Catalytic Hydroconversion of Diphenylmethane with Unsupported Mos2

Total Page:16

File Type:pdf, Size:1020Kb

Catalytic Hydroconversion of Diphenylmethane with Unsupported Mos2 Catalytic Hydroconversion of Diphenylmethane with Unsupported MoS2 by Ross S. Kukard B.Sc. Eng. Chem. (hons), The University of Cape Town, 2006 M.Sc. Eng. Chem., The University of Cape Town, 2009 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Chemical and Biological Engineering) The University of British Columbia (Vancouver) September 2014 © Ross S. Kukard, 2014 Abstract The mechanism by which hydroconversion catalysts promote residue conversion and coke suppression is unclear. Several theories are proposed in the literature but these have all been opposed, usually due to their lack of controlled mechanistic studies. A promising catalyst for residue hydroconversion is unsupported MoS2. This catalyst is effective but expensive and deactivates during the reaction. Model compound studies were needed to elucidate the mechanism of MoS2 catalysis in hydroconversion reactions, how this relates to residue hydroconversion and hence propose deactivation mechanisms and regeneration methodologies. Model compound screening in a commercially available stirred slurry-phase batch reactor identified diphenylmethane (DPM) as a suitable model reagent. Ex- periments were conducted at industrially applicable conditions of 445◦C, 13.8 MPa H2 and catalyst loadings of 0 - 1800 ppm Mo (introduced as Mo octoate which formed the MoS2 active phase in-situ). Slow heat-up rates and wall catalysis, how- ever, made this reactor unsuitable for detailed mechanistic studies. A novel mixed slurry-phase micro-reactor system was designed using externally applied vortex mixing and removable glass-inserts to allow for greater analytical resolution and determination of the thermocatalytic mechanism. Deactivated MoS2 catalysts, as coke-catalyst agglomerates recovered from residue hydroconversion studies [1], were evaluated using the DPM testing methodology and a deactivation mechanism proposed. It was determined that the unsupported MoS2 crystallites hydrogenate the DPM feed to cyclohexylmethylbenzene (CHMB) which undergoes thermolysis to short chain hydrocarbon radicals. These short chain radicals stabilise, by radical addi- tion or radical disproportionation, other radicals in the system by a chain stabili- ii sation reaction, itself promoted by catalytic hydrogenation (for instance of olefins formed during disproportionation). Deactivation of unsupported MoS2 in residue hydroconversion was proposed to be due to the formation of an unreactive, porous carbonaceous structure upon which the otherwise unaltered catalyst particles be- come supported. The pores physically exclude larger species, such as asphaltenes, from reaching the active sites. Inter-recycle solvent extraction to remove coke precursors was proposed to in- hibit deactivation in residue hydroconversion whilst mechanical and chemical size reduction were suggested for breaking the porous structure and re-exposing the MoS2 crystallites. iii Preface All of the work presented henceforth was conducted in the Department of Chemi- cal and Biological Engineering at the University of British Columbia, Point Grey campus. I, Ross S. Kukard, was the lead investigator of this work, responsible for all major areas of concept formation, micro-reactor design, construction and commis- sioning and all experimentation, data collection and analysis as well as preparation of this thesis. Kevin J. Smith was the supervisor of this research, involved through- out the project in concept formation and thesis edits. Hooman Rezaei commis- sioned the stirred batch reactor described in Section B.2.1 which I used to conduct the experiments and collect the data in Section 4.1. He