Evaluating the Impact of Improvement in the Horizontal Diffusion

Total Page:16

File Type:pdf, Size:1020Kb

Evaluating the Impact of Improvement in the Horizontal Diffusion FEBRUARY 2018 Z H A N G E T A L . 317 Evaluating the Impact of Improvement in the Horizontal Diffusion Parameterization on Hurricane Prediction in the Operational Hurricane Weather Research and Forecast (HWRF) Model JUN A. ZHANG NOAA/AOML/Hurricane Research Division, and University of Miami/Cooperative Institute for Marine and Atmospheric Studies, Miami, Florida FRANK D. MARKS,JASON A. SIPPEL, AND ROBERT F. ROGERS NOAA/AOML/Hurricane Research Division, Miami, Florida XUEJIN ZHANG NOAA/AOML/Hurricane Research Division, and University of Miami/Cooperative Institute for Marine and Atmospheric Studies, Miami, Florida SUNDARARAMAN G. GOPALAKRISHNAN NOAA/AOML/Hurricane Research Division, Miami, Florida ZHAN ZHANG AND VIJAY TALLAPRAGADA NOAA/NCEP/Environmental Modeling Center, College Park, Maryland (Manuscript received 11 July 2017, in final form 21 December 2017) ABSTRACT Improving physical parameterizations in forecast models is essential for hurricane prediction. This study documents the upgrade of horizontal diffusion parameterization in the Hurricane Weather Research and Forecasting (HWRF) Model and evaluates the impact of this upgrade on hurricane forecasts. The horizontal mixing length Lh wasmodifiedbasedonaircraft observations and extensive idealized and real-case numerical experiments. Following an earlier work by the first two authors, who focused on understanding how the horizontal diffusion parameterization worked in HWRF and its dynamical influence on hurricane intensification using idealized simulations, a series of sensitivity experiments was conducted to simulate Hurricane Earl (2010) in which only Lh was varied. Results from the Earl forecasts confirmed the findings from previous theoretical and idealized numerical studies, in that both the simulated maximum intensity and intensity change rate are dependent on Lh. Comparisons between the modeled and observed structure of Hurricane Earl, such as storm size, boundary layer heights, warm-core height and temperature anomaly, and eyewall slope, suggested that the Lh used in the HWRF Model should be decreased. Lowering Lh in HWRF has a positive impact on hurricane prediction based on over 200 retrospective forecasts of 10 Atlantic storms. Biases in both storm intensity and storm size are significantly reduced with the modified Lh. 1. Introduction parameterizations of subgrid-scale physical processes such as turbulent mixing becomes more important for As the horizontal resolution of operational hur- hurricane prediction. Turbulent mixing in the vertical ricane models becomes smaller, improving physical direction, especially in the atmospheric boundary layer, is well known to be critical in simulations and forecasts Denotes content that is immediately available upon publica- of hurricane intensity and structure (Braun and Tao tion as open access. 2000; Foster 2009; Smith and Thomsen 2010; Kepert 2012; Bao et al. 2012; Gopalakrishnan et al. 2013; Corresponding author: Dr. Jun Zhang, [email protected] Zhu et al. 2014; Zhang et al. 2015, 2017). As part of the DOI: 10.1175/WAF-D-17-0097.1 Ó 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses). 318 WEATHER AND FORECASTING VOLUME 33 Hurricane Forecast Improvement Project (HFIP), re- which leads to a larger radial advection of the angular cent advances in the parameterization of vertical tur- momentum and, in turn, more rapid hurricane intensity bulent mixing (i.e., vertical eddy diffusivity) in the change, consistent with the spinup dynamics as discussed operational Hurricane Weather Research and Fore- in Ooyama (1969), Smith et al. (2009), and Smith and casting (HWRF) Model, based on aircraft observations Montgomery (2015). ZM15 also suggested that the ex- reported by Zhang et al. (2011a) and Zhang and tent of the sensitivity of maximum intensity