Employing Pancreatic Tumour Γ-Glutamyl Transferase for Therapeutic Delivery

Total Page:16

File Type:pdf, Size:1020Kb

Employing Pancreatic Tumour Γ-Glutamyl Transferase for Therapeutic Delivery Employing pancreatic tumour γ-glutamyl transferase for therapeutic delivery Emma E Ramsay A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Prince of Wales Clinical School Lowy Cancer Research Centre Faculty of Medicine University of New South Wales March 2014 List of publications Ramsay, E. E., Hogg, P. J., & Dilda, P. J. (2011). Mitochondrial metabolism inhibitors for cancer therapy. Pharmaceutical Research, 28, 2731–2744. Ramsay, E.E., Decollogne, S., Joshi, S., Corti, A., Apte, M., Pompella, A., Hogg, P.J. & Dilda, P.J. (2014). Employing pancreatic tumour γ-glutamyltransferase for therapeutic delivery. Molecular Pharmaceutics, (in press). Ramsay, E.E., Hogg, P.J. & Dilda, P.J. Glutathione-S-conjugates as potential prodrugs to target γGT-expressing, drug-resistant tumours. Frontiers in Pharmacology, (in preparation). List of published abstracts Decollogne, S., Ramsay, E. E., Joshi, S., Corti, A., Pompella, A., Apte, M., Hogg, P. J., Dilda, P. J. (2012). Both pancreatic cancer and pancreatic stellate cells express high levels of gamma- glutamyl transferase that may be employed to deliver a metabolism inhibitor to the tumour mass. EACR 22nd Biennial Meeting, Barcelona, European Journal of Cancer, 48(s5), 251, abstract 1041. List of presentations Dilda, P. J., Decollogne, S., Ramsay, E. E., Park, D., & Hogg, P. J. (2010). A tumour marker for selection of patients that should better respond to treatment with the Australian anti-cancer drug, GSAO. In The Lowy Symposium. Sydney, Australia. Ramsay, E. E., Decollogne, S., Joshi, S., Hogg, P. J., & Dilda, P. J. (2011). Identification of a tumour enzyme responsible for the activation of the metabolism inhibitor, GSAO. In 23rd Lorne Cancer Conference. Lorne, Australia. Decollogne, S., Ramsay, E. E., Joshi, S., Hogg, P. J., & Dilda, P. J. (2011). Tumour cell expression of γ-glutamyl transpeptidase positively correlates with the anti-tumour efficacy of the metabolism inhibitor, GSAO. In 23rd Lorne Cancer Conference. Lorne, Australia. Ramsay, E. E., Decollogne, S., Joshi, S., Corti, A., Pompella, A., Apte, M., Hogg, P.J. & Dilda, P. J. (2012). Pancreatic tumor stromal cells express high levels of γ-glutamyl transferase that may iii be employed to deliver a metabolism inhibitor to the tumor mass. In 103rd Annual Meeting of the American Association for Cancer Research. Chicago, Illinois. Ramsay, E. E., Decollogne, S., Joshi, S., Corti, A., Pompella, A., Apte, M., Hogg, P.J. & Dilda, P. J. (2012). Tumour expression of γ-glutamyl transferase may be utilised to predict patient response to γ-glutamyl prodrugs. In ASMR 20th New South Wales Scientific Meeting. Sydney, Australia. Ramsay, E. E., Decollogne, S., Joshi, S., Corti, A., Pompella, A., Apte, M., Hogg, P.J. & Dilda, P. J. (2012). Pancreatic tumour gamma-glutamyl transferase expression to predict patient response to the metabolism inhibitor GSAO. In Sydney Cancer Conference. Sydney, Australia. (Oral presentation). List of scholarships and awards (2013) European Association for Cancer Research Travel Fellowship Award (2013) Australian Society for Medical Research Research Award (International) (2012-2013) Pfizer Oncology Research Unit Scholarship (2010-2014) NHMRC Biomedical Scholarship (2010-2012) The Cancer Institute of NSW Research Scholar Award (2012) Translational Cancer Research Network Top-Up Scholarship (2011-2012) The Commercialisation Training Scheme Scholarship (2011) Lorne Cancer Bursary iv Acknowledgments I would like to thank and acknowledge the contributions of Doctor Stephanie Decollogne from the Lowy Cancer Research Centre, Sydney, who performed the in vivo experiments described in Chapter 7 with my assistance. Thank you for your time and patience in showing me these skills. I would also like to thank Mrs Swapna Joshi for her assistance with the immunohistochemistry presented in Chapter 2 and 7. I would like to thank and acknowledge the work of the Pancreatic Research Group, University of New South Wales, in particular Professor Minoti Apte and Ms Eva Fiala-Beer for the primary human pancreatic stellate cells. I wish to acknowledge Mrs Rabeya Akter from the Mark Wainwright Analytical Centre at the University of New South Wales for elemental analysis. I would like to acknowledge the work of the Infection and Immunity Research Group of the University