also conducted the residue hydroconversion experiments to generate deactivated catalyst samples and compar- ison data (Section 4.2.3). The mechanical workshop in the Department of Chemi- cal and Biological Engineering, led by Doug Yuen, constructed the micro-reactor enclosures described in Section B.3.1 using designs that I prepared. I presented data from Section 4.1 at the 62nd Canadian Chemical Engineer- ing Conference (Vancouver, BC, Canada), 2012 and data from Section 4.2 at the 23rd Canadian Symposium on Catalysis (Edmonton, AB, Canada), 2014. Kevin J. Smith was involved in the preparation of these presentations. iv Table of Contents Abstract.................................... ii Preface .................................... iv TableofContents .............................. v ListofTables................................. xi List of Figures . xiii Nomenclature ................................ xx Acknowledgements ............................. xxix Dedication .................................. xxx 1 Introduction ............................... 1 2 LiteratureReview ............................ 5 2.1 Current Hydroconversion Technology . 5 2.2 Residue Processing Technologies . 6 2.2.1 Carbon Rejection . 7 2.2.2 Hydroconversion ...................... 8 2.2.3 Slurry-Phase Catalytic Hydroconversion . 10 2.3 Catalyst Testing . 12 2.3.1 Heavy Oil and Residue Oil Studies . 12 v 2.3.2 Model Compound Studies . 13 2.4 Micro-Reactors for Catalyst Testing . 16 2.4.1 Advantages and Disadvantages of Micro-Reactors . 16 2.4.2 Micro-Reactors in Hydroconversion Studies . 17 2.5 Catalyst Activity and Deactivation . 18 2.5.1 Catalyst Selection . 19 2.5.2 Molybdenum Disulphide . 20 2.5.3 Processes of Deactivation . 26 2.5.4 Catalyst Regeneration Methodologies . 28 2.6 Summary of Findings from the Literature . 29 3 Experimental............................... 30 3.1 Experimental Objectives and Programme . 30 3.1.1 Interpretation of Questions to Objectives . 31 3.1.2 Experimental Programme . 35 3.2 Experimental Apparatus and Supplies . 39 3.2.1 Reaction and Analytical Supplies . 39 3.2.2 Reactors and Conditions . 40 3.3 Analytical Equipment and Data Analysis . 53 3.3.1 Gas Product Analysis . 53 3.3.2 Liquid Product Analysis . 54 3.3.3 Solid Product Analysis . 54 4 ExperimentalResults .......................... 55 4.1 Stirred Batch Reactor . 55 4.1.1 Model Compound Screening . 55 4.1.2 Benzene, Toluene and Decalin Blanks . 59 4.1.3 Diphenylmethane Studies . 60 4.2 BatchMicro-reactor......................... 83 4.2.1 Inclined Stainless Steel Micro-Reactor . 83 4.2.2 Vertical Stainless Steel Micro-Reactor . 88 4.2.3 Glass Insert Micro-Reactor . 101 vi 5 DiscussionofExperimentalResults . 140 5.1 Model Compound Evaluation . 140 5.1.1 Model Compound Screening . 140 5.1.2 Diphenylmethane Studies . 142 5.1.3 Summary of Model Compound Evaluation . 155 5.2 Novel Reactor System Design and Testing . 157 5.2.1 Inclined Stainless Steel Micro-Reactor . 158 5.2.2 Vertical Stainless Steel Micro-Reactor . 162 5.2.3 Unmixed Glass Insert Micro-Reactor . 169 5.2.4 Mixed Glass Insert Micro-Reactor . 171 5.2.5 Summary of Micro-Reactor System Design and Testing . 183 5.3 Catalyst Study and Deactivation Investigation . 185 5.3.1 Active MoS2 ........................ 185 5.3.2 Deactivated Coke-MoS2 Agglomerate . 187 5.3.3 Mechanism of MoS2 Deactivation in Residue Hydrocon- version ........................... 192 5.3.4 Summary of MoS2 Activity and Deactivation . 195 6 Conclusions................................ 197 References .................................. 201 Appendices .................................. 218 A Catalyst Deactivation and Regeneration . 219 A.1 Processes of Catalyst Deactivation . 219 A.1.1 Fouling ........................... 219 A.1.2 Poisoning.......................... 