and in- Drennan (2012), have led to significant improvements in tensity change rate to Lh became smaller when the intensity and track forecasts (Tallapragada et al. 2014). model horizontal resolution (i.e., grid spacing) was The abovementioned physics improvement in HWRF smaller than Lh. followed the developmental framework proposed by Observational studies on the horizontal diffusion in Zhang et al. (2012), which consisted of four components: hurricane conditions have been limited. Zhang and model diagnostics, physics development, physics im- Montgomery (2012) presented the first observational plementation, and further evaluation. Building on the analysis of horizontal momentum flux, horizontal eddy success of this approach, here we adapt the same diffusivity, and Lh using flight-level data collected during framework to improve the parameterization of hori- four hurricanes (Allen, 1980; David, 1986; Hugo, 1989; zontal turbulent mixing (i.e., horizontal diffusion) and Frances, 2004) at an altitude of ;500 m. Their esti- in HWRF. mates of Lh were conducted within the framework of a Previous studies have demonstrated that horizontal simple K theory that assumed the stationarity and ho- diffusion is an important aspect of the model physics mogeneity of turbulent flow in the intense eyewall, while for hurricane simulations. Bryan and Rotunno (2009, momentum was assumed to be transferred downgradient hereafter BR09) used an axisymmetric numerical cloud of the mean flow. On average, Zhang and Montgomery model [Cloud Model 1 (CM1)] to point out that nu- (2012) found that Lh is approximately 750 m in the hur- merical simulations of hurricane maximum potential ricane eyewall. They also found that while there is a weak intensity (MPI) are sensitive to horizontal diffusion in tendency for Lh to increase with the wind speed, this in- terms of horizontal mixing length Lh. Bryan et al. crease was not statistically significant. Note also that the (2010) confirmed the findings of BR09 by using the optimal value of Lh recommended by Bryan et al. (2010) three-dimensional CM1 simulations. Bryan (2012) for hurricane model prediction is 1000 m, a result based showed that the impact of Lh on MPI can be as signif- on a large number of 3D CM1 simulations. This value of icant as the ratio of the surface exchange coefficient Lh is much closer to the observational estimate of Zhang that was emphasized in the MPI theory of Emanuel and Montgomery (2012) than the value of Lh recom- (1995). Rotunno and Bryan (2012, hereafter BR12) mended by BR09 (1500 m) based on 2D simulations. The further investigated the effects of both vertical and abovementioned theoretical, numerical, and observa- horizontal diffusion on hurricane MPI and structure, tional studies provided guidance for improving Lh in the offering interpretations of why horizontal diffusion is operational HWRF model. an important element of hurricane dynamics related to As pointed out by ZM15, the value of Lh used in the intensity. 2015 version of the operational HWRF model (H215) Motivated by BR09 and RB12, Zhang and Marks was 1900 m, and Lh was .2000 m in earlier versions of (2015, hereafter ZM15) studied the effect of Lh on HWRF because of the larger horizontal model resolu- hurricane intensity change and structure in idealized 3D tion. Following the recommendation of ZM15 and real- simulations using the HWRF Model. They presented a case HWRF simulations presented in section 3, Lh was series of 5-day simulations within the context of opera- reduced in the 2016 version of the operational HWRF tional forecasts, instead of simulations with longer pe- model (H216). The value of Lh used in H216 is 800 m, riods (i.e., $12 days) as used by BR09 and RB12. which is much closer to the observational estimate of Nonetheless, the results of ZM15 supported the con- Zhang and Montgomery (2012) and the value recom- clusions of BR09 and RB12 that larger values of Lh were mended by Bryan et al. (2010), than