Biocontrol Science and Technology Biology and Nymph Host Range

Total Page:16

File Type:pdf, Size:1020Kb

Biocontrol Science and Technology Biology and Nymph Host Range This article was downloaded by: [USDA National Agricultural Library] On: 24 May 2010 Access details: Access Details: [subscription number 917340536] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Biocontrol Science and Technology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713409232 Biology and Nymph Host Range of Anchocoema bidentata and Astroma saltense (Orthoptera: Proscopiidae), Potential Biocontrol Agents for Creosotebush, Larrea tridentata (Zygophyllaceae) in the U.S.A. Guillermo Logarzo ;Miguel Casalinuovo To cite this Article Logarzo, Guillermo andCasalinuovo, Miguel(2004) 'Biology and Nymph Host Range of Anchocoema bidentata and Astroma saltense (Orthoptera: Proscopiidae), Potential Biocontrol Agents for Creosotebush, Larrea tridentata (Zygophyllaceae) in the U.S.A.', Biocontrol Science and Technology, 14: 1, 39 — 50 To link to this Article: DOI: 10.1080/09583150310001506589 URL: http://dx.doi.org/10.1080/09583150310001506589 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Biocontrol Science and Technology (February 2004), Vol. 14, No. 1, 39Á/50 Biology and Nymph Host Range of Anchocoema bidentata and Astroma saltense (Orthoptera: Proscopiidae), Potential Biocontrol Agents for Creosotebush, Larrea tridentata (Zygophyllaceae) in the U.S.A. GUILLERMO LOGARZO AND MIGUEL CASALINUOVO Agricultural Research Service, US Department of Agriculture, South American Biological Control Laboratory, 3130 Buenos Aires Place, Washington, DC 20521- 3130, USA (Received 2 August 2002; returned 9 October 2002; accepted 10 April 2003) Two stick-like acridids (Orthoptera: Proscopiidae) from Argentina, Anchocoema bidentata Mello-Leitao and Astroma saltense Mello-Leitao, were evaluated as potential biological control agents of creosote bush (Larrea tridentata (DC.) Coville) in the southwestern United States. Their biology, behavior and geographic distribution of those species were studied. The host plant ranges for both insects were established through nymph feeding preference and development tests in the laboratory and in the field. A total of 33 species of plants belonging to 13 families were tested. Anchocoema bidentata and A. saltense are mimetic species, having as many as three generations a year, and exhibit strong sexual dimorphism; females are larger and less mobile than males. In both species, females laid egg masses in the soil. First instars appeared in the field at the end of the spring, the second generation at mid-summer, and a third at the end of the summer. Adults of A. bidentata and A. saltense appeared in the field at the Downloaded By: [USDA National Agricultural Library] At: 12:53 24 May 2010 beginning of the spring. The laboratory multiple-choice feeding test showed that A. bidentata preferred Larrea divaricata Cav., whereas A. saltense preferred L. divaricata and L. cuneifolia Cav. In the nymph development test (no choice), A. bidentata was able to complete its development only on L. divaricata and L. cuneifolia, while Astroma saltense completed its development on six plant species: L divaricata, L. cuneifolia, Bulnesia retama (Gillies ex Hooker et Arnott), B. schickendantzi Hieron (all Zygophyllaceae), Zuccagnia punctata Cav., and Prosopis torquata (Cav. Ap. Lag.) (both Fabaseae). We concluded that A. bidentata could be a biocontrol agent for L. tridentata because the first instar can complete its development only on Larrea spp. Regarding A. saltense, this species showed a wide host range and should not be considered as a biological control agent of L. tridentata. Correspondence to: Guillermo Logarzo, USDA-ARS SABCL, 3130 Buenos Aires Place, Washington, DC 20521-3130, USA. Tel.: /54-11-4452-1882, ext. 111; Fax: /54-11-4452-1882, ext. 104; E-mail: [email protected] ISSN 0958-3157 (print)/ISSN 1360-0478 (online)/04/010039-12 # 2004 Taylor & Francis Ltd DOI: 10.1080/09583150310001506589 40 G. LOGARZO & M. CASALINUOVO Keywords: Larrea tridentata, biological control, weed, acridid, South