Arches Visitor Guide 2017
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Instruction Manual
IINNSSTTRRUUCCTTIIOONN MMAANNUUAALL NexStar 60 . NexStar 80 . NexStar 102 . NexStar 114 . NexStar 130 T A B L E O F C O N T E N T S INTRODUCTION ............................................................................................................................................................ 4 Warning .......................................................................................................................................................................... 4 ASSEMBLY ...................................................................................................................................................................... 7 Assembling the NexStar ................................................................................................................................................. 7 Attaching the Hand Control Holder ............................................................................................................................ 8 Attaching the Fork Arm to the Tripod......................................................................................................................... 8 Attaching the Telescope to the Fork Arm ................................................................................................................... 8 The Star Diagonal ....................................................................................................................................................... 8 The Eyepiece.............................................................................................................................................................. -
Long-Term Changes in Biological Soil Crust Cover and Composition Eva Dettweiler-Robinson1*, Jeanne M Ponzetti2 and Jonathan D Bakker3
Dettweiler-Robinson et al. Ecological Processes 2013, 2:5 http://www.ecologicalprocesses.com/content/2/1/5 RESEARCH Open Access Long-term changes in biological soil crust cover and composition Eva Dettweiler-Robinson1*, Jeanne M Ponzetti2 and Jonathan D Bakker3 Abstract Introduction: Communities change over time due to disturbances, variations in climate, and species invasions. Biological soil crust communities are important because they contribute to erosion control and nutrient cycling. Crust types may respond differently to changes in environmental conditions: single-celled organisms and bryophytes quickly recover after a disturbance, while lichens are slow growing and dominate favorable sites. Community change in crusts has seldom been assessed using repeated measures. For this study, we hypothesized that changes in crust composition were related to disturbance, topographic position, and invasive vegetation. Methods: We monitored permanent plots in the Columbia Basin in 1999 and 2010 and compared changes in crust composition, cover, richness, and turnover with predictor variables of herbivore exclosure, elevation, heat load index, time since fire, presence of an invasive grass, and change in cover of the invasive grass. Results: Bryophytes were cosmopolitan with high cover. Dominant lichens did not change dramatically. Indicator taxa differed by monitoring year. Bryophyte and total crust cover declined, and there was lower turnover outside of herbivore exclosures. Lichen cover did not change significantly. Plots that burned recently had high turnover. Increase in taxon richness was correlated with presence of an invasive grass in 1999. Change in cover of the invasive grass was positively related to proportional loss and negatively related to gain. Conclusions: Composition and turnover metrics differed significantly over 11 years, though cover was more stable between years. -
Biological Soil Crust Community Types Differ in Key Ecological Functions
UC Riverside UC Riverside Previously Published Works Title Biological soil crust community types differ in key ecological functions Permalink https://escholarship.org/uc/item/2cs0f55w Authors Pietrasiak, Nicole David Lam Jeffrey R. Johansen et al. Publication Date 2013-10-01 DOI 10.1016/j.soilbio.2013.05.011 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Soil Biology & Biochemistry 65 (2013) 168e171 Contents lists available at SciVerse ScienceDirect Soil Biology & Biochemistry journal homepage: www.elsevier.com/locate/soilbio Short communication Biological soil crust community types differ in key ecological functions Nicole Pietrasiak a,*, John U. Regus b, Jeffrey R. Johansen c,e, David Lam a, Joel L. Sachs b, Louis S. Santiago d a University of California, Riverside, Soil and Water Sciences Program, Department of Environmental Sciences, 2258 Geology Building, Riverside, CA 92521, USA b University of California, Riverside, Department of Biology, University of California, Riverside, CA 92521, USA c Biology Department, John Carroll University, 1 John Carroll Blvd., University Heights, OH 44118, USA d University of California, Riverside, Botany & Plant Sciences Department, 3113 Bachelor Hall, Riverside, CA 92521, USA e Department of Botany, Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic article info abstract Article history: Soil stability, nitrogen and carbon fixation were assessed for eight biological soil crust community types Received 22 February 2013 within a Mojave Desert wilderness site. Cyanolichen crust outperformed all other crusts in multi- Received in revised form functionality whereas incipient crust had the poorest performance. A finely divided classification of 17 May 2013 biological soil crust communities improves estimation of ecosystem function and strengthens the Accepted 18 May 2013 accuracy of landscape-scale assessments. -