222 A.1.3 Others............................ 227 A.2 Catalyst Regeneration Processes . 230 B Experimental Apparatus and Procedures . 233 B.1 Detailed Experimental Programme . 233 B.2 Batch Reactor Specifications and Operation . 234 vii B.2.1 Description and Specifications . 241 B.2.2 Operating Procedure . 244 B.2.3 Safety Considerations . 255 B.3 Micro-Reactor Design, Development and Operation . 257 B.3.1 Design and Development . 257 B.3.2 Operating Procedure . 276 B.3.3 Safety Considerations . 287 C Analytical Apparatus, Procedures and Data Analysis . 289 C.1 GasProductAnalysis . 289 C.1.1 Analytical Equipment and Procedures . 289 C.1.2 Calibration, Data Acquisition, Analysis and Interpretation 292 C.2 Liquid Product Analysis . 296 C.2.1 Analytical Equipment and Procedures . 296 C.2.2 Data Acquisition, Analysis and Interpretation . 301 C.2.3 Calibration, Analysis and Experimental Uncertainty . 307 C.3 Solid Product Analysis . 318 C.3.1 Analytical Equipment and Procedures . 318 C.3.2 Calibration, Data Acquisition, Analysis and Interpretation 320 D CalibrationData............................. 333 D.1 GasChromatograph......................... 333 D.1.1 HP5980A Calibration Results . 333 D.1.2 Shimadzu GC-14B Calibration Results . 333 D.2 GCMS-QP2010 Gas Chromatograph - Mass Spectrometer Liquid Calibration Results . 335 D.2.1 Benzene........................... 335 D.2.2 Toluene........................... 337 D.2.3 Diphenylmethane . 339 D.2.4 Diphenylethane . 341 D.2.5 Diphenylpropane . 343 viii E DetailedExperimentalResults . 345 E.1 Stirred Batch Reactor . 345 E.1.1 Model Compound Screening . 345 E.1.2 Diluted Diphenylmethane . 346 E.1.3 Undiluted Diphenylmethane . 347 E.2 Stainless Steel Batch Micro-reactors . 356 E.2.1 Inclined Stainless Steel Micro-Reactor . 356 E.2.2 Vertical Stainless Steel Micro-Reactor . 356 E.3 Glass Insert Batch Micro-reactor . 356 E.3.1 Comparison with Stainless Steel Micro-Reactor . 356 E.3.2 Visual Mixing Studies . 356 E.3.3 Comparison of Liquid Loading Volumes . 356 E.3.4 Thermocouple Wall
Recommended publications
  • The Chemistry of Some Di- and Tri-Phenylmethanie Dyes
    THE CHEMISTRY OF SOME DI- AND TRI-PHENYLMETHANIE DYES by Stephen Anthony GORMAN B.Sc. (Hons) being a thesis submitted to the University of Central Lancashire in partial fulfilment of the requirement for the degree of DOCTOR OF PHILOSOPHY November 1998 Department of Environmental Management University of Central Lancashire Preston ACKNOWLEDGEMENTS I would like to express my sincere gratitude to Dr. Don Mason, my Directot of Studies, and to Professor John D. Hepworth, Seèond Supervisor, for their constant• interest, support and guidance throughout the course of my work and during the writing of my thesis. My thanks are also due to Dr. B. M. Heron and Dr. C. D. Gabbutt for theft interest and help. I am also indebted to my employer, William Blythe Ltd., for allowing the time for my studies. S.A.G. DECLARATION I declare that, whilst registered with the University of Central Lancashire for the degree of Doctor of Philosophy, I have not been a registered candidate or enrolled student for another award of any other academic or professional institution during the research programme. No portion of the work referred to in this thesis has been submitted in support of any application for another degree or qualification of any other University or Institution of learning. Signed........................................... Stephen A. Gorman A NOTE ON REFERENCES Throughout this work, a reference system based on that introduced by A. R. - Katritzky and J. M. Lagowski in the monograph t'Chemistry of the Heterocyclic N±: - Oxides", Academic press, New York, 1971, will be employed. This system has been used for the highly acclaimed "Comprehensive Heterocyclic Chemistry" series, edited by A.
