Impacts of Aquatic Invasive Species on Sport Fish and Recreational Fishing in the Great Lakes: Possible Future Scenarios

Total Page:16

File Type:pdf, Size:1020Kb

Impacts of Aquatic Invasive Species on Sport Fish and Recreational Fishing in the Great Lakes: Possible Future Scenarios Impacts of Aquatic Invasive Species on Sport Fish and Recreational Fishing in the Great Lakes: Possible Future Scenarios March 2016 HDRU Series No 16-1 Prepared by: Richard C. Ready, T. Bruce Lauber, Gregory L. Poe, Lars G. Rudstam, Richard C. Stedman, and Nancy A. Connelly Human Dimensions Research Unit, Department of Natural Resources, Cornell University HUMAN DIMENSIONS RESEARCH UNIT PUBLICATION SERIES This publication is one of a series of reports resulting from investigations dealing with public issues in environmental and natural resources management. The Human Dimensions Research Unit (HDRU) in the Department of Natural Resources at Cornell University studies the social and economic aspects of natural resources and the environment and the application of social and economic insights in management planning and policy. A list of HDRU publications may be obtained by writing to the Human Dimensions Research Unit, Department of Natural Resources, Fernow Hall, Cornell University, Ithaca, NY 14853, or by accessing our World Wide Web site at: http://www.dnr.cornell.edu/hdru. TO CITE THIS REPORT Ready, R.C., T.B. Lauber, G.L. Poe, L.G. Rudstam, R.C. Stedman, and N.A. Connelly. 2016. Impacts of aquatic invasive species on sport fish and recreational fishing in the Great Lakes: Possible future scenarios. HDRU Publ. No. 16-1. Dept. of Nat. Resour., Coll. Agric. and Life Sci., Cornell Univ., Ithaca, N.Y. XX pp. This report is available electronically at http://www2.dnr.cornell.edu/hdru/pubs/HDRUReport16- 1.pdf. TABLE OF CONTENTS Table of Contents ............................................................................................................................. i Executive Summary ....................................................................................................................... iii Acknowledgments......................................................................................................................... vii Introduction ..................................................................................................................................... 1 Methods ....................................................................................................................................... 3 Scenario Development ............................................................................................................. 3 Economic Model...................................................................................................................... 6 Scenario Evaluation ................................................................................................................. 6 Future Effects of Aquatic Invasive Species on Sport Fish ............................................................. 8 Bighead and Silver Carp ............................................................................................................. 8 Scenario AC-1 ......................................................................................................................... 9 Scenario AC-2 ....................................................................................................................... 10 Northern Snakehead .................................................................................................................. 11 Grass Carp ................................................................................................................................. 13 Hydrilla...................................................................................................................................... 14 Quagga Mussel .......................................................................................................................... 16 Economic Model ........................................................................................................................... 17 Future Effects of Aquatic Invasive Species on Sport Fishing ...................................................... 41 Asian Carp ................................................................................................................................. 41 Scenarios AC-1a and AC-2a.................................................................................................. 41 Scenario AC-1b ..................................................................................................................... 46 Scenario AC-1c...................................................................................................................... 49 Scenario AC-2b ..................................................................................................................... 52 Scenario AC-2c...................................................................................................................... 55 Asian Carp Summary............................................................................................................. 58 Northern Snakehead .................................................................................................................. 59 Scenario NS-2 ........................................................................................................................ 59 Grass Carp ................................................................................................................................. 63 Scenarios GC-1 ...................................................................................................................... 63 Scenarios GC-2 ...................................................................................................................... 67 Scenarios GC-3 ...................................................................................................................... 70 Grass Carp Summary ............................................................................................................. 73 Hydrilla...................................................................................................................................... 74 i Scenarios H-2 ........................................................................................................................ 74 Scenarios H-3 ........................................................................................................................ 78 Hydrilla Summary ................................................................................................................. 