America, creosote bush, Anchocoema bidentata, Astroma saltense, Zygophyllaceae, Orthoptera, Proscopiidae INTRODUCTION Creosote bush (Larrea tridentata (DC.) Coville) is a common woody, perennial and slow- growing weedy shrub, covering 19 million ha in the United States (Platt, 1959), that competes with rangeland forage plant species. This desert plant has been increasing its geographical range in the last 150 years, replacing grasslands, probably due to overgrazing (York & Dick- Peddie, 1969). In New Mexico, Melgoza et al. (1984) found that good stands of grasses rapidly appeared after Larrea plants were killed with herbicides. The genus Larrea originated in South America (Hunziker et al., 1972, 1977; Hunziker, 1975; Wells & Hunziker, 1976), and has four South American, and one North American species: L. tridentata (Hunziker et al., 1977). Creosote bush arrived to North America around 11 000 years ago (Van Devender, 1973; Wells, 1976) and is supposed to be a subspecies of the South American L. divaricata (Hunziker et al., 1977). Biological control of creosote bush could be feasible by introducing phytophagous insects from the South American species of Larrea to the United States. Previous studies on the natural enemies of South American species of Larrea determined that the best candidates for biological control of L. tridentata were the proscopiids, Anchocoema bidentata Mello-Leitao (Astroma riojanum originally) and Astroma saltense Mello-Leitao (Cordo & De Loach, 1993) Proscopiidae, endemic to South America, are very similar to walking sticks (Phasmida) in appearance and in their cryptic nature, and all species are apterous or brachypterous. The biology of this family, which contains more than 100 species, is poorly known. Although several studies mention proscopiids of Larrea (Mares et al., 1977; Orions et al., 1977; Rhoades 1977; Schultz et al., 1977; Schultz, 1979), none analyzed their host range in detail. The purpose of this research was to document the biology and assess the natural and potential host plant range of A. bidentata and A. saltense through field and laboratory tests to evaluate their potential as biocontrol agents for creosote bush in the United States. MATERIALS AND METHODS To identify the insects used in this study, we compared specimens of A. bidentata and A. saltense with the original descriptions made by Mello-Leita˜o and with the type specimens of A. riojanum and of A. saltense deposited in the Museo de Ciencias Naturales de La Plata. Cordo and De Loach provided us with the specimens used in the publications of 1993. The life history and host range studies were carried out in Buenos Aires and Catamarca Downloaded By: [USDA National Agricultural Library] At: 12:53 24 May 2010 Provinces, Argentina from 1991 to 1993. Most of the laboratory studies were carried out at the USDA-ARS SABCL lab in Buenos Aires. All host range studies were carried out at a temporary substation in Catamarca Province. Proscopiid Biology, Distribution and Host Plant Associations The field work and collection of A. bidentata were carried out mainly in the area of Miraflores, 70 km S of Catamarca City. This area is an ecotone between the phytogeo- graphical regions of Chaco (dry forest ecosystem) and Monte (shrub desert ecosystem). The collection sites of A. saltense were Santa Marı´a (350 km NW of Catamarca City) and Andalgala´ (130 km W of Catamarca City) (Monte phytogeographical region). Adults and large nymphs of both proscopiids were collected by hand, and first instars by sweeping and beating. Adults and nymphs were kept in 350-mL transparent plastic containers at room temperature (22Á/288C), and fed fresh leaves of Larrea every other day. A maximum of six adults or large nymphs were placed in a single container. BIOLOGY AND HOST RANGE OF TWO ARGENTINE ACRIDIDS 41 During 1992 and 1993, we conducted behavior observations in the field (copulation, feeding, oviposition, and movement) at different times of the day (from 07:00 to 01:00 h) on both adults and nymphs of A. bidentata at Miraflores (almost daily), and of A. saltense at Villa Marı´a (two to three times a month). First instar A. bidentata were sampled by beating 10 plants of each of the following species: L. cuneifolia Cav., L. divaricata Cav., Cercidium praecox (Ruiz & Pav.) Harms, Geoffroea decorticans (Hooker et Arnott), Acacia sp., A. aroma Gillies, Prosopis chilensis (Mol). Stunz, P. torquata (Cav. Ap. Lag.) DC., P. nigra Griseb, Cassia aphylla Cav.: Zisyphus mistol Griseb; and Aspidosperma quebracho-blanco. 2 Astroma saltense densities (adults