that used in H215. associated with smaller maximum intensity. These The present study documents the model upgrade pro- studies (i.e., BR09, RB12, and ZM15) all agreed that the cess for the horizontal diffusion parameterization in main impact of larger Lh on the intensification of a HWRF and evaluates the impact of this improvement in hurricane is to smooth the radial gradient of angular Lh on HWRF’s ability to predict track, intensity, and momentum and equivalent potential temperature in the structure using extensive retrospective forecasts. For the eyewall region. In the simulations with smaller Lh, both first time, the effects of Lh on hurricane intensity and the radial inflow and radial gradient of angular mo- structure are evaluated in real-case hurricane forecasts mentum are larger than in simulations with larger Lh, and simulations. FEBRUARY 2018 Z H A N G E T A L . 319 2. Horizontal diffusion parameterization in HWRF domains to reflect the dependence of Kh on model grid spacing. The description of the horizontal diffusion parame- Without TKE, the parameterization of K in HWRF terization in the HWRF Model given below parallels h was essentially the same as that used in the CM1 model that given by ZM15. Details of other aspects of the as well as in NCAR’s Weather Research and Fore- HWRF Model physics can be found in Tallapragada casting (WRF) Model (Janjic´ 2003), except that the et al. (2014) and Zhang et al. (2015). The horizontal method of tuning the Smagorinsky constant is slightly diffusion scheme in HWRF is essentially the typical different. A similar horizontal diffusion parameteriza- second-order nonlinear Smagorinsky-type parameteri- tion was also used in the Tropical Cyclone Model ver- zation as detailed by Janjic´ (1990). Horizontal eddy sion 4 (TCM4; Wang 2007). We also note that the diffusivity Kh is used to parameterize the horizontal 1 equations used by Zhang and Montgomery (2012) for turbulent momentum flux Fh in the form of observational estimates of Kh and Lh follow the same concept of momentum-flux parameterization as those F 5 rK S , (1) h h h used in the abovementioned numerical models, except that there is no scale dependence in the L estimation in where S is the horizontal strain rate of the mean flow h h that study, because a constant cutoff frequency was used (e.g., Stevens et al.
Recommended publications
  • Hurricane & Tropical Storm
    5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard.
    [Show full text]
  • Assessing Interactions Between Estuary Water Quality and Terrestrial Land Cover in Hurricane Events with Multi-Sensor Remote Sensing
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2017 Assessing Interactions between Estuary Water Quality and Terrestrial Land Cover in Hurricane Events with Multi-sensor Remote Sensing Chandan Mostafiz University of Central Florida Part of the Environmental Engineering Commons, and the Water Resource Management Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Mostafiz, Chandan, Assessing" Interactions between Estuary Water Quality and Terrestrial Land Cover in Hurricane Events with Multi-sensor Remote Sensing" (2017). Electronic Theses and Dissertations, 2004-2019. 5688. https://stars.library.ucf.edu/etd/5688 ASSESSING INTERACTIONS BETWEEN ESTUARY WATER QUALITY AND TERRESTRIAL LAND COVER IN HURRICANE EVENTS WITH MULTI-SENSOR REMOTE SENSING by CHANDAN MOSTAFIZ B.S. Bangladesh University of Engineering and Technology, 2014 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Civil, Environmental, and Construction Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Fall Term 2017 Major Professor: Ni-Bin Chang © 2017 Chandan Mostafiz ii ABSTRACT Estuaries are environmentally, ecologically and environmentally important places as they act as a meeting place for land, freshwater and marine ecosystems. They are also called nurseries of the sea as they often provide nesting and feeding habitats for many aquatic plants and animals.