81 Quagga Mussel .......................................................................................................................... 82 Conclusions ............................................................................................................................... 86 Literature Cited ......................................................................................................................... 89 ii EXECUTIVE SUMMARY The rate of invasions of non-native aquatic invasive species (AIS) has accelerated in the Great Lakes in recent years. To date, several hundred non-native species have entered the lakes. Some AIS have been shown or are predicted to cause considerable harm, and the effects of AIS on recreational fisheries has been a point of particular concern. Recreational angling in the Great Lakes is popular and highly valued. Poe et al. (2012) estimated that Great Lakes anglers enjoy 18 million fishing days per year with a net economic value of $0.4 to 1.3 billion annually. Management decisions aimed at limiting AIS introduction or spread should be informed by estimates of the potential consequences of those AIS on this highly valued recreational fishery. Ready et al. (2012) developed a model to address this need. Based on a survey of over 3,500 recreational anglers in 12 states in the Great Lakes, Upper Mississippi and Ohio River basins, they developed a model of recreational angler behavior that explains: (a) how often anglers go fishing, (b) where they go fishing, and (c) what types of fish (coldwater or warmwater) they target. Using these data, the model estimates the net economic value that anglers receive from the sportfishing resource. The model can therefore be used to project the impact of AIS-induced changes in sportfish catch rates on recreational fishing effort and on the net economic value that anglers place on the fishery. The model estimated by Ready et al. is the most comprehensive model available for evaluating and predicting recreational angling in the Great Lakes region. However, the model has some limitations. First, the model was estimated using data on trips from a very large study region that extends far beyond the boundaries of the Great Lakes basin. A model estimated using data on angler behavior from only the Great Lakes region would better reflect angler behavior in that region. Second, the model is relatively simplistic in how it models angler behavior, particularly with regards to how anglers choose what type of fishing to do, and how that choice would change in response to changes in fishing quality. A refined model is needed that better captures how anglers make these choices. Projecting of the impacts of AIS on recreational angling and anglers requires first estimating the ecological effects of AIS on recreational fish populations.Anticipating the impacts of AIS on recreational fish populations in a large, complex system, such as the Great Lakes, is challenging. Even under the best of circumstances, there is often considerable uncertainty about the likely impacts of AIS. Trying to reach single-estimate
Recommended publications
  • Tennessee Fish Species
    The Angler’s Guide To TennesseeIncluding Aquatic Nuisance SpeciesFish Published by the Tennessee Wildlife Resources Agency Cover photograph Paul Shaw Graphics Designer Raleigh Holtam Thanks to the TWRA Fisheries Staff for their review and contributions to this publication. Special thanks to those that provided pictures for use in this publication. Partial funding of this publication was provided by a grant from the United States Fish & Wildlife Service through the Aquatic Nuisance Species Task Force. Tennessee Wildlife Resources Agency Authorization No. 328898, 58,500 copies, January, 2012. This public document was promulgated at a cost of $.42 per copy. Equal opportunity to participate in and benefit from programs of the Tennessee Wildlife Resources Agency is available to all persons without regard to their race, color, national origin, sex, age, dis- ability, or military service. TWRA is also an equal opportunity/equal access employer. Questions should be directed to TWRA, Human Resources Office, P.O. Box 40747, Nashville, TN 37204, (615) 781-6594 (TDD 781-6691), or to the U.S. Fish and Wildlife Service, Office for Human Resources, 4401 N. Fairfax Dr., Arlington, VA 22203. Contents Introduction ...............................................................................1 About Fish ..................................................................................2 Black Bass ...................................................................................3 Crappie ........................................................................................7
    [Show full text]
  • Arrival of Round Goby Neogobius Melanostomus (Pallas, 1814) and Bighead Goby Ponticola Kessleri (Günther, 1861) in the High Rhine (Switzerland)
    BioInvasions Records (2013) Volume 2, Issue 1: 79–83 Open Access doi: http://dx.doi.org/10.3391/bir.2013.2.1.14 © 2013 The Author(s). Journal compilation © 2013 REABIC Short Communication Arrival of round goby Neogobius melanostomus (Pallas, 1814) and bighead goby Ponticola kessleri (Günther, 1861) in the High Rhine (Switzerland) Irene Kalchhauser*, Peter Mutzner, Philipp E. Hirsch and Patricia Burkhardt-Holm Program Man-Society-Environment, Dept. of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland E-mail: [email protected] (IK), [email protected] (PM), [email protected] (PEH), [email protected] (PBH) *Corresponding author Received: 20 July 2012 / Accepted: 31 October 2012 / Published online: 22 November 2012 Handling editor: Vadim Panov Abstract A number of Ponto-Caspian gobiid species are currently invading European coasts and freshwaters. They do not only present a nuisance to fishermen, but evidence suggests that they compete with native benthic fishes and may contribute to changes in ecosystem function. This paper reports the presence of round goby Neogobius melanostomus individuals and an established population of bighead goby Ponticola kessleri in the High Rhine. Key words: gobiidae; non-native; alien; invasion; High Rhine; Switzerland 2001) was predicted to promote westward Introduction migration of fish species (Balon et al. 1986), including Ponto-Caspian gobiids (Proterorhinus Several goby species from the Caspian and Black marmoratus). In the meantime, five of six gobiid Sea are currently spreading in European rivers. species predicted to invade the Rhine (Freyhof Ponticola kessleri (Günther, 1861; Neilson and 2003) have indeed arrived. Their dispersal Stepien 2009), Neogobius melanostomus (Pallas, appears to be facilitated by shipping, as round 1814), Proterorhinus marmoratus (Pallas, 1814), goby dispersal has followed shipping routes Neogobius fluviatilis (Pallas, 1814), and Babka (Brown and Stepien 2009; LaRue et al.