Instruction Manual Manuel D'instructions Manual De Instrucciones Bedienungsanleitung Manuale Di Istruzioni
78-8840, 78-8850, 78-8890 MAKSUTOV-CASSEGRAIN WITH REAlVOICE™ OUTPUT AVEC SORTIE REALVOICE™ 78-8831 76MM REFLECTOR CON SALIDA REALVOICE™ MIT REALVOICE™ SPRACHAUSGABE CON USCITA REALVOICE™ INSTRUCTION MANUAL MANUEL D’INSTRUCTIONS MANUAL DE INSTRUCCIONES BEDIENUNGSANLEITUNG MANUALE DI ISTRUZIONI 78-8846 114MM REFLECTOR Lit.#: 98-0433/04-13 ENGLISH ENJOYING YOUR NEW TELESCOPE 1. You may already be trying to decide what you plan to look at first, once your telescope is setup and aligned. Any bright object in the night sky is a good starting point. One of the favorite starting points in astronomy is the moon. This is an object sure to please any budding astronomer or experienced veteran. When you have developed proficiency at this level, other objects become good targets. Saturn, Mars, Jupiter, and Venus are good second steps to take. 2. The low power eyepiece (the one with the largest number printed on it) is perfect for viewing the full moon, planets, star clusters, nebulae, and even constellations. These should build your foundation. Avoid the temptation to move directly to the highest power. The low power eyepiece will give you a wider field of view, and brighter image—thus making it very easy to find your target object. However, for more detail, try bumping up in magnification to a higher power eyepiece on some of these objects. During calm and crisp nights, the light/dark separation line on the moon (called the “Terminator”) is marvelous at high power. You can see mountains, ridges and craters jump out at you due to the highlights. Similarly, you can move up to higher magnifications on the planets and nebulae. -
Biological Soil Crust Rehabilitation in Theory and Practice: an Underexploited Opportunity Matthew A
REVIEW Biological Soil Crust Rehabilitation in Theory and Practice: An Underexploited Opportunity Matthew A. Bowker1,2 Abstract techniques; and (3) monitoring. Statistical predictive Biological soil crusts (BSCs) are ubiquitous lichen–bryo- modeling is a useful method for estimating the potential phyte microbial communities, which are critical structural BSC condition of a rehabilitation site. Various rehabilita- and functional components of many ecosystems. How- tion techniques attempt to correct, in decreasing order of ever, BSCs are rarely addressed in the restoration litera- difficulty, active soil erosion (e.g., stabilization techni- ture. The purposes of this review were to examine the ques), resource deficiencies (e.g., moisture and nutrient ecological roles BSCs play in succession models, the augmentation), or BSC propagule scarcity (e.g., inoc- backbone of restoration theory, and to discuss the prac- ulation). Success will probably be contingent on prior tical aspects of rehabilitating BSCs to disturbed eco- evaluation of site conditions and accurate identification systems. Most evidence indicates that BSCs facilitate of constraints to BSC reestablishment. Rehabilitation of succession to later seres, suggesting that assisted recovery BSCs is attainable and may be required in the recovery of of BSCs could speed up succession. Because BSCs are some ecosystems. The strong influence that BSCs exert ecosystem engineers in high abiotic stress systems, loss of on ecosystems is an underexploited opportunity for re- BSCs may be synonymous with crossing degradation storationists to return disturbed ecosystems to a desirable thresholds. However, assisted recovery of BSCs may trajectory. allow a transition from a degraded steady state to a more desired alternative steady state. In practice, BSC rehabili- Key words: aridlands, cryptobiotic soil crusts, cryptogams, tation has three major components: (1) establishment of degradation thresholds, state-and-transition models, goals; (2) selection and implementation of rehabilitation succession. -
Bern Symbols
