ribosomal proteins' association with transcription sites peaks at tRNA genes in Schizosaccharomyces pombe. RNA 17.9 (2011): 1713-1726. V CONTENTS CHAPTER 1: INTRODUCTION AND BACKGROUND ................................................................ 1 1.1 Introduction to systems biology approaches for omics data analysis ................................. 1 1.1.1 The analysis of genome-wide omics datasets ............................................................. 1 1.1.2 Microarray data processing and normalisation........................................................... 2 1.1.3 Data exploration ......................................................................................................... 3 1.1.4 Identification of differentially expressed genes ......................................................... 4 1.1.5 Functional analysis ..................................................................................................... 5 1.1.6 The current state of network inference ....................................................................... 6 1.1.7 Modularisation approaches......................................................................................... 9 1.2 Other types of genome-wide data used in this study .......................................................... 9 1.2.1 The power of fitness data ........................................................................................... 9 1.2.2 An introduction to ChIP-chip analysis ..................................................................... 11 1.3 The biological systems of relevance ................................................................................ 13 1.3.1 Saccharomyces cerevisiae (budding yeast) and Schizosaccharomyces pombe (fission yeast) ........................................................................................................................... 13 1.3.2 Differences and similarities between S. cerevisiae and S. pombe ............................ 14 1.3.3 A review of system biology studies in yeast ............................................................ 15 1.4 Why focus on the relationship between ribosome biogenesis and energy metabolism? .. 20 1.5 Yeast ribosome biogenesis and energy metabolism ......................................................... 22 1.5.1 Yeast ribosomal proteins .......................................................................................... 22 1.5.2 The link between ribosome biogenesis and energy metabolism pathways .............. 23 1.6 Aims and outline of this thesis ......................................................................................... 31 CHAPTER 2: INFERENCE AND ANALYSIS OF A Saccharomyces cerevisiae GENE FITNESS NETWORK ...................................................................................................................................... 33 2.1 Introduction ...................................................................................................................... 33 2.2 Methods ............................................................................................................................ 35 2.2.1 The Biological System ............................................................................................. 35 2.2.2 Analysis Strategy ...................................................................................................... 37 2.2.3 Data processing ........................................................................................................ 39 2.2.4 Network Inference .................................................................................................... 41 2.2.5 Network analysis: Topology .................................................................................... 43 2.2.6 Network Analysis: Modularisation .......................................................................... 43 VI 2.2.7 Ribosomal proteins first neighbour analysis ............................................................ 44 2.3 Results .............................................................................................................................. 45 2.3.1 A
Recommended publications
  • Selecting Molecular Markers for a Specific Phylogenetic Problem
    MOJ Proteomics & Bioinformatics Review Article Open Access Selecting molecular markers for a specific phylogenetic problem Abstract Volume 6 Issue 3 - 2017 In a molecular phylogenetic analysis, different markers may yield contradictory Claudia AM Russo, Bárbara Aguiar, Alexandre topologies for the same diversity group. Therefore, it is important to select suitable markers for a reliable topological estimate. Issues such as length and rate of evolution P Selvatti Department of Genetics, Federal University of Rio de Janeiro, will play a role in the suitability of a particular molecular marker to unfold the Brazil phylogenetic relationships for a given set of taxa. In this review, we provide guidelines that will be useful to newcomers to the field of molecular phylogenetics weighing the Correspondence: Claudia AM Russo, Molecular Biodiversity suitability of molecular markers for a given phylogenetic problem. Laboratory, Department of Genetics, Institute of Biology, Block A, CCS, Federal University of Rio de Janeiro, Fundão Island, Keywords: phylogenetic trees, guideline, suitable genes, phylogenetics Rio de Janeiro, RJ, 21941-590, Brazil, Tel 21 991042148, Fax 21 39386397, Email [email protected] Received: March 14, 2017 | Published: November 03, 2017 Introduction concept that occupies a central position in evolutionary biology.15 Homology is a qualitative term, defined by equivalence of parts due Over the last three decades, the scientific field of molecular to inherited common origin.16–18 biology has experienced remarkable advancements
    [Show full text]
  • An Automated Pipeline for Retrieving Orthologous DNA Sequences from Genbank in R
    life Technical Note phylotaR: An Automated Pipeline for Retrieving Orthologous DNA Sequences from GenBank in R Dominic J. Bennett 1,2,* ID , Hannes Hettling 3, Daniele Silvestro 1,2, Alexander Zizka 1,2, Christine D. Bacon 1,2, Søren Faurby 1,2, Rutger A. Vos 3 ID and Alexandre Antonelli 1,2,4,5 ID 1 Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden; [email protected] (D.S.); [email protected] (A.Z.); [email protected] (C.D.B.); [email protected] (S.F.); [email protected] (A.A.) 2 Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden 3 Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; [email protected] (H.H.); [email protected] (R.A.V.) 4 Gothenburg Botanical Garden, Carl Skottsbergsgata 22A, SE-413 19 Gothenburg, Sweden 5 Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA 02138 USA * Correspondence: [email protected] Received: 28 March 2018; Accepted: 1 June 2018; Published: 5 June 2018 Abstract: The exceptional increase in molecular DNA sequence data in open repositories is mirrored by an ever-growing interest among evolutionary biologists to harvest and use those data for phylogenetic inference. Many quality issues, however, are known and the sheer amount and complexity of data available can pose considerable barriers to their usefulness. A key issue in this domain is the high frequency of sequence mislabeling encountered when searching for suitable sequences for phylogenetic analysis.