    [Show full text]
  • The Round Goby (Neogobius Melanostomus):A Review of European and North American Literature
    ILLINOI S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PRODUCTION NOTE University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007. CI u/l Natural History Survey cF Library (/4(I) ILLINOIS NATURAL HISTORY OT TSrX O IJX6V E• The Round Goby (Neogobius melanostomus):A Review of European and North American Literature with notes from the Round Goby Conference, Chicago, 1996 Center for Aquatic Ecology J. Ei!en Marsden, Patrice Charlebois', Kirby Wolfe Illinois Natural History Survey and 'Illinois-Indiana Sea Grant Lake Michigan Biological Station 400 17th St., Zion IL 60099 David Jude University of Michigan, Great Lakes Research Division 3107 Institute of Science & Technology Ann Arbor MI 48109 and Svetlana Rudnicka Institute of Fisheries Varna, Bulgaria Illinois Natural History Survey Lake Michigan Biological Station 400 17th Sti Zion, Illinois 6 Aquatic Ecology Technical Report 96/10 The Round Goby (Neogobius melanostomus): A Review of European and North American Literature with Notes from the Round Goby Conference, Chicago, 1996 J. Ellen Marsden, Patrice Charlebois1, Kirby Wolfe Illinois Natural History Survey and 'Illinois-Indiana Sea Grant Lake Michigan Biological Station 400 17th St., Zion IL 60099 David Jude University of Michigan, Great Lakes Research Division 3107 Institute of Science & Technology Ann Arbor MI 48109 and Svetlana Rudnicka Institute of Fisheries Varna, Bulgaria The Round Goby Conference, held on Feb. 21-22, 1996, was sponsored by the Illinois-Indiana Sea Grant Program, and organized by the
    [Show full text]
  • Feeding Ecology of the Invasive Round Goby
    Aquatic Invasions (2015) Volume 10, Issue 4: 463–474 doi: http://dx.doi.org/10.3391/ai.2015.10.4.09 Open Access © 2015 The Author(s). Journal compilation © 2015 REABIC Research Article Feeding ecology of the invasive round goby, Neogobius melanostomus (Pallas, 1814), based on laboratory size preference and field diet in different habitats in the western basin of Lake Erie 1,4 1,2 1,2 1,3 Melanie M. Perello , Thomas P. Simon *, Hilary A. Thompson and Douglas D. Kane 1F.T. Stone Laboratory, The Ohio State University, Put-in-Bay, OH 43456, USA 2School of Public and Environmental Affairs, Indiana University, 1315 E. Tenth Street, Bloomington, IN 47405, USA 3Natural Science, Applied Science, and Mathematics Division, Defiance College, Defiance, OH 43512, USA 4Center for the Environment, Plymouth State University, Plymouth, NH 03264, USA E-mail: [email protected] (MMP), [email protected] (TPS), [email protected] (DDK) *Corresponding author Received: 17 May 2014 / Accepted: 21 July 2015 / Published online: 5 August 2015 Handling editor: Vadim Panov Abstract The round goby, Neogobius melanostomus, is an invasive benthic fish species in the Laurentian Great Lakes that is threatening native fish populations through competition, predation, and trophic dynamic change. This study examined the trophic dynamic plasticity of round goby along a depth gradient based on laboratory and field observations to determine prey species consumed and mussel prey size selection. Prey size selection in the laboratory was assessed by presenting individual round goby with quagga mussels ( Dreissena rostriformis bugensis) of various class sizes (i.e., 6.0– 9.9 mm, 10.0– 12.9 mm, 13.0– 15.9 mm, and 16.0– 18.9 mm in length).