    [Show full text]
  • Massachusetts Tropical Cyclone Profile August 2021
    Commonwealth of Massachusetts Tropical Cyclone Profile August 2021 Commonwealth of Massachusetts Tropical Cyclone Profile Description Tropical cyclones, a general term for tropical storms and hurricanes, are low pressure systems that usually form over the tropics. These storms are referred to as “cyclones” due to their rotation. Tropical cyclones are among the most powerful and destructive meteorological systems on earth. Their destructive phenomena include storm surge, high winds, heavy rain, tornadoes, and rip currents. As tropical storms move inland, they can cause severe flooding, downed trees and power lines, and structural damage. Once a tropical cyclone no longer has tropical characteristics, it is then classified as a post-tropical system. The National Hurricane Center (NHC) has classified four stages of tropical cyclones: • Tropical Depression: A tropical cyclone with maximum sustained winds of 38 mph (33 knots) or less. • Tropical Storm: A tropical cyclone with maximum sustained winds of 39 to 73 mph (34 to 63 knots). • Hurricane: A tropical cyclone with maximum sustained winds of 74 mph (64 knots) or higher. • Major Hurricane: A tropical cyclone with maximum sustained winds of 111 mph (96 knots) or higher, corresponding to a Category 3, 4 or 5 on the Saffir-Simpson Hurricane Wind Scale. Primary Hazards Storm Surge and Storm Tide Storm surge is an abnormal rise of water generated by a storm, over and above the predicted astronomical tide. Storm surge and large waves produced by hurricanes pose the greatest threat to life and property along the coast. They also pose a significant risk for drowning. Storm tide is the total water level rise during a storm due to the combination of storm surge and the astronomical tide.
    [Show full text]
  • National Assessment of Hurricane-Induced Coastal Erosion Hazards: Northeast Atlantic Coast
    National Assessment of Hurricane-Induced Coastal Erosion Hazards: Northeast Atlantic Coast By Justin J. Birchler, Hilary F. Stockdon, Kara S. Doran, and David M. Thompson Open-File Report 2014–1243 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2014 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Suggested citation: Birchler, J.J., Stockdon, H.F., Doran, K.S., and Thompson, D.M., 2014, National assessment of hurricane-induced coastal erosion hazards—Northeast Atlantic Coast: U.S. Geological Survey Open-File Report 2014–1243, 34 p., http://dx.doi.org/10.3133/ofr20141243. ISSN 2331-1258 (online) ii Contents 1. Introduction ............................................................................................................................................................. 1 1.1 Impacts of Hurricanes on Coastal Communities ............................................................................................... 1 1.2 Prediction of Hurricane-Induced Coastal Erosion.............................................................................................. 4 1.3 Storm-Impact Scaling Model ............................................................................................................................. 4 2.
    [Show full text]
  • Historical Perspective
    kZ ­­_!% L , Ti Historical Perspective 2.1 Introduction CROSS REFERENCE Through the years, FEMA, other Federal agencies, State and For resources that augment local agencies, and other private groups have documented and the guidance and other evaluated the effects of coastal flood and wind events and the information in this Manual, performance of buildings located in coastal areas during those see the Residential Coastal Construction Web site events. These evaluations provide a historical perspective on the siting, design, and construction of buildings along the Atlantic, Pacific, Gulf of Mexico, and Great Lakes coasts. These studies provide a baseline against which the effects of later coastal flood events can be measured. Within this context, certain hurricanes, coastal storms, and other coastal flood events stand out as being especially important, either Hurricane categories reported because of the nature and extent of the damage they caused or in this Manual should be because of particular flaws they exposed in hazard identification, interpreted cautiously. Storm siting, design, construction, or maintenance practices. Many of categorization based on wind speed may differ from that these events—particularly those occurring since 1979—have been based on barometric pressure documented by FEMA in Flood Damage Assessment Reports, or storm surge. Also, storm Building Performance Assessment Team (BPAT) reports, and effects vary geographically— Mitigation Assessment Team (MAT) reports. These reports only the area near the point of summarize investigations that FEMA conducts shortly after landfall will experience effects associated with the reported major disasters. Drawing on the combined resources of a Federal, storm category. State, local, and private sector partnership, a team of investigators COASTAL CONSTRUCTION MANUAL 2-1 2 HISTORICAL PERSPECTIVE is tasked with evaluating the performance of buildings and related infrastructure in response to the effects of natural and man-made hazards.