of New South Wales, in particular Professor Andrew Lloyd, Mrs Koko Bu and Doctor Hoai Nguyen for provision of the plasma samples used in Chapter 6. I would like to acknowledge Doctor Amber Johns of the New South Wales Pancreatic Cancer Network for providing human pancreatic sections in Chapter 2. I would like to acknowledge those who funded me through my PhD: the National Health and Medical Research Council, the Cancer Institute of New South Wales, and the Translational Cancer Research Network. I would like to thank my supervisors, Professor Philip Hogg and Doctor Pierre Dilda. Their support and encouragement made this experience much easier than I had ever imagined. They have generously allowed me to experience so much of research life; giving me opportunity for an internship, collaborations, conferences and courses, all of which have given me many insights into the facets of biomedical research. In particular, I’d like to thank them for the opportunity to travel to Sweden and the USA to experience research life in different cultures and contexts. I would like to thank the Australian Society for Medical Research and the European Association for Cancer Research for the opportunity to travel to Sweden for collaboration with Professor Matthias Löhr and Doctor Rainer Heuchel at the Karolinska Institutet. Thank you, Matthias and Rainer, for accepting me into your lab and giving me time and guidance throughout my stay. I would also like to thank Pfizer Inc. and the Cancer Institute of New South Wales for the opportunity to undertake a six month internship with Pfizer under the supervision of Doctor v Julie (Xie) Zhi. Both trips were enriching experiences, and I am very thankful to have had these opportunities. Thank you to everyone who contributed in their own way to this thesis: family, friends and colleagues. Your encouragement and support throughout have been a huge blessing. Finally, to my Dad, thank you for all your love and support and thank you for always believing in me, no one could ask for a better father. vi Abbreviations 5FU 5-fluorouracil ABBA L-2-amino-4-boronobutanoic acid ADEPT Antibody-directed enzyme prodrug therapy ADP Adenine dinuceleotide phosphate ALK Anaplastic lymphoma kinase ANT Adenine nucleotide translocase APC Adenomatous polyposis coli As Arsenic ATP Adenine trinucleotide phosphate BAE Bovine aortic endothelial bFGF Basic fibroblast growth factor BMI Body mass index BxPC-3/vector BxPC-3 transfected with empty vector BxPC-3/γGT BxPC-3 transfected with the human γGT gene C Control CAO 4-(N-(S-cysteinylacetyl)amino)phenylarsonous acid Cdkn2A Cyclin-dependent kinase inhibitor 2A DMEM Dulbecco’s modified eagle’s media DNA Deoxyribonucleic acid DOPA Dihydroxyphenylalanine DPC Deleted in pancreatic cancer vii EBM-2 Endothelium basal medium -2 ECM Extracellular matrix EDTA Ethylenediaminetetraacetic acid EGFR Epidermal growth factor receptor FAP Fibroblast activation protein FGF Fibroblast growth factor FOLFIRINOX Folinic acid, 5FU, irinotecan and oxaliplatin GCAO 4-(N-(S-cysteinylglycylacetyl)amino)phenylarsonous acid GD Growth delay GDEPT Gene-directed enzyme prodrug therapy GFP Green fluorescent protein GSAO 4-(N-(S-glutathionylacetyl)amino) phenylarsonous acid GSNO S-nitrosoglutathione GST Glutathione transferase hEGF Human epidermal growth factor hENT1 Human equilibrative nucleoside transporter 1 HER2 Human epidermal growth factor receptor-2 hFGF-B Human fibroblast growth factor HMEC Human dermal microvascular endothelial cells HNE 4-hydroxynoneal HPLC High performance liquid chromatography HUVEC Human umbilical vein endothelial cells IGF-1 Insulin-like growth factor-1 viii IMDM Iscove's modified dulbecco's media KRAS Kirsten rat sarcoma viral oncogene homologue LTC4 Leukotriene C4 MAPK Mitogen-activated protein kinase MMP Matrix metalloproteinase MPTP Mitochondrial permeability transition pore MRP Multi-drug resistance proteins MTT 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide N/A Not applicable NHGs N-hydroxyguanidines NIEHS National Institute of Environmental Health Sciences NP No processing N-PSC Normal human pancreatic stellate cells NSCLC Non-small cell lung cancer P Processing PAO Phenylarsonous acid PCNA Proliferating cell nuclear antigen PDAC Pancreatic ductal adenocarcinoma PDGE Prostaglandin E PDGF Platelet-derived growth factor PI Propidium iodide PI3K Phosphatidylinositol 3-kinase PSA Prostate specific antigen ix PSC Pancreatic stellate cells PSMA Prostate specific membrane antigen R3-IGF-1 Recombinant