    [Show full text]
  • US Geologic Survey
    round goby<br /><br /> (Neogobius melanostomus) - FactSheet http://nas.er.usgs.gov/queries/factsheet.aspx?SpeciesID=713 NAS - Nonindigenous Aquatic Species Home Alert System Database & Queries Taxa Information Neogobius melanostomus Collection Info (round goby) HUC Maps Fishes Point Maps Exotic to United States Fact Sheet ©Dave Jude, Center for Great Lakes Aquatic Sciences Neogobius melanostomus (Pallas 1814) Common name: round goby Synonyms and Other Names: Apollonia melanostoma (Pallas, 1814), Apollonia melanostomus (Pallas, 1814) See Stepien and Tumeo (2006) for name change. Taxonomy: available through Identification: Distinguishing characteristics have been given by Berg (1949), Miller (1986), Crossman et al. (1992), Jude (1993), and Marsden and Jude (1995). Young round gobies are solid slate gray. Older fish are blotched with black and brown and have a greenish dorsal fin with a black spot. The raised eyes on these fish are also very distinctive (Jude 1993). This goby is very similar to native sculpins but can be distinguished by the fused pelvic fins (sculpins have two separate fins) (Marsden and Jude 1995). Size: 30.5 cm; 17.8 cm maximum seen in United States (Jude 1993). Native Range: Fresh water, prefers brackish (Stepien and Tumeo 2006). Eurasia including Black Sea, Caspian Sea, and Sea of Azov and tributaries (Miller 1986). 1 of 6 7/21/2011 2:11 PM round goby<br /><br /> (Neogobius melanostomus) - FactSheet http://nas.er.usgs.gov/queries/factsheet.aspx?SpeciesID=713 Alaska Hawaii Caribbean Guam Saipan Interactive maps: Point Distribution Maps Nonindigenous Occurrences: DETAILED DISTRIBUTION MAP This species was introduced into the St. Clair River and vicinity on the Michigan-Ontario border where several collections were made in 1990 on both the U.S.
    [Show full text]
  • Round Goby (Neogobius Melanostomus), Native to the Black Sea, Threatens the Waters of the State of Michigan
    State of Michigan’s Status and Strategy for Round Goby Management Scope The invasion of round goby (Neogobius melanostomus), native to the Black Sea, threatens the waters of the State of Michigan. The goals of this document are to summarize the: • Current level of understanding on the biology and ecology of the round goby. • Management options for round goby in Michigan. • Future possible directions for round goby management in Michigan. Biology and Ecology I. Identification Round gobies are small, soft- bodied fish. Their fused pelvic fin forms a suction disk on their ventral surface and distinguishes them from native sculpins. Adults have brownish gray bodies with dark brown/black blotches. During spawning and nest guarding, males have black bodies with yellowish spots and median fins with a yellow/white outer edge. Generally, a large, oblong, black spot is present at the end of the first white/greenish dorsal fin, beginning at the fifth ray; sculpins usually have a mark in the same area. This black spot on juveniles has a light border. The round goby’s head that makes up approximately 22 to 23% of its body length is as wide or wider than it is deep (Charlesbois et al. 1997). In the United States, round gobies reach up to 17.8 cm in length (Jude 1993). II. Life History In the spring, when water temperatures range from 9 to 26°C, males migrate from deeper water before the females to establish spawning areas in shallow water (Moiseyeva and Rudenko 1976, MacInnis and Corkum 2000, Murphy et al. 2001, Kornis et al.
    [Show full text]
  • Abstracts Part 1
    375 Poster Session I, Event Center – The Snowbird Center, Friday 26 July 2019 Maria Sabando1, Yannis Papastamatiou1, Guillaume Rieucau2, Darcy Bradley3, Jennifer Caselle3 1Florida International University, Miami, FL, USA, 2Louisiana Universities Marine Consortium, Chauvin, LA, USA, 3University of California, Santa Barbara, Santa Barbara, CA, USA Reef Shark Behavioral Interactions are Habitat Specific Dominance hierarchies and competitive behaviors have been studied in several species of animals that includes mammals, birds, amphibians, and fish. Competition and distribution model predictions vary based on dominance hierarchies, but most assume differences in dominance are constant across habitats. More recent evidence suggests dominance and competitive advantages may vary based on habitat. We quantified dominance interactions between two species of sharks Carcharhinus amblyrhynchos and Carcharhinus melanopterus, across two different habitats, fore reef and back reef, at a remote Pacific atoll. We used Baited Remote Underwater Video (BRUV) to observe dominance behaviors and quantified the number of aggressive interactions or bites to the BRUVs from either species, both separately and in the presence of one another. Blacktip reef sharks were the most abundant species in either habitat, and there was significant negative correlation between their relative abundance, bites on BRUVs, and the number of grey reef sharks. Although this trend was found in both habitats, the decline in blacktip abundance with grey reef shark presence was far more pronounced in fore reef habitats. We show that the presence of one shark species may limit the feeding opportunities of another, but the extent of this relationship is habitat specific. Future competition models should consider habitat-specific dominance or competitive interactions.