T H E S Y M B O L S O F B E R N U N I O N C H U R C H R.D.1, LEESPORT, PENNSYSLVANIA By the grace of God, I was able to prepare this booklet as a member of BERN REFORMED CHURCH in the year 1974. I dedicate it to my wife, DOROTHY M. (SEIFRIT) REESER, who has given of her best for the advancement of the Kingdom of God in Bern Reformed and Lutheran Church and also in memory of my wife, Dorothy’s parents, FRANK AND TAMIE SEIFRIT who gave of their best in support of Bern United Church of Christ of the Bern Union Church. EARL H. REESER Note: Typos and minor grammar errors have been corrected. THE SYMBOLS OF BERN UNION CHURCH Earl H. Reeser I heard people say that the stained-glass windows in the Bern Reformed and Lutheran Church of Leesport, R.D.1, along Rt. 183, are the most beautiful they have ever seen. It is with these thoughts in mind that prompted me to undertake my interpretation of the meaning of the symbols as well as other work you see before you, which the building committee saw fit to install in the building of this church. The first church built was exclusively by the Reformed. When this organization was affected, is not definitely known, but the belief is, that it may have been as early as 1739. The earliest baptism is recorded in that year. When the first building was erected, is also not definitely known. -
Mid-Twentieth Century Architecture in Alaska Historic Context (1945-1968)
Mid-Twentieth Century Architecture in Alaska Historic Context (1945-1968) Prepared by Amy Ramirez . Jeanne Lambin . Robert L. Meinhardt . and Casey Woster 2016 The Cultural Resource Programs of the National Park Service have responsibilities that include stewardship of historic buildings, museum collections, archeological sites, cultural landscapes, oral and written histories, and ethnographic resources. The material is based upon work assisted by funding from the National Park Service. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the Department of the Interior. Printed 2018 Cover: Atwood Center, Alaska Pacific University, Anchorage, 2017, NPS photograph MID-TWENTIETH CENTURY ARCHITECTURE IN ALASKA HISTORIC CONTEXT (1945 – 1968) Prepared for National Park Service, Alaska Regional Office Prepared by Amy Ramirez, B.A. Jeanne Lambin, M.S. Robert L. Meinhardt, M.A. and Casey Woster, M.A. July 2016 Table of Contents LIST OF ACRONYMS/ABBREVIATIONS ............................................................................................... 5 EXECUTIVE SUMMARY ........................................................................................................................... 8 1.0 PROJECT DESCRIPTION ..................................................................................................................... 9 1.1 Historic Context as a Planning & Evaluation Tool ............................................................................ -
Water Regulation in Cyanobacterial Biocrusts from Drylands: Negative Impacts of Anthropogenic Disturbance
water Article Water Regulation in Cyanobacterial Biocrusts from Drylands: Negative Impacts of Anthropogenic Disturbance Yolanda Cantón 1,2,*, Sonia Chamizo 1,2, Emilio Rodriguez-Caballero 1,2 , Roberto Lázaro 3, Beatriz Roncero-Ramos 1 , José Raúl Román 1 and Albert Solé-Benet 3 1 Department of Agronomy, University of Almeria, Carretera de Sacramento sn., La Cañada de San Urbano, 04120 Almeria, Spain; [email protected] (S.C.); [email protected] (E.R.-C.); [email protected] (B.R.-R.); [email protected] (J.R.R.) 2 Research Centre for Scientific Collections from the University of Almería (CECOUAL), Carretera de Sacramento sn., La Cañada de San Urbano, 04120 Almeria, Spain 3 Experimental Station of Arid Zones, CSIC, Carretera de Sacramento sn., La Cañada de San Urbano, 04120 Almeria, Spain; [email protected] (R.L.); [email protected] (A.S.-B.) * Correspondence: [email protected] Received: 26 December 2019; Accepted: 4 March 2020; Published: 6 March 2020 Abstract: Arid and semi-arid ecosystems are characterized by patchy vegetation and variable resource availability. The interplant spaces of these ecosystems are very often covered by cyanobacteria-dominated biocrusts, which are the primary colonizers of terrestrial ecosystems and key in facilitating the succession of other biocrust organisms and plants. Cyanobacterial biocrusts regulate the horizontal and vertical fluxes of water, carbon and nutrients into and from the soil and play crucial hydrological, geomorphological and ecological roles in these ecosystems. In this paper, we analyze the influence of cyanobacterial biocrusts on water balance components (infiltration-runoff, evaporation, soil moisture and non-rainfall water inputs (NRWIs)) in representative semiarid ecosystems in southeastern Spain. -
National Cooperative Soil Survey and Biological Soil Crusts
Biological Soil Crusts Status Report 2003 National Cooperative Soil Survey Conference Plymouth, Massachusetts June 16 - 20, 2003 Table of Contents I. NCSS 2003 National Conference Proceedings II. Report and recommendations of the soil crust task force - 2002 West Regional Cooperative Soil Survey Conference Task Force Members Charges Part I. Executive Summary and Recommendations Part II. Report on Charges Part III. Research Needs, Action Items, Additional Charges Part IV. Resources for Additional Information Part V. Appendices Appendix 1 - Agency needs Appendix 2 - Draft material for incorporation into the Soil Survey Manual Introduction Relationship to Mineral Crusts Types of Biological Soil Crusts Figure 1. Biological soil crust types. Major Components of Soil Crusts: Cyanobacteria, Lichens, and Mosses Table 1. Morphological groups for biological crust components and their N-fixing characteristics. (Belnap et al. 2001) Soil Surface Roughness/Crust Age Distribution of Crusts References Appendix 3 - Guidelines for describing soil surface features, Version 2.0 Surface features Table 1. Surface features Determining Percent Cover Equipment Method 1. Step-point Method 2. Ocular estimate with quadrats Method 3. Line-point quadrat Method 4. Stratified line-point intercept Method 5. Ocular estimate Appendix 3a - Data sheets used in Moab field test Appendix 4 - Soil descriptions Discussion Group 1 Group 3 Group 2 Group 4 Appendix 5 - Photography Biological Soil Crust Status Report NCSS National Conference June 16-20, 2003 Table of Contents III. Task force's response to the following questions posed by the 2002 West Regional Standards Committee 1. Are biological soil crusts plants, soil or combination of both? 2. Is it appropriate to think of these crusts as plant communities with potentials, state and transition? 3. -
Montana Naturalist
NatMuONTANAralisWinter 2012-2013t Why can’t we just get along? Hiking Columbia Mountain Birds in Snow Stargazing and More page 9 Connecting People with Nature WINTER 2012-13 MONTANA NATURALIST TO PROMOTE AND CULTIVATE THE APPRECIATION, UNDERSTANDING AND STEWARDSHIP OF NATURE THROUGH EDUCATION inside Winter 2012-2013 NatMuONTANAralist Features 4 Sharing the Land A local non-profit helps make it happen by Caroline Kurtz 6 What Is Wild? Searching for an answer on Columbia Mountain by Matt Holloway 4 Departments 3 Tidings 9 Get Outside Guide What’s that star?; the search for exoplanets; whitebark pine ecology and more Special 6 13 Community Focus Pull-Out Beginning beekeepers, buzzing bees Section 14 Far Afield Snowed In! Birdwatching in a blizzard 16 Imprints 2012 honorees; fall celebration thank yous 18 Magpie Market 9 13 19 Reflections Under the Oak intaglio print by Elizabeth Claire Rose Cover – A Grizzly Bear (Ursus arctos horribilis) feeds along the shore of Yellowstone Lake as a snow storm blows in on a cold Fall afternoon in Yellowstone National Park. Captured with a Canon 7D and 70-200/2.8L IS II in aperture priority mode with an exposure bias of + 2/3 at ISO400, f/2.8, and 1/500th of a second. The camera was handheld. This bear was photographed while leading Rocky Mountain College students on a class trip for ART243 - 14 16 Nature Photography. Photographer Dave Shumway is the staff photographer and adjunct instructor of photography for Rocky Mountain College in Billings, Montana. Dave has two passions, one for the outdoors and one for photography. -
A Field Guide to Biological Soil Crusts of Western U.S. Drylands Common Lichens and Bryophytes
A Field Guide to Biological Soil Crusts of Western U.S. Drylands Common Lichens and Bryophytes Roger Rosentreter Matthew Bowker Jayne Belnap Photographs by Stephen Sharnoff Roger Rosentreter, Ph.D. Bureau of Land Management Idaho State Office 1387 S. Vinnell Way Boise, ID 83709 Matthew Bowker, Ph.D. Center for Environmental Science and Education Northern Arizona University Box 5694 Flagstaff, AZ 86011 Jayne Belnap, Ph.D. U.S. Geological Survey Southwest Biological Science Center Canyonlands Research Station 2290 S. West Resource Blvd. Moab, UT 84532 Design and layout by Tina M. Kister, U.S. Geological Survey, Canyonlands Research Station, 2290 S. West Resource Blvd., Moab, UT 84532 All photos, unless otherwise indicated, copyright © 2007 Stephen Sharnoff, Ste- phen Sharnoff Photography, 2709 10th St., Unit E, Berkeley, CA 94710-2608, www.sharnoffphotos.com/. Rosentreter, R., M. Bowker, and J. Belnap. 2007. A Field Guide to Biological Soil Crusts of Western U.S. Drylands. U.S. Government Printing Office, Denver, Colorado. Cover photos: Biological soil crust in Canyonlands National Park, Utah, cour- tesy of the U.S. Geological Survey. 2 Table of Contents Acknowledgements ....................................................................................... 4 How to use this guide .................................................................................... 4 Introduction ................................................................................................... 4 Crust composition .................................................................................. -
Forest and Rangeland Soils of the United
Richard V. Pouyat Deborah S. Page-Dumroese Toral Patel-Weynand Linda H. Geiser Editors Forest and Rangeland Soils of the United States Under Changing Conditions A Comprehensive Science Synthesis Forest and Rangeland Soils of the United States Under Changing Conditions Richard V. Pouyat • Deborah S. Page-Dumroese Toral Patel-Weynand • Linda H. Geiser Editors Forest and Rangeland Soils of the United States Under Changing Conditions A Comprehensive Science Synthesis Editors Richard V. Pouyat Deborah S. Page-Dumroese Northern Research Station Rocky Mountain Research Station USDA Forest Service USDA Forest Service Newark, DE, USA Moscow, ID, USA Toral Patel-Weynand Linda H. Geiser Washington Office Washington Office USDA Forest Service USDA Forest Service Washington, DC, USA Washington, DC, USA ISBN 978-3-030-45215-5 ISBN 978-3-030-45216-2 (eBook) https://doi.org/10.1007/978-3-030-45216-2 © The Editor(s) (if applicable) and The Author(s) 2020 . This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.