insulin-like growth factor RPMI Roswell park memorial institute SD Standard deviation SDF-1 Stromal cell-derived factor 1 SE Standard error SERCA Sarcoendoplasmic reticulum calcium transport ATPase T Treated TA-PSC Tumour associated human pancreatic stellate cell TGDi Tumour growth delay index TGF-h1 Transforming growth factor h1 TGFβ Transforming growth factor β TVQT Tumour volume quadrupling time uPA Urokinase-type plasminogen activator VDEPT Virus-directed enzyme prodrug therapy VEGF Vascular endothelial growth factor α-SMA Alpha-smooth muscle actin γGT γ-glutamyl transferase x Table of contents Declarations ..................................................................................................................................
Recommended publications
  • S41598-021-93055-5.Pdf
    www.nature.com/scientificreports OPEN Potent antitumor activity of a glutamyltransferase‑derived peptide via an activation of oncosis pathway Cheng Fang1,7, Wenhui Li2,7, Ruozhe Yin3,7, Donglie Zhu3, Xing Liu4, Huihui Wu4, Qingqiang Wang3, Wenwen Wang4, Quan Bai5, Biliang Chen6, Xuebiao Yao4* & Yong Chen3* Hepatocellular carcinoma (HCC) still presents poor prognosis with high mortality rate, despite of the improvement in the management. The challenge for precision treatment was due to the fact that little targeted therapeutics are available for HCC. Recent studies show that metabolic and circulating peptides serve as endogenous switches for correcting aberrant cellular plasticity. Here we explored the antitumor activity of low molecular components in human umbilical serum and identifed a high abundance peptide VI‑13 by peptidome analysis, which was recognized as the part of glutamyltransferase signal peptide. We modifed VI‑13 by inserting four arginines and obtained an analog peptide VI‑17 to improve its solubility. Our analyses showed that the peptide VI‑17 induced rapid context‑dependent cell death, and exhibited a higher sensitivity on hepatoma cells, which is attenuated by polyethylene glycol but not necrotic inhibitors such as z‑VAD‑fmk or necrostatin‑1. Morphologically, VI‑17 induced cell swelling, blebbing and membrane rupture with release of cellular ATP and LDH into extracellular media, which is hallmark of oncotic process. Mechanistically, VI‑17 induced cell membrane pore formation, degradation of α‑tubulin via infux of calcium ion. These results indicated that the novel peptide VI‑17 induced oncosis in HCC cells, which could serve as a promising lead for development of therapeutic intervention of HCC.
    [Show full text]
  • Ftsh Is Required for Proteolytic Elimination of Uncomplexed Forms
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 4532-4536, May 1995 Cell Biology FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit (protein translocation/quality control/proteolysis/AAA family/membrane protein) AKIO KIHARA, YOSHINORI AKIYAMA, AND KOREAKI ITO Department of Cell Biology, Institute for Virus Research, Kyoto University, Kyoto 606-01, Japan Communicated by Randy Schekman, University of California, Berkeley, CA, February 13, 1995 (receivedfor review December 5, 1994) ABSTRACT When secY is overexpressed over secE or secE Overexpression of SecY from a plasmid does not lead to is underexpressed, a fraction of SecY protein is rapidly significant overaccumulation of SecY (2, 12). Under such degraded in vivo. This proteolysis was unaffected in previously conditions, the majority of SecY is degraded with a half-life of described protease-defective mutants examined. We found, about 2 min, whereas the other fraction that corresponds to the however, that some mutations inftsH, encoding a membrane amount seen in the wild-type cell remains stable (2). When protein that belongs to the AAA (ATPase associated with a SecE is co-overproduced, oversynthesized SecY is stabilized variety ofcellular activities) family, stabilized oversynthesized completely (2, 12). Mutational reduction of the quantity of SecY. This stabilization was due to a loss ofFtsH function, and SecE is accompanied by destabilization of the corresponding overproduction of the wild-type FtsH protein accelerated the fraction of newly synthesized SecY molecules (2). These degradation. The ftsH mutations also suppressed, by allevi- observations indicate that uncomplexed SecY is recognized ating proteolysis of an altered form of SecY, the temperature and hydrolyzed by a protease and that SecE can antagonize the sensitivity of the secY24 mutation, which alters SecY such that proteolysis.