Recommended publications
  • Malpighiaceae De Colombia: Patrones De Distribución, Riqueza, Endemismo Y Diversidad Filogenética
    DARWINIANA, nueva serie 9(1): 39-54. 2021 Versión de registro, efectivamente publicada el 16 de marzo de 2021 DOI: 10.14522/darwiniana.2021.91.923 ISSN 0011-6793 impresa - ISSN 1850-1699 en línea MALPIGHIACEAE DE COLOMBIA: PATRONES DE DISTRIBUCIÓN, RIQUEZA, ENDEMISMO Y DIVERSIDAD FILOGENÉTICA Diego Giraldo-Cañas ID Herbario Nacional Colombiano (COL), Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D. C., Colombia; [email protected] (autor corresponsal). Abstract. Giraldo-Cañas, D. 2021. Malpighiaceae from Colombia: Patterns of distribution, richness, endemism, and phylogenetic diversity. Darwiniana, nueva serie 9(1): 39-54. Malpighiaceae constitutes a family of 77 genera and ca. 1300 species, distributed in tropical and subtropical regions of both hemispheres. They are mainly diversified in the American continent and distributed in a wide range of habitats and altitudinal gradients. For this reason, this family can be a model plant group to ecological and biogeographical analyses, as well as evolutive studies. In this context, an analysis of distribution, richness, endemism and phylogenetic diversity of Malpighiaceae in natural regions and their altitudinal gradients was undertaken. Malpighiaceae are represented in Colombia by 34 genera and 246 species (19.1% of endemism). Thus, Colombia and Brazil (44 genera, 584 species, 61% of endemism) are the two richest countries on species of this family. The highest species richness and endemism in Colombia is found in the lowlands (0-500 m a.s.l.: 212 species, 28 endemics); only ten species are distributed on highlands (2500-3200 m a.s.l.). Of the Malpighiaceae species in Colombia, Heteropterys leona and Stigmaphyllon bannisterioides have a disjunct amphi-Atlantic distribution, and six other species show intra-American disjunctions.
    [Show full text]
  • Exploring the Tempo of Species Diversification in Legumes
    South African Journal of Botany 89 (2013) 19–30 Contents lists available at ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb Exploring the tempo of species diversification in legumes E.J.M. Koenen a,1, J.M. de Vos a,1,2, G.W. Atchison a, M.F. Simon b, B.D. Schrire c, E.R. de Souza d, L.P. de Queiroz d, C.E. Hughes a,⁎ a Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008 Zürich, Switzerland b Embrapa Recursos Genéticos e Biotecnologia, PqEB, Caixa Postal 02372 Brasilia-DF, Brasil c Herbarium, Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AB, UK d Universidade Estadual de Feira de Santana, Dept. de Ciências Biológicas, Feira de Santana, Bahia, Brasil article info abstract Available online 12 August 2013 Whatever criteria are used to measure evolutionary success – species numbers, geographic range, ecological abundance, ecological and life history diversity, background diversification rates, or the presence of rapidly Edited by JS Boatwright evolving clades – the legume family is one of the most successful lineages of flowering plants. Despite this, we still know rather little about the dynamics of lineage and species diversification across the family through the Keywords: Cenozoic, or about the underlying drivers of diversification. There have been few attempts to estimate net Species diversification species diversification rates or underlying speciation and extinction rates for legume clades, to test whether Leguminosae among-lineage variation in diversification rates deviates from null expectations, or to locate species diversifica- Calliandra fi Indigofereae tion rate shifts on speci c branches of the legume phylogenetic tree.