    [Show full text]
  • The Round Goby Genome Provides Insights Into Mechanisms That May Facilitate Biological Invasions
    Adrian-Kalchhauser et al. BMC Biology (2020) 18:11 https://doi.org/10.1186/s12915-019-0731-8 RESEARCH ARTICLE Open Access The round goby genome provides insights into mechanisms that may facilitate biological invasions Irene Adrian-Kalchhauser1,2* , Anders Blomberg3†, Tomas Larsson4†, Zuzana Musilova5†, Claire R. Peart6†, Martin Pippel7†, Monica Hongroe Solbakken8†, Jaanus Suurväli9†, Jean-Claude Walser10†, Joanna Yvonne Wilson11†, Magnus Alm Rosenblad3,12†, Demian Burguera5†, Silvia Gutnik13†, Nico Michiels14†, Mats Töpel2†, Kirill Pankov11†, Siegfried Schloissnig15† and Sylke Winkler7† Abstract Background: Theinvasivebenthicroundgoby(Neogobius melanostomus) is the most successful temperate invasive fish and has spread in aquatic ecosystems on both sides of the Atlantic. Invasive species constitute powerful in situ experimental systems to study fast adaptation and directional selection on short ecological timescales and present promising case studies to understand factors involved the impressive ability of some species to colonize novel environments. We seize the unique opportunity presented by the round goby invasion to study genomic substrates potentially involved in colonization success. Results: We report a highly contiguous long-read-based genome and analyze gene families that we hypothesize to relate to the ability of these fish to deal with novel environments. The analyses provide novel insights from the large evolutionary scale to the small species-specific scale. We describe expansions in specific cytochromeP450enzymes,aremarkablydiverse innate immune system, an ancient duplication in red light vision accompanied by red skin fluorescence, evolutionary patterns of epigenetic regulators, and the presence of osmoregulatory genes that may have contributed to the round goby’s capacity to invade cold and salty waters. A recurring theme across all analyzed gene families is gene expansions.
    [Show full text]
  • Labidesthes Sicculus Menidia Clarkhubbsi Order Beloniformes
    Order Atheriniformes, silversides Order Atheriniformes, Family Atherinopsidae • 6 families, 48 genera, 312 species • Formerly part of family Atherinidae • 2 separate dorsal fins • Two are now split into new world (Atherinopsidae) from North, Central Labidesthes sicculus • Lateral line absent or reduced and South America and old world (Atherinidae). Map is pre-split. • Global distribution Menidia clarkhubbsi Leuresthes tenuis – California grunion Order Atheriniformes, Family Melanotaeiinae, Rainbowfishes Order Beloniformes, needlefishes • Formerly part of Atheriniformes • Mostly freshwater • New Guinea and Australia • 5 families, 36 genera, 227 species • More colorful than other silversides, • Single dorsal fin, no spines popular in aquaria 1 Order Beloniformes, Family Exocoetidae, flying fishes Order Beloniformes, Family Hemiramphidae, halfbeaks • Lower caudal lobe longer • Upper jaw much shorter than lower • Mostly coastal, marine, tropical • Some livebearers with maternal connection to offspring (analogous to placenta) https://www.youtube.com/watch?v=OmWRCdUw17E Order Cyprinodontiformes, Killifish Order Cyprinodontiformes, Family Anablepidae, four-eyed fishes • 10 families, 109 genera, 1013 species • Southern Mexico, Central and South America • Protrusible jaws • Mostly freshwater & brackish • Internal fertilization, some live bearers, some lay fertilized eggs • Small, omnivorous • Sexual dimorphism and some hermaphrodites 2 Order Cyprinodontiformes, Family Rivulidae Order Cyprinodontiformes, Family Fundulidae • 40 species • Florida,
    [Show full text]
  • Round Goby (Neogobius Melanostomus) Distribution in the Illinois Waterway System of Metropolitan Chicago
    Round Goby (Neogobius melanostomus) Distribution in the Illinois Waterway System of Metropolitan Chicago Mark Steingraeber, Ann Runstrom, and Pam Thiel U.S. Fish and Wildlife Service Fishery Resources Office 555 Lester Avenue Onalaska, WI 54650 December 1996 2 ABSTRACT There is concern that the range of the round goby (Neogobius melanostomus), a nonindigenous fish recently introduced to the Great Lakes drainage basin from Eurasia, may expand to other drainage basins with adverse ecologic consequences. The Illinois Waterway System (IWS) connects the Great Lakes and Mississippi River basins and facilitated the spread of another exotic nuisance species, the zebra mussel (Dreissena polymorpha), to