    [Show full text]
  • The Diphenylmethane Case
    Has the Bacterial Biphenyl Catabolic Pathway Evolved Primarily To Degrade Biphenyl? The Diphenylmethane Case Thi Thanh My Pham, Michel Sylvestre Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Quebec, Canada In this work, we have compared the ability of Pandoraea pnomenusa B356 and of Burkholderia xenovorans LB400 to metabolize diphenylmethane and benzophenone, two biphenyl analogs in which the phenyl rings are bonded to a single carbon. Both chem- icals are of environmental concern. P. pnomenusa B356 grew well on diphenylmethane. On the basis of growth kinetics analyses, diphenylmethane and biphenyl were shown to induce the same catabolic pathway. The profile of metabolites produced during growth of strain B356 on diphenylmethane was the same as the one produced by isolated enzymes of the biphenyl catabolic path- way acting individually or in coupled reactions. The biphenyl dioxygenase oxidizes diphenylmethane to 3-benzylcyclohexa-3,5- diene-1,2-diol very efficiently, and ultimately this metabolite is transformed to phenylacetic acid, which is further metabolized by a lower pathway. Strain B356 was also able to cometabolize benzophenone through its biphenyl pathway, although in this case, this substrate was unable to induce the biphenyl catabolic pathway and the degradation was incomplete, with accumulation of 2-hydroxy-6,7-dioxo-7-phenylheptanoic acid. Unlike strain B356, B. xenovorans LB400 did not grow on diphenylmethane. Its biphenyl pathway enzymes metabolized diphenylmethane, but they poorly metabolize benzophenone. The fact that the biphenyl catabolic pathway of strain B356 metabolized diphenylmethane and benzophenone more efficiently than that of strain LB400 brings us to postulate that in strain B356, this pathway evolved divergently to serve other functions not related to biphenyl degradation.
    [Show full text]
  • Using Hydrocarbon Acidities to Demonstrate Principles of Organic
    Research: Science and Education Using Hydrocarbon Acidities To Demonstrate Principles W of Organic Structure and Bonding Andrew P. Dicks Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada; [email protected] A recent article in this Journal (1) discusses the proper- Hybridization Effects ties of acidic substances not containing a formal carboxylic acid functionality. The authors elaborate on a number of car- Acidities of alkanes, alkenes, and alkynes are discussed bon-based acids, such as Meldrum’s acid and dimedone. in most introductory organic chemistry textbooks (4). The 3 Other compounds that could be considered in this context pKa of ethyne (acetylene) is well established (25.5 in DMSO ; are hydrocarbons (substances containing only hydrogen and ref 5). Acidities of ethane (pKa = 49–62; ref 6) and ethene carbon). Conant and Wheland undertook the first “study of (ethylene, pKa = 42–45; ref 7) are less well known owing to extremely weak acids” in 1932 and by colorimetric methods experimental difficulty in accurately measuring pKa values of were able to arrange 10 hydrocarbons in a scale of increasing such weakly acidic compounds.4 acid strength (2). McEwen (3) extended this work by quan- Hydrocarbon acidity increases as the percentage s char- tifying the acidity of these compounds (and many others) acter in hybrid orbitals of carbon increases; that is, a corre- with respect to the acid dissociation constant of methanol. lation exists between hybridization and acidity as shown in The most acidic hydrocarbon noted by these researchers was Table 1. Walsh (8) has suggested that carbon electronegativ- 1 9-phenylfluorene (Figure 1) with a pKa = 21(3).