    [Show full text]
  • Rational Design of Resveratrol O-Methyltransferase for the Production of Pinostilbene
    International Journal of Molecular Sciences Article Rational Design of Resveratrol O-methyltransferase for the Production of Pinostilbene Daniela P. Herrera 1 , Andrea M. Chánique 1,2 , Ascensión Martínez-Márquez 3, Roque Bru-Martínez 3 , Robert Kourist 2 , Loreto P. Parra 4,* and Andreas Schüller 4,5,* 1 Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820244, Chile; [email protected] (D.P.H.); [email protected] (A.M.C.) 2 Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; [email protected] 3 Department of Agrochemistry and Biochemistry, Faculty of Science and Multidisciplinary Institute for Environmental Studies “Ramon Margalef”, University of Alicante, 03690 Alicante, Spain; [email protected] (A.M.-M.); [email protected] (R.B.-M.) 4 Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820244, Chile 5 Department of Molecular Genetics and Microbiology, School of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8320000, Chile * Correspondence: [email protected] (L.P.P.); [email protected] (A.S.) Abstract: Pinostilbene is a monomethyl ether analog of the well-known nutraceutical resveratrol. Both compounds have health-promoting properties, but the latter undergoes rapid metabolization and has low bioavailability. O-methylation improves the stability and bioavailability of resveratrol. In plants, these reactions are performed by O-methyltransferases (OMTs). Few efficient OMTs that Citation: Herrera, D.P.; Chánique, monomethylate resveratrol to yield pinostilbene have been described so far.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • WO 2013/064736 Al 10 May 2013 (10.05.2013) P O P CT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/064736 Al 10 May 2013 (10.05.2013) P O P CT (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C12N 9/10 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (21) International Application Number: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, PCT/FI2012/05 1048 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (22) International Filing Date: NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, 3 1 October 2012 (3 1.10.2012) RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (25) Filing Language: English ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 201 16074 1 November 201 1 (01. 11.201 1) FI GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant: VALIO LTD [FI/FI]; Meijeritie 6, FI-00370 TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Helsinki (FI). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (72) Inventors: RAJAKARI, Kirsi; c/o Valio Ltd, Meijeritie 6, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, FI-00370 Helsinki (FI).
    [Show full text]
  • Biosynthetic Investigation of Phomopsins Reveals a Widespread Pathway for Ribosomal Natural Products in Ascomycetes
    Biosynthetic investigation of phomopsins reveals a widespread pathway for ribosomal natural products in Ascomycetes Wei Dinga, Wan-Qiu Liua, Youli Jiaa, Yongzhen Lia, Wilfred A. van der Donkb,c,1, and Qi Zhanga,b,1 aDepartment of Chemistry, Fudan University, Shanghai 200433, China; bDepartment of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and cHoward Hughes Medical Institute, University of Illinois at Urbana–Champaign, Urbana, IL 61801 Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved February 23, 2016 (received for review November 24, 2015) Production of ribosomally synthesized and posttranslationally mod- dehydroaspartic acid, 3,4-dehydroproline, and 3,4-dehydrovaline ified peptides (RiPPs) has rarely been reported in fungi, even (Fig. 1A). though organisms of this kingdom have a long history as a prolific Early isotopic labeling studies showed that Ile, Pro, and Phe were source of natural products. Here we report an investigation of the all incorporated into the phomopsin scaffold (24). Because a Phe phomopsins, antimitotic mycotoxins. We show that phomopsin is a hydroxylase that can convert Phe to Tyr has not been found in fungal RiPP and demonstrate the widespread presence of a path- Ascomycetes, the labeling study seems incongruent with a ribosomal way for the biosynthesis of a family of fungal cyclic RiPPs, which we route to phomopsins, in which Tyr, not Phe, would need to be in- term dikaritins. We characterize PhomM as an S-adenosylmethionine– corporated into the phomopsin structure via a tRNA-dependent dependent α-N-methyltransferase that converts phomopsin A to pathway. Here we report our investigation of the biosynthetic path- an N,N-dimethylated congener (phomopsin E), and show that the way of phomopsins, which explains the paradoxical observations in methyltransferases involved in dikaritin biosynthesis have evolved the early labeling studies and unequivocally demonstrates that pho- differently and likely have broad substrate specificities.