several environmentally sensitive drainages of interior North America earlier this decade. We surveyed the distribution of round goby in a portion of the IWS near metropolitan Chicago in autumn 1996 with traps, seines, trawls, set lines, and by angling. A total of 61 round goby were captured in the Little Calumet River in south Chicago at locations upstream of river mile 321.4 (12 miles inland from Lake Michigan). No round goby were captured at sites in connecting channels downstream of this point as far away as Joliet (river mile 283). Bottom trawling, particularly over rocky substrates, was the most successful means of capturing round goby and accounted for 87% of the total catch. Goby captured by trawling were significantly smaller than those captured by other gears and significantly smaller goby were captured at the sampling site furthest upstream. The length frequency distribution of the round goby we captured suggested the presence of fish from the three most recent year classes (1994-1996).
    [Show full text]
  • Impacts and Drivers of Round Goby Invasion in Great Lakes Tributaries
    Impacts and drivers of round goby invasion in Great Lakes tributaries CORE QUESTION: How do ecological stressors affect a river or stream’s vulnerability to aquatic invasive species? TRIBUTARIES AT RISK Muskegon, Ocqueoc, Rouge, and Rifle rivers — represent a range of water qualities, physical characteristics, land Rivers and streams linked to the Great Lakes serve as uses, and human population densities. By working with nursery and spawning habitat for many fish species. watershed councils, Krabbenhoft can leverage long-term Unfortunately, these tributaries also provide channels for water quality data sets and monitoring efforts. aquatic invasive species to move into inland waters. Krabbenhoft’s work can help watershed councils and other The round goby, in particular, is growing more common stream managers identify high-risk tributaries for targeted in Great Lakes inland waters. Originally carried from invasive species prevention, monitoring, and removal. central Eurasia in freighter ballast water, the goby has been Her partnership with the watershed councils will also help found in all five Great Lakes since the 1990s. The goby raise public awareness of aquatic invasive species and the competes with native Great Lakes and inland fish for food threat they pose to inland waters. and gobbles up eggs of important game and conservation species, such as lake trout, lake sturgeon, walleye, and smallmouth bass. Stressors such as habitat loss, prior invasions, high nutrient levels, or pollution may leave CONTACT tributaries more vulnerable to colonization by round goby Corey Krabbenhoft and other invaders. Tributaries in built environments have Graduate student, Wayne State University elevated stressors that might contribute to invasion risk.
    [Show full text]
  • Round Goby Fact Sheet
    Round Goby Iowa Aquatic Invasive Species Neogobius melanostomus Fact Sheet Description: The round goby has a body that is mostly slated gray, mottled with black and brown spots. It has thick lips and frog-like raised eyes. One of the most noted features is that it has only single scallop-shaped pelvic fin. The round goby is usually 3-6 inches long but may reach up to 10 inches long. Distribution: The round goby has not yet been found in Iowa waters, but this fish is becoming increasingly common in the Great Lakes. This species is native to the Black and Caspian Seas and in all likelihood entered the United States from the discharge of ballast water released from transoceanic vessels. The goby has the potential to enter the Mississippi River through the Chicago Ship and Sanitary Canal and down the Illinois River. Threats: Impacts of a goby invasion in Iowa are uncertain however, in areas where the goby has been established they have had a severely negative impact on native fish populations. Populations of mottled sculpins are already dwindling and may be driven into extinction from round goby competition. Other species may be affected include logperch and lake sturgeon – a species that is already endangered in Iowa. If round gobies colonize the Mississippi River, there is concern over the impacts they may have on darters, several of which are listed on the Federal Threatened and Endangered Species List. Control: Preventing the spread of the round goby is vital. Anglers, commercial fisherman, and fishery professionals should know how to identify the round goby.
    [Show full text]