    [Show full text]
  • Bisphenol a Alternatives in Thermal Paper
    Bisphenol A Alternatives in Thermal Paper Chapter 4 Hazard Evaluation of Bisphenol A (BPA) and Alternatives FINAL REPORT August 2015 [Supercedes version dated January 2014] U.S. Environmental Protection Agency Table of Contents 4. Hazard Evaluation of Bisphenol A (BPA) and Alternatives .......................................... 4-1 4.1 Toxicological and Environmental Endpoints ............................................................... 4-1 4.1.1 Definitions of Each Endpoint Evaluated Against Criteria ........................... 4-1 4.1.2 Criteria ......................................................................................................... 4-4 4.1.3 Endpoints Characterized but Not Evaluated ................................................ 4-7 4.2 Data Sources and Assessment Methodology ............................................................... 4-8 4.2.1 Identifying and Reviewing Measured Data ................................................. 4-8 4.2.2 Hierarchy of Data Adequacy ..................................................................... 4-10 4.2.3 Assessment of Oligomeric Mixtures .......................................................... 4-11 4.3 Importance of Physical and Chemical Properties, Environmental Transport, and Biodegradation ................................................................................................................... 4-11 4.4 Evaluating Human Health Endpoints ......................................................................... 4-18 4.4.1 Endpoints Characterized and
    [Show full text]
  • United States Patent (19) 11) 4,251,675 Engel 45 Feb
    United States Patent (19) 11) 4,251,675 Engel 45 Feb. 17, 1981 (54) PREPARATION OF DIPHENYLMETHANE OTHER PUBLICATIONS 75 Inventor: Dusan J. Engel, Des Plaines, Ill. M. Robert Jenny, Comptes Reuda 250, 1659-1661, 73) Assignee: UOP Inc., Des Plaines, Ill. 1960. 21 Appl. No.: 21,043 Primary Examiner-Veronica O'Keefe a. Attorney, Agent, or Firm-James R. Hoatson, Jr.; (22 Filed: Mar. 15, 1979 Raymond H. Nelson; William H. Page, II 5251) Int,U.S.C. Cl’.............................................. .585/22,585,446. C07C 15/16 57 ABSTRACT 585/454; 585/469 Diphenylmethane is synthesized by reacting benzene 58 Field of Search ................................ 585/469,422 and benzyl chloride at elevated temperatures in a Frie o del-Crafts type reaction using catalytic amounts of a 56) References Cited Friedel–Crafts metal halide catalyst such as ferric chlo U.S. PATENT DOCUMENTS ride whereby the desired product is obtained with a 3,006,972 10/1961 Fields et al. ......................... 585/422 good selectivity and a high conversion rate. 3,079,448 2/1963 Jenny ................................... 585/422 3,833,677 9/1974 Grard ................................... 585/422 1 Claim, No Drawings 4,251,675 2 in the presence of a catalytic amount of ferric chloride, PREPARATHON OF DEPHENYLMETHANE As another indication of the relative inactivity of an unsubstituted aromatic compound such as benzene, BACKGROUND OF THE INVENTION H.C. Brown in the Journal of Organic Chemistry, Vol It is known in the prior art that aromatic compounds 5 ume 23, pages 414-416 discloses on page 415 that when which are rich in electrons, such as those which contain using nitrobenzene as a solvent, benzene has a relative various substituents on the aromatic ring, may be re rate of only 1/154 as compared to the rate of toluene acted in Friedel-Crafts type reaction.
    [Show full text]
  • Identifying and Prioritizing Chemicals with Uncertain Burden of Exposure: Opportunities for Biomonitoring and Health-Related Research