    [Show full text]
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Proteomics Provides Insights Into the Inhibition of Chinese Hamster V79
    www.nature.com/scientificreports OPEN Proteomics provides insights into the inhibition of Chinese hamster V79 cell proliferation in the deep underground environment Jifeng Liu1,2, Tengfei Ma1,2, Mingzhong Gao3, Yilin Liu4, Jun Liu1, Shichao Wang2, Yike Xie2, Ling Wang2, Juan Cheng2, Shixi Liu1*, Jian Zou1,2*, Jiang Wu2, Weimin Li2 & Heping Xie2,3,5 As resources in the shallow depths of the earth exhausted, people will spend extended periods of time in the deep underground space. However, little is known about the deep underground environment afecting the health of organisms. Hence, we established both deep underground laboratory (DUGL) and above ground laboratory (AGL) to investigate the efect of environmental factors on organisms. Six environmental parameters were monitored in the DUGL and AGL. Growth curves were recorded and tandem mass tag (TMT) proteomics analysis were performed to explore the proliferative ability and diferentially abundant proteins (DAPs) in V79 cells (a cell line widely used in biological study in DUGLs) cultured in the DUGL and AGL. Parallel Reaction Monitoring was conducted to verify the TMT results. γ ray dose rate showed the most detectable diference between the two laboratories, whereby γ ray dose rate was signifcantly lower in the DUGL compared to the AGL. V79 cell proliferation was slower in the DUGL. Quantitative proteomics detected 980 DAPs (absolute fold change ≥ 1.2, p < 0.05) between V79 cells cultured in the DUGL and AGL. Of these, 576 proteins were up-regulated and 404 proteins were down-regulated in V79 cells cultured in the DUGL. KEGG pathway analysis revealed that seven pathways (e.g.
    [Show full text]
  • Involvement of DPP9 in Gene Fusions in Serous Ovarian Carcinoma
    Smebye et al. BMC Cancer (2017) 17:642 DOI 10.1186/s12885-017-3625-6 RESEARCH ARTICLE Open Access Involvement of DPP9 in gene fusions in serous ovarian carcinoma Marianne Lislerud Smebye1,2, Antonio Agostini1,2, Bjarne Johannessen2,3, Jim Thorsen1,2, Ben Davidson4,5, Claes Göran Tropé6, Sverre Heim1,2,5, Rolf Inge Skotheim2,3 and Francesca Micci1,2* Abstract Background: A fusion gene is a hybrid gene consisting of parts from two previously independent genes. Chromosomal rearrangements leading to gene breakage are frequent in high-grade serous ovarian carcinomas and have been reported as a common mechanism for inactivating tumor suppressor genes. However, no fusion genes have been repeatedly reported to be recurrent driver events in ovarian carcinogenesis. We combined genomic and transcriptomic information to identify novel fusion gene candidates and aberrantly expressed genes in ovarian carcinomas. Methods: Examined were 19 previously karyotyped ovarian carcinomas (18 of the serous histotype and one undifferentiated). First, karyotypic aberrations were compared to fusion gene candidates identified by RNA sequencing (RNA-seq). In addition, we used exon-level gene expression microarrays as a screening tool to identify aberrantly expressed genes possibly involved in gene fusion events, and compared the findings to the RNA-seq data. Results: We found a DPP9-PPP6R3 fusion transcript in one tumor showing a matching genomic 11;19-translocation. Another tumor had a rearrangement of DPP9 with PLIN3. Both rearrangements were associated with diminished expression of the 3′ end of DPP9 corresponding to the breakpoints identified by RNA-seq. For the exon-level expression analysis, candidate fusion partner genes were ranked according to deviating expression compared to the median of the sample set.