    [Show full text]
  • The Perfect Storm
    The Perfect Storm A True Story of Men Against the Sea by Sebastian Junger Contents FOREWORD GEORGES BANK, 1896 GLOUCESTER, MASS., 1991 GOD’S COUNTRY THE FLEMISH CAP THE BARREL OF THE GUN GRAVEYARD OF THE ATLANTIC THE ZERO-MOMENT POINT THE WORLD OF THE LIVING INTO THE ABYSS THE DREAMS OF THE DEAD AFTERWORD ACKNOWLEDGMENTS THIS BOOK IS DEDICATED TO MY FATHER, WHO FIRST INTRODUCED ME TO THE SEA. FOREWORD Recreating the last days of six men who disappeared at sea presented some obvious problems for me. On the one hand, I wanted to write a completely factual book that would stand on its own as a piece of journalism. On the other hand, I didn’t want the narrative to asphyxiate under a mass of technical detail and conjecture. I toyed with the idea of fictionalizing minor parts of the story—conversations, personal thoughts, day-to-day routines—to make it more readable, but that risked diminishing the value of whatever facts I was able to determine. In the end I wound up sticking strictly to the facts, but in as wide-ranging a way as possible. If I didn’t know exactly what happened aboard the doomed boat, for example, I would interview people who had been through similar situations, and survived. Their experiences, I felt, would provide a fairly good description of what the six men on the Andrea Gail had gone through, and said, and perhaps even felt. As a result, there are varying kinds of information in the book. Anything in direct quotes was recorded by me in a formal interview, either in person or on the telephone, and was altered as little as possible for grammar and clarity.
    [Show full text]
  • Impact of Parameterized Boundary Layer Structure on Tropical Cyclone Rapid Intensification Forecasts in HWRF
    APRIL 2017 Z H A N G E T A L . 1413 Impact of Parameterized Boundary Layer Structure on Tropical Cyclone Rapid Intensification Forecasts in HWRF JUN A. ZHANG NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, and Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida ROBERT F. ROGERS NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida VIJAY TALLAPRAGADA NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland (Manuscript received 5 April 2016, in final form 27 October 2016) ABSTRACT This study evaluates the impact of the modification of the vertical eddy diffusivity (Km) in the boundary layer parameterization of the Hurricane Weather Research and Forecasting (HWRF) Model on forecasts of tropical cyclone (TC) rapid intensification (RI). Composites of HWRF forecasts of Hurricanes Earl (2010) and Karl (2010) were compared for two versions of the planetary boundary layer (PBL) scheme in HWRF. The results show that using a smaller value of Km, in better agreement with observations, improves RI forecasts. The composite-mean, inner-core structures for the two sets of runs at the time of RI onset are compared with observational, theoretical, and modeling studies of RI to determine why the runs with reduced Km are more likely to undergo RI. It is found that the forecasts with reduced Km at the RI onset have a shallower boundary layer with stronger inflow, more unstable near-surface air outside the eyewall, stronger and deeper updrafts in regions farther inward from the radius of maximum wind (RMW), and stronger boundary layer convergence closer to the storm center, although the mean storm intensity (as measured by the 10-m winds) is similar for the two groups.