    UCSF UC San Francisco Previously Published Works Title Identifying and Prioritizing Chemicals with Uncertain Burden of Exposure: Opportunities for Biomonitoring and Health-Related Research. Permalink https://escholarship.org/uc/item/341329w1 Journal Environmental health perspectives, 127(12) ISSN 0091-6765 Authors Pellizzari, Edo D Woodruff, Tracey J Boyles, Rebecca R et al. Publication Date 2019-12-18 DOI 10.1289/ehp5133 Peer reviewed eScholarship.org Powered by the California Digital Library University of California A Section 508–conformant HTML version of this article Review is available at https://doi.org/10.1289/EHP5133. Identifying and Prioritizing Chemicals with Uncertain Burden of Exposure: Opportunities for Biomonitoring and Health-Related Research Edo D. Pellizzari,1 Tracey J. Woodruff,2 Rebecca R. Boyles,3 Kurunthachalam Kannan,4 Paloma I. Beamer,5 Jessie P. Buckley,6 Aolin Wang,2 Yeyi Zhu,7,8 and Deborah H. Bennett9 (Environmental influences on Child Health Outcomes) 1Fellow Program, RTI International, Research Triangle Park, North Carolina, USA 2Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA 3Bioinformatics and Data Science, RTI International, Research Triangle Park, North Carolina, USA 4Wadsworth Center, New York State Department of Health, Albany, New York, USA 5Department of Community, Environment and Policy, Zuckerman College of Public Health, University of Arizona, Tucson, Arizona,
    [Show full text]
  • Department of Labor
    Vol. 79 Friday, No. 197 October 10, 2014 Part II Department of Labor Occupational Safety and Health Administration 29 CFR Parts 1910, 1915, 1917, et al. Chemical Management and Permissible Exposure Limits (PELs); Proposed Rule VerDate Sep<11>2014 17:41 Oct 09, 2014 Jkt 235001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\10OCP2.SGM 10OCP2 mstockstill on DSK4VPTVN1PROD with PROPOSALS2 61384 Federal Register / Vol. 79, No. 197 / Friday, October 10, 2014 / Proposed Rules DEPARTMENT OF LABOR faxed to the OSHA Docket Office at Docket: To read or download (202) 693–1648. submissions or other material in the Occupational Safety and Health Mail, hand delivery, express mail, or docket go to: www.regulations.gov or the Administration messenger or courier service: Copies OSHA Docket Office at the address must be submitted in triplicate (3) to the above. All documents in the docket are 29 CFR Parts 1910, 1915, 1917, 1918, OSHA Docket Office, Docket No. listed in the index; however, some and 1926 OSHA–2012–0023, U.S. Department of information (e.g. copyrighted materials) Labor, Room N–2625, 200 Constitution is not publicly available to read or [Docket No. OSHA 2012–0023] Avenue NW., Washington, DC 20210. download through the Web site. All submissions, including copyrighted RIN 1218–AC74 Deliveries (hand, express mail, messenger, and courier service) are material, are available for inspection Chemical Management and accepted during the Department of and copying at the OSHA Docket Office. Permissible Exposure Limits (PELs) Labor and Docket Office’s normal FOR FURTHER INFORMATION CONTACT: business hours, 8:15 a.m.
    [Show full text]
  • Thermal Decomposition of Organic Oxalates, Trttylazocarboxylates, and Triphenylacetates
    This dissertation has been microfihned exactly as received 00—14,001 ZABEL, Douglas Edward, 1940- THERMAL DECOMPOSITION OF ORGANIC OXALATES, TRTTYLAZOCARBOXYLATES, AND TRIPHENYLACETATES. Iowa State University, Ph.D,, 1968 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan THERMAL DECOMPOSITION OF ORGANIC OXALATES, TRITYLAZOCARBOXYLATES, AND TRIPHENYLACETATES by Douglas Edward Zabel A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Organic Chemistry Approved; Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Signature was redacted for privacy. Iowa State University Ames, Iowa 1968 11 TABLE OF CONTENTS Page '• INTRODUCTION 1 HISTORICAL 3 RESULTS AND DISCUSSION 11 EXPERIMENTAL 56 SUMMARY 119 BIBLIOGRAPHY 121 1 INTRODUCTION After preparing a new compound one of its first reactions a chemist / might investigate because of the simplicity of the technique is the fate of the compound when it is heated in an inert atmosphere to the point of decomposition. Virtually every type of organic compound from saturated hydrocarbons to polyfunctional molecules has been studied under pyrolytic conditions. Esters of monocarboxylic acids have been very actively in­ vestigated, and much is known about the nature of the pyrolytic decompo- . sition of these esters. Quite surprisingly, very little effort has been expended upon deter­ mining the products and nature of the pyrolytic decomposition of esters of dicarboxylic acids, in particular, oxalate esters, even though probably thousands of such esters have been synthesized; furthermore, most of the work which has been done in this area antedates 1927, long before the ad­ vent of modern separation and identification methods.