    [Show full text]
  • Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights Into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle
    animals Article Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle Masoumeh Naserkheil 1 , Abolfazl Bahrami 1 , Deukhwan Lee 2,* and Hossein Mehrban 3 1 Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; [email protected] (M.N.); [email protected] (A.B.) 2 Department of Animal Life and Environment Sciences, Hankyong National University, Jungang-ro 327, Anseong-si, Gyeonggi-do 17579, Korea 3 Department of Animal Science, Shahrekord University, Shahrekord 88186-34141, Iran; [email protected] * Correspondence: [email protected]; Tel.: +82-31-670-5091 Received: 25 August 2020; Accepted: 6 October 2020; Published: 9 October 2020 Simple Summary: Hanwoo is an indigenous cattle breed in Korea and popular for meat production owing to its rapid growth and high-quality meat. Its yearling weight and carcass traits (backfat thickness, carcass weight, eye muscle area, and marbling score) are economically important for the selection of young and proven bulls. In recent decades, the advent of high throughput genotyping technologies has made it possible to perform genome-wide association studies (GWAS) for the detection of genomic regions associated with traits of economic interest in different species. In this study, we conducted a weighted single-step genome-wide association study which combines all genotypes, phenotypes and pedigree data in one step (ssGBLUP). It allows for the use of all SNPs simultaneously along with all phenotypes from genotyped and ungenotyped animals. Our results revealed 33 relevant genomic regions related to the traits of interest.
    [Show full text]
  • Ythdc2 Is an N6-Methyladenosine Binding Protein That Regulates Mammalian Spermatogenesis
    Cell Research (2017) 27:1115-1127. © 2017 IBCB, SIBS, CAS All rights reserved 1001-0602/17 $ 32.00 ORIGINAL ARTICLE www.nature.com/cr Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis Phillip J Hsu1, 2, 3, *, Yunfei Zhu4, *, Honghui Ma1, 2, *, Yueshuai Guo4, *, Xiaodan Shi4, Yuanyuan Liu4, Meijie Qi4, Zhike Lu1, 2, Hailing Shi1, 2, Jianying Wang4, Yiwei Cheng4, Guanzheng Luo1, 2, Qing Dai1, 2, Mingxi Liu4, Xuejiang Guo4, Jiahao Sha4, Bin Shen4, Chuan He1, 2, 5 1Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; 2Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA; 3Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA; 4State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China; 5Department of Biochemistry and Molecular Biology, The University of Chi- cago, Chicago, IL 60637, USA N6-methyladenosine (m6A) is the most common internal modification in eukaryotic mRNA. It is dynamically in- stalled and removed, and acts as a new layer of mRNA metabolism, regulating biological processes including stem cell pluripotency, cell differentiation, and energy homeostasis. m6A is recognized by selective binding proteins; YTHDF1 and YTHDF3 work in concert to affect the translation of m6A-containing mRNAs, YTHDF2 expedites mRNA decay, and YTHDC1 affects the nuclear processing of its targets. The biological function of YTHDC2, the final member of the YTH protein family, remains unknown. We report that YTHDC2 selectively binds m6A at its consensus motif. YTHDC2 enhances the translation efficiency of its targets and also decreases their mRNA abundance.