    [Show full text]
  • Geoffroea Decorticans (Gill., Ex Hook. & Arn.) Burkart
    FICHA DE ANTECEDENTES DE ESPECIE Nombre Científico (nombre de la especie en latín) Geoffroea decorticans (Gill., ex Hook. & Arn.) Burkart Nombre común (nombre de uso habitual que se le asigna a la especie, puede ser más de uno) Chañar Taxonomía (nombre en latín de las categorías taxonómicas a las que pertenece esta especie) Reino: Plantae Orden: Fabales Phyllum/División: Magnoliophyta Familia: Fabaceae Clase: Magnoliopsida Género: Geoffroea Sinonimia (otros nombres científicos que la especie ha tenido, pero actualmente ya no se usan) Gourliea chilensis Clos, Gourliea decorticans Hook. & Arn., Gourliea spinosa Skeels, Lucuma spinosa Molina Antecedentes Generales (breve descripción de los ejemplares, incluida características físicas, reproductivas u otras características relevantes de su historia natural. Se debería incluir también aspectos taxonómicos, en especial la existencia de subespecies o variedades. Recuerde poner las citas bibliográficas) Geoffroea decorticans, se comporta como arbusto o árbol de hasta 7 m de alto (cuando está aislado) y cuando crece en bosquecillos densos generalmente crece aproximadamente 2 m de altura (Martínez 1989). Presenta tronco tortuoso ramificado de 20-40 cm de diámetro (y de 10 a 15 cm de diámetro cuando forma bosquecillos, Iglesias y Barchuk, 2010), revestido de fajas longitudinales de ritidoma en vías de desprendimiento en los individuos adultos, ramas y ramitas grises que en la mayoría de los casos terminan en una espina dura y punzante. Las hojas son caducas, compuestas, imparipinadas, alternas o fasciculadas sobre braquiblastos pequeños axilares, raquis incluyendo pecíolo de 1,5-6 cm de largo, foliólos 5-11 por hoja, opuestos o subpuesto, subsésiles, con o sin par terminal, oblongo u oblongo-elípticos obtusos y emarginados; pubérulos cuando joven y glabros cuando adultos; pinatinervios, algo duros, miden 5-15 mm de largo por 3-8 mm de ancho.
    [Show full text]
  • Zonas Aridas Nº14
    Centro de Investigaciones de Zonas Áridas, Universidad Nacional Agraria La Molina, Lima - Perú Zonas Áridas Publicada por el Centro de Investigaciones de Zonas Áridas (CIZA) Universidad Nacional Agraria La Molina Published by the Center for Arid Lands Research (CIZA) National Agrarian University La Molina Director/ Director MSc. Juan Torres Guevara Editor Invitado/Guest Editor Dr. Heraldo Peixoto da Silva Editores/Editors Editor en jefe - MSc (c). Sonia María González Molina Dra. María de los Ángeles La Torre-Cuadros Dr (c). Reynaldo Linares-Palomino Comité Científico/Scientific Committee Dr. Eugene N. Anderson University of California Riverside, EUA Programa Bosques Mexicanos WWF, México E-mail: [email protected] E-mail: [email protected] Dra. Norma Hilgert Dr. Alejandro Casas Consejo Nacional de Investigaciones Científicas y Instituto de Ecología, Universidad Nacional Técnicas, Argentina Autónoma de México, México E-mail: [email protected] E-mail: [email protected] Dra. Egleé López Zent Dr. Gerald A. Islebe Instituto Venezolano de Investigaciones Científicas, El Colegio de la Frontera Sur, México Venezuela E-mail: [email protected] E-mail: [email protected] Dra. María Nery Urquiza Rodríguez Dr. Antonio Galán de Mera Grupo Nacional de Lucha contra de la Desertifica- Universidad San Pablo CEU, España ción y la Sequía, Cuba E-mail: [email protected] E-mail: [email protected] Dr. Carlos Galindo-Leal PhD. Toby Pennington Royal Botanic Garden Edinburgh Tropical Diversity Section E-mail: [email protected] Diseñadora/ Designer Gaby Matsumoto Información General/ General Information Zonas Áridas publica una vez al año artículos referentes a los diversos aspectos de las zonas áridas y semiáridas a nivel mundial, con la finalidad de contribuir al mejor conocimiento de sus componentes naturales y sociales, y al manejo adecuado de sus recursos.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Phylogeny of Malpighiaceae: Evidence from Chloroplast NDHF and TRNL-F Nucleotide Sequences