    [Show full text]
  • Spontaneous Tyrosinase Mutations Identified in Albinos of Three Wild Frog Species
    Genes Genet. Syst. (2017) 92, p. 189–196 Albino tyrosinase mutations in frogs 189 Spontaneous tyrosinase mutations identified in albinos of three wild frog species Ikuo Miura1*, Masataka Tagami2, Takeshi Fujitani3 and Mitsuaki Ogata4 1Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan 2Gifu World Freshwater Aquarium, 1453 Kawashima-Kasadamachi, Kakamigahara, Gifu 501-6021, Japan 3Higashiyama Zoo and Botanical Gardens Information, 3-70 Higashiyama-Motomachi, Chikusa-ku, Nagoya, Aichi 464-0804, Japan 4Preservation and Research Center, The City of Yokohama, 155-1 Kawaijuku-cho Asahi-ku, Yokohama, Kanagawa 241-0804, Japan (Received 1 November 2016, accepted 9 March 2017; J-STAGE Advance published date: 30 June 2017) The present study reports spontaneous tyrosinase gene mutations identi- fied in oculocutaneous albinos of three Japanese wild frog species, Pelophylax nigromaculatus, Glandirana rugosa and Fejervarya kawamurai. This repre- sents the first molecular analyses of albinic phenotypes in frogs. Albinos of P. nigromaculatus collected from two different populations were found to suffer from frameshift mutations. These mutations were caused by the insertion of a thymine residue within each of exons 1 and 4, while albinos in a third popula- tion lacked three nucleotides encoding lysine in exon 1. Albinos from the former two P. nigromaculatus populations were also associated with splicing variants of mRNA that lacked either exons 2–4 or exon 4. In the other two frog species exam- ined, missense mutations that resulted in amino acid substitutions from glycine to arginine and glycine to aspartic acid were identified in exons 1 and 3, respec- tively. The two glycines in F.
    [Show full text]
  • National Coverage Determination Procedure Code: 82977 Gamma Glutamyl Transferase CMS Policy Number: 190.32 Back to NCD List
    National Coverage Determination Procedure Code: 82977 Gamma Glutamyl Transferase CMS Policy Number: 190.32 Back to NCD List Description: Gamma glutamyl transferase (GGT) is an intracellular enzyme that appears in blood following leakage from cells. Renal tubules, liver, and pancreas contain high amounts, although the measurement of GGT in serum is almost always used for assessment of Hepatobiliary function. Unlike other enzymes which are found in heart, skeletal muscle, and intestinal mucosa as well as liver, the appearance of an elevated level of GGT in serum is almost always the result of liver disease or injury. It is specifically useful to differentiate elevated alkaline phosphatase levels when the source of the alkaline phosphatase increase (bone, liver, or placenta) is unclear. The combination of high alkaline phosphatase and a normal GGT does not, however, rule out liver disease completely. As well as being a very specific marker of Hepatobiliary function, GGT is also a very sensitive marker for hepatocellular damage. Abnormal concentrations typically appear before elevations of other liver enzymes or biliuria are evident. Obstruction of the biliary tract, viral infection (e.g., hepatitis, mononucleosis), metastatic cancer, exposure to hepatotoxins (e.g., organic solvents, drugs, alcohol), and use of drugs that induce microsomal enzymes in the liver (e.g., cimetidine, barbiturates, phenytoin, and carbamazepine) all can cause a moderate to marked increase in GGT serum concentration. In addition, some drugs can cause or exacerbate liver dysfunction (e.g., atorvastatin, troglitazone, and others as noted in FDA Contraindications and Warnings.) GGT is useful for diagnosis of liver disease or injury, exclusion of hepatobiliary involvement related to other diseases, and patient management during the resolution of existing disease or following injury.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Relating Metatranscriptomic Profiles to the Micropollutant