    [Show full text]
  • The Development of a Hydrodynamics-Based Storm Severity Index
    UNF Digital Commons UNF Graduate Theses and Dissertations Student Scholarship 2015 The evelopmeD nt of a Hydrodynamics-Based Storm Severity Index Gabriel Francis Todaro University of North Florida Suggested Citation Todaro, Gabriel Francis, "The eD velopment of a Hydrodynamics-Based Storm Severity Index" (2015). UNF Graduate Theses and Dissertations. 601. https://digitalcommons.unf.edu/etd/601 This Master's Thesis is brought to you for free and open access by the Student Scholarship at UNF Digital Commons. It has been accepted for inclusion in UNF Graduate Theses and Dissertations by an authorized administrator of UNF Digital Commons. For more information, please contact Digital Projects. © 2015 All Rights Reserved THE DEVELOPMENT OF A HYDRODYNAMICS-BASED STORM SEVERITY INDEX by Gabriel Todaro A thesis submitted to the School of Engineering in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering UNIVERSITY OF NORTH FLORIDA SCHOOL OF ENGINEERING November, 2015 Unpublished work © Gabriel Todaro The thesis "Development of a Hydrodynamics-Based Storm Severity Index" submitted by Gabriel Todaro in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering has been Approved by the thesis committee: Date: ___________________________ _______________________ Dr. William R. Dally, Ph.D., P.E. ______________________________ _______________________ Dr. Don T. Resio, Ph.D. __________________________ _______________________ Dr. Christopher J. Brown, Ph.D., P.E. Accepted for the School of Engineering: Dr. Murat Tiryakioglu, Ph.D., C.Q.E. Director of the School of Engineering Accepted for the College of Computing, Engineering, and Construction: Dr. Mark Tumeo, Ph.D., P.E. Dean of the College of Computing, Engineering, and Construction Accepted for the University: Dr.
    [Show full text]
  • New England Effects from the Hurricane Sandy Hybrid Storm
    New England Effects from the Hurricane Sandy Hybrid Storm Weather Synopsis Sandy, a hybrid storm with both tropical and extratropical characteristics, brought high winds and coastal flooding to southern New England. Easterly winds gusted to 50 to 60 mph for interior southern New England; 55 to 65 mph along the eastern Massachusetts coast and along the I-95 corridor in southeast Massachusetts and Rhode Island; and 70 to 80 mph along the southeast Massachusetts and Rhode Island coasts. A few higher higher gusts occurred along the Rhode Island coast. A severe thunderstorm embedded in an outer band associated with Sandy produced wind gusts to 90 mph and concentrated damage in Wareham early Tuesday evening, a day after the center of Sandy had moved into New Jersey. In general moderate coastal flooding occurred along the Massachusetts coastline, and major coastal flooding impacted the Rhode Island coastline. The storm surge was generally 2.5 to 4.5 feet along the east coast of Massachusetts, but peaked late Monday afternoon in between high tide cycles. Seas built to between 20 and 25 feet Monday afternoon and evening just off the Massachusetts east coast. Along the south coast, the storm surge was 4 to 6 feet and seas from 30 to a little over 35 feet were observed in the outer coastal waters. The very large waves on top of the storm surge caused destructive coastal flooding along stretches of the Rhode Island exposed south coast. Sandy grew into a hurricane over the southwest Caribbean and then headed north across Jamaica, Cuba, and the Bahamas.
    [Show full text]
  • New England Hurricanes of Note (PDF)
    THE COMMONWEALTH OF MASSACHUSETTS EXECUTIVE OFFICE OF PUBLIC SAFETY _____________________________ MASSACHUSETTS EMERGENCY MANAGEMENT AGENCY 400 Worcester Road Framingham, MA 01702-5399 Cristine McCombs Mitt Romney Director Governor Tel: 508-820-2000 Fax: 508-820-2030 Website: www.mass.gov/mema Kerry Healey Lieutenant Governor Robert C. Haas Secretary FOR IMMEDIATE RELEASE CONTACT: Peter Judge June 1, 2006 (508) 820-2002 NEW ENGLAND HURRICANES OF NOTE FRAMINGHAM, MA – Although the approaching Hurricane Season in New England is defined as June 1st through November 30th, the vast majority of the 40 tropical systems that have impacted our region over the past century have struck during the months of August and September. Because Massachusetts is such a relatively small state, it is important to realize that these are not just ‘coastal events’, but, in fact, everyone in the Commonwealth can be severely impacted by a major storm. “New England is in the unenviable position of receiving all three types of Hurricane Threats,” states Massachusetts Emergency Management Agency Director Cristine McCombs. “Depending upon the storm’s track and landfall location, we can experience coastal inundation from storm surge, widespread inland river flooding, and widespread wind damage.” To best prepare ourselves for the future, it is important to revisit the past, and examine a dozen of the most notable New England Hurricanes and their catastrophic impact upon our region. The Great Colonial Hurricane of 1635 August 25, 1635 This was the first historical record of an intense hurricane striking New England. The highest winds have been estimated at Category 3 or greater, with winds of 115-plus mph.