    Phylogeny of Malpighiaceae: Evidence from Chloroplast NDHF and TRNL-F Nucleotide Sequences The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Davis, Charles C., William R. Anderson, and Michael J. Donoghue. 2001. Phylogeny of Malpighiaceae: Evidence from chloroplast NDHF and TRNL-F nucleotide sequences. American Journal of Botany 88(10): 1830-1846. Published Version http://dx.doi.org/10.2307/3558360 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2674790 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA American Journal of Botany 88(10): 1830±1846. 2001. PHYLOGENY OF MALPIGHIACEAE: EVIDENCE FROM CHLOROPLAST NDHF AND TRNL-F NUCLEOTIDE SEQUENCES1 CHARLES C. DAVIS,2,5 WILLIAM R. ANDERSON,3 AND MICHAEL J. DONOGHUE4 2Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts 02138 USA; 3University of Michigan Herbarium, North University Building, Ann Arbor, Michigan 48109-1057 USA; and 4Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut 06520 USA The Malpighiaceae are a family of ;1250 species of predominantly New World tropical ¯owering plants. Infrafamilial classi®cation has long been based on fruit characters. Phylogenetic analyses of chloroplast DNA nucleotide sequences were analyzed to help resolve the phylogeny of Malpighiaceae. A total of 79 species, representing 58 of the 65 currently recognized genera, were studied.
    [Show full text]
  • Reconstructing the Deep-Branching Relationships of the Papilionoid Legumes
    SAJB-00941; No of Pages 18 South African Journal of Botany xxx (2013) xxx–xxx Contents lists available at SciVerse ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb Reconstructing the deep-branching relationships of the papilionoid legumes D. Cardoso a,⁎, R.T. Pennington b, L.P. de Queiroz a, J.S. Boatwright c, B.-E. Van Wyk d, M.F. Wojciechowski e, M. Lavin f a Herbário da Universidade Estadual de Feira de Santana (HUEFS), Av. Transnordestina, s/n, Novo Horizonte, 44036-900 Feira de Santana, Bahia, Brazil b Royal Botanic Garden Edinburgh, 20A Inverleith Row, EH5 3LR Edinburgh, UK c Department of Biodiversity and Conservation Biology, University of the Western Cape, Modderdam Road, \ Bellville, South Africa d Department of Botany and Plant Biotechnology, University of Johannesburg, P. O. Box 524, 2006 Auckland Park, Johannesburg, South Africa e School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA f Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA article info abstract Available online xxxx Resolving the phylogenetic relationships of the deep nodes of papilionoid legumes (Papilionoideae) is essential to understanding the evolutionary history and diversification of this economically and ecologically important legume Edited by J Van Staden subfamily. The early-branching papilionoids include mostly Neotropical trees traditionally circumscribed in the tribes Sophoreae and Swartzieae. They are more highly diverse in floral morphology than other groups of Keywords: Papilionoideae. For many years, phylogenetic analyses of the Papilionoideae could not clearly resolve the relation- Leguminosae ships of the early-branching lineages due to limited sampling.
    [Show full text]
  • Root System Morphology of Fabaceae Species from Central Argentina
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Wulfenia Jahr/Year: 2003 Band/Volume: 10 Autor(en)/Author(s): Weberling Focko, Kraus Teresa Amalia, Bianco Cesar Augusto Artikel/Article: Root system morphology of Fabaceae species from central Argentina 61-72 © Landesmuseum für Kärnten; download www.landesmuseum.ktn.gv.at/wulfenia; www.biologiezentrum.at Wulfenia 10 (2003): 61–72 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Root system morphology of Fabaceae species from central Argentina Teresa A. Kraus, César A. Bianco & Focko Weberling Summary: Root systems of different Fabaceae genera from central Argentina, are studied in relation to habitat conditions. Species of the following genera were analyzed: Adesmia, Acacia, Caesalpinia, Coursetia, Galactia, Geoffroea, Hoffmannseggia, Prosopis, Robinia, Senna, Stylosanthes and Zornia. Seeds of selected species were collected in each soil geographic unit and placed in glass recipients to analyze root system growth and branching degree during the first months after germination. Soil profiles that were already opened up were used to study subterranean systems of arboreal species. Transverse sections of roots were cut and histological tests were carried out to analyze reserve substances. All species studied show an allorhizous system, whose variants are related to soil profile characteristics. Roots with plagiotropic growth are observed in highland grass steppes (Senna birostris var. hookeriana and Senna subulata), and in soils containing calcium carbonate (Prosopis caldenia). Root buds are found in: Acacia caven, Caesalpinia gilliesii, Senna aphylla, Geoffroea decorticans, Robinia pseudo-acacia, Adesmia cordobensis and Hoffmannseggia glauca. Two variants are observed in transverse sections of roots: a) woody with predominance of xylematic area with highly lignified cells, and b) fleshy with predominance of parenchymatic tissue.