    1 Relating Metatranscriptomic Profiles to the 2 Micropollutant Biotransformation Potential of 3 Complex Microbial Communities 4 5 Supporting Information 6 7 Stefan Achermann,1,2 Cresten B. Mansfeldt,1 Marcel Müller,1,3 David R. Johnson,1 Kathrin 8 Fenner*,1,2,4 9 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, 10 Switzerland. 2Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 11 Zürich, Switzerland. 3Institute of Atmospheric and Climate Science, ETH Zürich, 8092 12 Zürich, Switzerland. 4Department of Chemistry, University of Zürich, 8057 Zürich, 13 Switzerland. 14 *Corresponding author (email: [email protected] ) 15 S.A and C.B.M contributed equally to this work. 16 17 18 19 20 21 This supporting information (SI) is organized in 4 sections (S1-S4) with a total of 10 pages and 22 comprises 7 figures (Figure S1-S7) and 4 tables (Table S1-S4). 23 24 25 S1 26 S1 Data normalization 27 28 29 30 Figure S1. Relative fractions of gene transcripts originating from eukaryotes and bacteria. 31 32 33 Table S1. Relative standard deviation (RSD) for commonly used reference genes across all 34 samples (n=12). EC number mean fraction bacteria (%) RSD (%) RSD bacteria (%) RSD eukaryotes (%) 2.7.7.6 (RNAP) 80 16 6 nda 5.99.1.2 (DNA topoisomerase) 90 11 9 nda 5.99.1.3 (DNA gyrase) 92 16 10 nda 1.2.1.12 (GAPDH) 37 39 6 32 35 and indicates not determined. 36 37 38 39 S2 40 S2 Nitrile hydration 41 42 43 44 Figure S2: Pearson correlation coefficients r for rate constants of bromoxynil and acetamiprid with 45 gene transcripts of ECs describing nucleophilic reactions of water with nitriles.
    [Show full text]
  • Signal Peptide Hydrophobicity Modulates Interaction with the Twin
    bioRxiv preprint doi: https://doi.org/10.1101/135103; this version posted May 7, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Signal peptide hydrophobicity modulates interaction with the twin- 2 arginine translocase 3 4 Qi Huang and Tracy Palmer 5 6 7 8 Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee 9 DD1 5EH, UK 10 11 12 13 †For correspondence telephone +44 (0)1382 386464, fax +44 (0)1382 388216, e-mail 14 [email protected] 15 16 17 1 bioRxiv preprint doi: https://doi.org/10.1101/135103; this version posted May 7, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 18 Abstract 19 The general secretory pathway (Sec) and twin-arginine translocase (Tat) operate in parallel to 20 export proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane 21 of plant chloroplasts. Substrates are targeted to their respective machineries by N-terminal 22 signal peptides that share a common tripartite organization, however Tat signal peptides 23 harbor a conserved and almost invariant arginine pair that are critical for efficient targeting to 24 the Tat machinery. Tat signal peptides interact with a membrane-bound receptor complex 25 comprised of TatB and TatC components, with TatC containing the twin-arginine recognition 26 site.
    [Show full text]
  • The Neurochemical Consequences of Aromatic L-Amino Acid Decarboxylase Deficiency
    The neurochemical consequences of aromatic L-amino acid decarboxylase deficiency Submitted By: George Francis Gray Allen Department of Molecular Neuroscience UCL Institute of Neurology Queen Square, London Submitted November 2010 Funded by the AADC Research Trust, UK Thesis submitted for the degree of Doctor of Philosophy, University College London (UCL) 1 I, George Allen confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Signed………………………………………………….Date…………………………… 2 Abstract Aromatic L-amino acid decarboxylase (AADC) catalyses the conversion of 5- hydroxytryptophan (5-HTP) and L-3,4-dihydroxyphenylalanine (L-dopa) to the neurotransmitters serotonin and dopamine respectively. The inherited disorder AADC deficiency leads to a severe deficit of serotonin and dopamine as well as an accumulation of 5-HTP and L-dopa. This thesis investigated the potential role of 5- HTP/L-dopa accumulation in the pathogenesis of AADC deficiency. Treatment of human neuroblastoma cells with L-dopa or dopamine was found to increase intracellular levels of the antioxidant reduced glutathione (GSH). However inhibiting AADC prevented the GSH increase induced by L-dopa. Furthermore dopamine but not L-dopa, increased GSH release from human astrocytoma cells, which do not express AADC activity. GSH release is the first stage of GSH trafficking from astrocytes to neurons. This data indicates dopamine may play a role in controlling brain GSH levels and consequently antioxidant status. The inability of L-dopa to influence GSH concentrations in the absence of AADC or with AADC inhibited indicates GSH trafficking/metabolism may be compromised in AADC deficiency.
    [Show full text]