    [Show full text]
  • BP301(T) Pharmaceutical Organic Chemistry-II Unit-Iv
    BP301(T) Pharmaceutical organic chemistry-II Unit-iv POLYNUCLEARHYDROCARBONS:- A polynuclear aromatic hydrocarbon is a hydrocarbon made up of fused aromatic ring molecules. These rings share one or more sides and contain delocalized electrons. Another way to consider PAHs is molecules made by fusing two or more benzene rings.Polynuclear aromatic hydrocarbon molecules contain only carbon and hydrogen atoms. Properties Polynuclear aromatic hydrocarbons are lipophilic, nonpolar molecules. They tend to persist in the environment because PAHs are not very soluble in water. While 2- and 3-ring PAHs are somewhat soluble in aqueous solution, the solubility decreases nearly logarithmically as molecular mass increases. 2-, 3-, and 4-ring PAHs are sufficiently volatile to exist in the gas phases, while larger molecules exist as solids. Pure solid PAHs may be colourless, white, pale yellow, or pale green. Sources PAHs are organic molecules that form from a variety of natural and environmental pollutant reactions. Natural PAHs form from forest fires and volcanic eruptions. The compounds are numerous in fossil fuels, such as coal and petroleum. Man contributes PAHs by burning wood and by the incomplete combustion of fossil fuels. The compounds occur as a natural consequence of cooking food, particularly when food is cooked at a high temperature, grilled, or smoked. The chemicals are released in cigarette smoke and from burning waste. Health Effects Polynuclear aromatic hydrocarbons are extremely important because they are associated with genetic damage and diseases. Also, the compounds persist in the environment, leading to increased problems over time. PAHs are toxic to aquatic life. In addition to toxicity, these compounds are often mutagenic, carcinogenic, and teratogenic.
    [Show full text]
  • Working with Hazardous Chemicals
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]
  • I a Database of Produced Water Constituents with Ranking Of
    A Database of Produced Water Constituents with Ranking of Human Health Risk By Sydney M. Joffre B.S. Chemical Engineering, University of Colorado, 2018 B.S. Environmental Engineering, University of Colorado, 2019 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree Master of Science Department of Civil, Environmental, and Architectural Engineering 2020 Committee Members: Cloelle Danforth Karl Linden James Rosenblum Joseph Ryan i Abstract: Sydney M. Joffre (Master of Science, Civil, Environmental, and Architectural Engineering) A Database of Produced Water Constituents with Ranking of Human Health Risk Thesis Directed by Professor Joseph N. Ryan Produced water is the largest waste stream of upstream oil and gas production in terms of volume. This study aims to address the implications of produced water reuse applications and inadvertent releases. We created a database of compounds identified in produced water from onshore oil and gas operations in North America and developed a prioritization scheme for those chemicals based on potential risk to human health. Through a comprehensive literature review, we found 179 studies that met our inclusion criteria. In total, there were 1,337 chemicals with a Chemical Abstract Service (CAS) number and 41 general water quality parameters (e.g., total dissolved solids, alkalinity) in produced water reported by the studies. We used the database to create a list of unique chemicals that had data available through the U.S. Environmental Protection Agency’s CompTox Dashboard and were in two or more individual samples at concentrations above the method detection limit.
    [Show full text]
  • Oxidation of Functionally Substituted Carbanions Alan Greenway Bemis Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1966 Oxidation of functionally substituted carbanions Alan Greenway Bemis Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Bemis, Alan Greenway, "Oxidation of functionally substituted carbanions " (1966). Retrospective Theses and Dissertations. 2879. https://lib.dr.iastate.edu/rtd/2879 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received q 6-10,402 BEMIS, Alan Greenway, 1939- OXIDATION OF FUNCTIONALLY SUBSTITUTED C ARB ANIONS. Iowa State University of Science and Technology, Ph.D., 1966 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan OXIDATION OP FUNCTIONALLY SUBSTITUTED CAHBANIONS by Alan Greenway Bernis A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Organic Chemistry Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. He _ . Signature was redacted for privacy. Dea liege Iowa State University Of Science and Technology Ames, Iowa 1966 11 TABLE OF CONTENTS Page I. INTRODUCTION 1 II. LITERATURE 4 A. Reactions of Oxygen with Carbanions. .... 4 B. Intermediacy of Radicals 22 G. Acidity of Hydrocarbons 36 III. EXPERIMENTAL 48 A.
    [Show full text]