The Effect of Biological Soil Crusts on Rainwater And
Plant and Soil (2005) 278:235–251 Ó Springer 2005 DOI 10.1007/s11104-005-8550-9 The effect of biological soil crusts on throughput of rainwater and N into Lake Michigan sand dune soils Rachel K. Thiet1,2,6, R.E.J. Boerner1, Moria Nagy3,5 & Richard Jardine4 1Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH , 43210, USA. 2Department of Environmental Studies, Antioch New England Graduate School, Keene, NH, 03431, USA. 3Department of Biology, John Carroll University, University Heights, OH , 44118, USA. 4Department of Mathematics, Keene State College, Keene, NH, 03435, USA. 5Applied Nanobioscience Center, State University, Tempe, AZ, 85282, USA. 6Corresponding author* Received 1 December 2004. Accepted in revised form 7 June 2005 Key words: biological soil crusts, cyanobacteria, ecosystem N budget, N fixation, rainwater throughput, sand dunes Abstract Biological soil crusts composed of cyanobacteria, green algae, bryophytes, and lichens colonize soils in arid and semiarid ecosystems worldwide and are responsible for significant N input to the soils of these eco- systems. Soil crusts also colonize active sand dunes in more humid regions, but studies of structure and function of such sand dune crusts are lacking. We identified the cyanobacterial, algal, and bryophytic constituents and N production and leachates of biological soil crusts that colonize beach dunes at the Indiana Dunes National Lakeshore along southern Lake Michigan in Indiana, USA. To determine the role of these crusts in this system, we conducted a greenhouse experiment in which intact soil cores with biological crusts were subjected to artificial rainfall over a full growing season.
[Show full text]