    [Show full text]
  • Classification and Description of World Formation Types
    CLASSIFICATION AND DESCRIPTION OF WORLD FORMATION TYPES PART II. DESCRIPTION OF WORLD FORMATIONS (v 2.0) Hierarchy Revisions Working Group (Federal Geographic Data Committee) 2012 Don Faber-Langendoen, Todd Keeler-Wolf, Del Meidinger, Carmen Josse, Alan Weakley, Dave Tart, Gonzalo Navarro, Bruce Hoagland, Serguei Ponomarenko, Jean-Pierre Saucier, Gene Fults, Eileen Helmer This document is being developed for the U.S. National Vegetation Classification, the International Vegetation Classification, and other national and international vegetation classifications. July 18, 2012 This report was produced by NVC partners (NatureServe, Ecological Society of America, U.S. federal agencies) through the Federal Geographic Data Committee. Printed from NatureServe Biotics on 24 Jul 2012 Citation: Faber-Langendoen, D., T. Keeler-Wolf, D. Meidinger, C. Josse, A. Weakley, D. Tart, G. Navarro, B. Hoagland, S. Ponomarenko, J.-P. Saucier, G. Fults, E. Helmer. 2012. Classification and description of world formation types. Part I (Introduction) and Part II (Description of formation types, v2.0). Hierarchy Revisions Working Group, Federal Geographic Data Committee, FGDC Secretariat, U.S. Geological Survey. Reston, VA, and NatureServe, Arlington, VA. i Classification and Description of World Formation Types. Part II: Formation Descriptions, v2.0 ACKNOWLEDGEMENTS The work produced here was supported by the U.S. National Vegetation Classification partnership between U.S. federal agencies, the Ecological Society of America, and NatureServe staff, working through the Federal Geographic Data Committee (FGDC) Vegetation Subcommittee. FGDC sponsored the mandate of the Hierarchy Revisions Working Group, which included incorporating international expertise into the process. For that reason, this product represents a collaboration of national and international vegetation ecologists.
    [Show full text]
  • A Complete Generic Phylogeny of Malpighiaceae Inferred from Nucleotide Sequence Data and Morphology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Harvard University - DASH A Complete Generic Phylogeny of Malpighiaceae Inferred from Nucleotide Sequence Data and Morphology The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Davis, Charles C., and William R. Anderson. 2010. A complete generic phylogeny of Malpighiaceae inferred from nucleotide sequence data and morphology. American Journal of Botany 97(12): 2031-2048. Published Version doi:10.3732/ajb.1000146 Accessed February 19, 2015 9:05:42 AM EST Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:5346382 Terms of Use This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA (Article begins on next page) American Journal of Botany 97(12): 2031–2048. 2010. A COMPLETE GENERIC PHYLOGENY OF MALPIGHIACEAE INFERRED FROM NUCLEOTIDE SEQUENCE DATA AND MORPHOLOGY 1 Charles C. Davis 2,4 and William R. Anderson 3 2 Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts 02138 USA; and 3 University of Michigan Herbarium, 3600 Varsity Drive, Ann Arbor, Michigan 48108 USA • Premise of the study : The Malpighiaceae include ~1300 tropical fl owering plant species in which generic defi nitions and inter- generic relationships have long been problematic. The goals of our study were to resolve relationships among the 11 generic segregates from the New World genus Mascagnia , test the monophyly of the largest remaining Malpighiaceae genera, and clarify the placement of Old World Malpighiaceae.
