Research: Science and Education Using Hydrocarbon Acidities To Demonstrate Principles W of Organic Structure and Bonding Andrew P. Dicks Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada;
[email protected] A recent article in this Journal (1) discusses the proper- Hybridization Effects ties of acidic substances not containing a formal carboxylic acid functionality. The authors elaborate on a number of car- Acidities of alkanes, alkenes, and alkynes are discussed bon-based acids, such as Meldrum’s acid and dimedone. in most introductory organic chemistry textbooks (4). The 3 Other compounds that could be considered in this context pKa of ethyne (acetylene) is well established (25.5 in DMSO ; are hydrocarbons (substances containing only hydrogen and ref 5). Acidities of ethane (pKa = 49–62; ref 6) and ethene carbon). Conant and Wheland undertook the first “study of (ethylene, pKa = 42–45; ref 7) are less well known owing to extremely weak acids” in 1932 and by colorimetric methods experimental difficulty in accurately measuring pKa values of were able to arrange 10 hydrocarbons in a scale of increasing such weakly acidic compounds.4 acid strength (2). McEwen (3) extended this work by quan- Hydrocarbon acidity increases as the percentage s char- tifying the acidity of these compounds (and many others) acter in hybrid orbitals of carbon increases; that is, a corre- with respect to the acid dissociation constant of methanol. lation exists between hybridization and acidity as shown in The most acidic hydrocarbon noted by these researchers was Table 1. Walsh (8) has suggested that carbon electronegativ- 1 9-phenylfluorene (Figure 1) with a pKa = 21(3).