    [Show full text]
  • "Phylogenetic Analysis of Protein Sequence Data Using The
    Phylogenetic Analysis of Protein Sequence UNIT 19.11 Data Using the Randomized Axelerated Maximum Likelihood (RAXML) Program Antonis Rokas1 1Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee ABSTRACT Phylogenetic analysis is the study of evolutionary relationships among molecules, phenotypes, and organisms. In the context of protein sequence data, phylogenetic analysis is one of the cornerstones of comparative sequence analysis and has many applications in the study of protein evolution and function. This unit provides a brief review of the principles of phylogenetic analysis and describes several different standard phylogenetic analyses of protein sequence data using the RAXML (Randomized Axelerated Maximum Likelihood) Program. Curr. Protoc. Mol. Biol. 96:19.11.1-19.11.14. C 2011 by John Wiley & Sons, Inc. Keywords: molecular evolution r bootstrap r multiple sequence alignment r amino acid substitution matrix r evolutionary relationship r systematics INTRODUCTION the baboon-colobus monkey lineage almost Phylogenetic analysis is a standard and es- 25 million years ago, whereas baboons and sential tool in any molecular biologist’s bioin- colobus monkeys diverged less than 15 mil- formatics toolkit that, in the context of pro- lion years ago (Sterner et al., 2006). Clearly, tein sequence analysis, enables us to study degree of sequence similarity does not equate the evolutionary history and change of pro- with degree of evolutionary relationship. teins and their function. Such analysis is es- A typical phylogenetic analysis of protein sential to understanding major evolutionary sequence data involves five distinct steps: (a) questions, such as the origins and history of data collection, (b) inference of homology, (c) macromolecules, developmental mechanisms, sequence alignment, (d) alignment trimming, phenotypes, and life itself.
    [Show full text]
  • Análise Integrativa De Perfis Transcricionais De Pacientes Com
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas.
    [Show full text]
  • New Syllabus
    M.Sc. BIOINFORMATICS REGULATIONS AND SYLLABI (Effective from 2019-2020) Centre for Bioinformatics SCHOOL OF LIFE SCIENCES PONDICHERRY UNIVERSITY PUDUCHERRY 1 Pondicherry University School of Life Sciences Centre for Bioinformatics Master of Science in Bioinformatics The M.Sc Bioinformatics course started since 2007 under UGC Innovative program Program Objectives The main objective of the program is to train the students to learn an innovative and evolving field of bioinformatics with a multi-disciplinary approach. Hands-on sessions will be provided to train the students in both computer and experimental labs. Program Outcomes On completion of this program, students will be able to: Gain understanding of the principles and concepts of both biology along with computer science To use and describe bioinformatics data, information resource and also to use the software effectively from large databases To know how bioinformatics methods can be used to relate sequence to structure and function To develop problem-solving skills, new algorithms and analysis methods are learned to address a range of biological questions. 2 Eligibility for M.Sc. Bioinformatics Students from any of the below listed Bachelor degrees with minimum 55% of marks are eligible. Bachelor’s degree in any relevant area of Physics / Chemistry / Computer Science / Life Science with a minimum of 55% of marks 3 PONDICHERRY UNIVERSITY SCHOOL OF LIFE SCIENCES CENTRE FOR BIOINFORMATICS LIST OF HARD-CORE COURSES FOR M.Sc. BIOINFORMATICS (Academic Year 2019-2020 onwards) Course
    [Show full text]
  • Molecular Effects of Isoflavone Supplementation Human Intervention Studies and Quantitative Models for Risk Assessment
    Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis committee Promotors Prof. Dr Pieter van ‘t Veer Professor of Nutritional Epidemiology Wageningen University Prof. Dr Evert G. Schouten Emeritus Professor of Epidemiology and Prevention Wageningen University Co-promotors Dr Anouk Geelen Assistant professor, Division of Human Nutrition Wageningen University Dr Lydia A. Afman Assistant professor, Division of Human Nutrition Wageningen University Other members Prof. Dr Jaap Keijer, Wageningen University Dr Hubert P.J.M. Noteborn, Netherlands Food en Consumer Product Safety Authority Prof. Dr Yvonne T. van der Schouw, UMC Utrecht Dr Wendy L. Hall, King’s College London This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 20 June 2014 at 13.30 p.m. in the Aula. Vera van der Velpen Molecular effects of isoflavone supplementation: Human intervention studies and quantitative models for risk assessment 154 pages PhD thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in Dutch and English ISBN: 978-94-6173-952-0 ABSTRact Background: Risk assessment can potentially be improved by closely linked experiments in the disciplines of epidemiology and toxicology.
    [Show full text]