    [Show full text]
  • Malpighiaceae) E Gêneros Segregados
    Leyde Nayane Nunes dos Santos Silva Anatomia foliar em um contexto filogenético de Mascagnia (Bertero ex DC) Bertero (Malpighiaceae) e gêneros segregados Leaf anatomy in a phylogenetic context of Mascagnia (Bertero ex DC) Bertero genera segregated Alicia anisopetala W. R. Anderson São Paulo 2020 Leyde Nayane Nunes dos Santos Silva Anatomia foliar em um contexto filogenético de Mascagnia (Bertero ex DC) Bertero (Malpighiaceae) e gêneros segregados Leaf anatomy in a phylogenetic context of Mascagnia (Bertero ex DC) Bertero genera segregated Tese apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Doutor em Botânica, na Área de Ciências Biológicas. Orientador(a): Gladys Flávia de A. Melo de Pinna Coorientador: André M. Amorim (UEFS) São Paulo 2020 Resumo Mascagnia é um dos gêneros de Malpighiaceae que sempre apresentou divergências em sua circunscrição por causa da similaridade entre outros gêneros quando na ausência de material fértil. Especialistas clássicos em Malpighiaceae sempre associaram Mascagnia aos gêneros Hiraea, Jubelina, Mezia e Tetrapterys e já em meados dos anos 1980, algumas espécies de Mascagnia foram transferidas para o gênero Callaeum. Por meio das constatações não monofiléticas realizadas nas análises filogenéticas feitas a partir de 1991, Mascagnia continuou a ser investigado sob o ponto de vista taxonômico e W.R. Anderson em 2006 segregou mais espécies de Mascagnia em sete novos gêneros: Adelphia W. R. Anderson, Aenigmatanthera W. R. Anderson, Alicia W. R. Anderson, Amorimia W. R. Anderson, Carolus W. R. Anderson, Christianella W. R. Anderson e Niedenzuella W. R. Anderson, restabelecendo ainda o gênero Malpighiodes Nied.. A partir disto realizamos o estudo da anatomia foliar em representantes de Mascagnia e seus gêneros relacionados, buscando possíveis sinapomorfias morfoanatômicas foliares para o grupo.
    [Show full text]
  • Molecular Systematics of Malpighiaceae: Evidence from Plastid Rbcl and Matk Sequences1
    American Journal of Botany 88(10): 1847±1862. 2001. MOLECULAR SYSTEMATICS OF MALPIGHIACEAE: EVIDENCE FROM PLASTID RBCL AND MATK SEQUENCES1 KENNETH M. CAMERON,2,6 MARK W. C HASE,3 WILLIAM R. ANDERSON,4 AND HAROLD G. HILLS5 2The Lewis B. and Dorothy Cullman Program for Molecular Systematics Studies, The New York Botanical Garden, Bronx, New York 10458-5126 USA; 3Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK; 4University of Michigan Herbarium, North University Building, Ann Arbor, Michigan 48109-1057 USA; and 5Molecular Biology Building, Iowa State University, Ames, Iowa 50011-3260 USA Phylogenetic analyses of DNA nucleotide sequences from the plastid genes rbcL and matK were employed to investigate intergeneric relationships within Malpighiaceae. Cladistic relationships generated from the independent data matrices for the family are generally in agreement with those from the combined matrix. At the base of Malpighiaceae are several clades mostly representing genera from a paraphyletic subfamily Byrsonimoideae. Intergeneric relationships among these byrsonimoid malpighs are well supported by the bootstrap, and the tribe Galphimeae is monophyletic. There is also a well-supported clade of genera corresponding to tribes Banisterieae plus Gaudichaudieae present in all trees, and many of the relationships among these banisterioid malpighs are well supported by the bootstrap. However, tribes Hiraeae and Tricomarieae (the hiraeoid malpighs) are paraphyletic and largely unresolved. Species of Mascagnia are distributed throughout these hiraeoid clades, con®rming the suspected polyphyly of this large genus. Optimization of selected morphological characters on these trees demonstrates clear phylogenetic trends such as the evolution of globally symmetrical from radially symmetrical pollen, increased modi®cation and sterilization of stamens, and switch from base chromosome number n 5 6ton 5 10.
    [Show full text]