    [Show full text]
  • High-Water Marks from Hurricane Sandy for Coastal Areas of Connecticut, Rhode Island, and Massachusetts, October 2012
    Prepared in cooperation with the Federal Emergency Management Agency High-Water Marks From Hurricane Sandy for Coastal Areas of Connecticut, Rhode Island, and Massachusetts, October 2012 Data Series 1094 U.S. Department of the Interior U.S. Geological Survey Cover. Satellite image of Hurricane Sandy over the northeastern United States on October 29, 2012, at 1735 Coordinated Universal Time (UTC; 1:35 p.m. eastern daylight time), the day the hurricane made landfall; image is from the National Aeronautics and Space Administration Earth Observatory. High-Water Marks From Hurricane Sandy for Coastal Areas of Connecticut, Rhode Island, and Massachusetts, October 2012 By Lance J. Ostiguy, Timothy C. Sargent, Brittney J. Izbicki, and Gardner C. Bent Prepared in cooperation with the Federal Emergency Management Agency Data Series 1094 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior RYAN K. ZINKE, Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2018 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text.
    [Show full text]
  • Florida Hurricanes and Tropical Storms, 1871-1993: an Historical Survey, the Only Books Or Reports Exclu- Sively on Florida Hurricanes Were R.W
    3. 2b -.I 3 Contents List of Tables, Figures, and Plates, ix Foreword, xi Preface, xiii Chapter 1. Introduction, 1 Chapter 2. Historical Discussion of Florida Hurricanes, 5 1871-1900, 6 1901-1930, 9 1931-1960, 16 1961-1990, 24 Chapter 3. Four Years and Billions of Dollars Later, 36 1991, 36 1992, 37 1993, 42 1994, 43 Chapter 4. Allison to Roxanne, 47 1995, 47 Chapter 5. Hurricane Season of 1996, 54 Appendix 1. Hurricane Preparedness, 56 Appendix 2. Glossary, 61 References, 63 Tables and Figures, 67 Plates, 129 Index of Named Hurricanes, 143 Subject Index, 144 About the Authors, 147 Tables, Figures, and Plates Tables, 67 1. Saffir/Simpson Scale, 67 2. Hurricane Classification Prior to 1972, 68 3. Number of Hurricanes, Tropical Storms, and Combined Total Storms by 10-Year Increments, 69 4. Florida Hurricanes, 1871-1996, 70 Figures, 84 l A-I. Great Miami Hurricane 2A-B. Great Lake Okeechobee Hurricane 3A-C.Great Labor Day Hurricane 4A-C. Hurricane Donna 5. Hurricane Cleo 6A-B. Hurricane Betsy 7A-C. Hurricane David 8. Hurricane Elena 9A-C. Hurricane Juan IOA-B. Hurricane Kate 1 l A-J. Hurricane Andrew 12A-C. Hurricane Albert0 13. Hurricane Beryl 14A-D. Hurricane Gordon 15A-C. Hurricane Allison 16A-F. Hurricane Erin 17A-B. Hurricane Jerry 18A-G. Hurricane Opal I9A. 1995 Hurricane Season 19B. Five 1995 Storms 20. Hurricane Josephine , Plates, X29 1. 1871-1880 2. 1881-1890 Foreword 3. 1891-1900 4. 1901-1910 5. 1911-1920 6. 1921-1930 7. 1931-1940 These days, nothing can escape the watchful, high-tech eyes of the National 8.
    [Show full text]