The Chemistry of Some Di- and Tri-Phenylmethanie Dyes

Total Page:16

File Type:pdf, Size:1020Kb

The Chemistry of Some Di- and Tri-Phenylmethanie Dyes THE CHEMISTRY OF SOME DI- AND TRI-PHENYLMETHANIE DYES by Stephen Anthony GORMAN B.Sc. (Hons) being a thesis submitted to the University of Central Lancashire in partial fulfilment of the requirement for the degree of DOCTOR OF PHILOSOPHY November 1998 Department of Environmental Management University of Central Lancashire Preston ACKNOWLEDGEMENTS I would like to express my sincere gratitude to Dr. Don Mason, my Directot of Studies, and to Professor John D. Hepworth, Seèond Supervisor, for their constant• interest, support and guidance throughout the course of my work and during the writing of my thesis. My thanks are also due to Dr. B. M. Heron and Dr. C. D. Gabbutt for theft interest and help. I am also indebted to my employer, William Blythe Ltd., for allowing the time for my studies. S.A.G. DECLARATION I declare that, whilst registered with the University of Central Lancashire for the degree of Doctor of Philosophy, I have not been a registered candidate or enrolled student for another award of any other academic or professional institution during the research programme. No portion of the work referred to in this thesis has been submitted in support of any application for another degree or qualification of any other University or Institution of learning. Signed........................................... Stephen A. Gorman A NOTE ON REFERENCES Throughout this work, a reference system based on that introduced by A. R. - Katritzky and J. M. Lagowski in the monograph t'Chemistry of the Heterocyclic N±: - Oxides", Academic press, New York, 1971, will be employed. This system has been used for the highly acclaimed "Comprehensive Heterocyclic Chemistry" series, edited by A. R. Katritzky and C. W. Rees, Pergamon Press, 1984 and is currently used for the series "Advances in Heterocyclic Chemistry", edited by A. R. Katritzky, academic press, New York from volume 40, 1986, onwards. The references are designated by a number-letter coding of which the first two numbers denote the year of publication, the next one to six letters denote the journal, and the final numbers denote the page. A more detailed explanation may be found in the aforementioned publications. ABSTRACT The chemistry of some di- and tri-phenylmethane dyes. Stephen A. Gorman Two series of dyes have been prepared: a comprehensive series of novel, unsymmetrical Malachite Green type dyes containing different amino substituents in the 4-positions of the phenyl rings and a series of symmetrical Michier's Hydrol Blue type dyes. Both series of dyes have been synthesised from the relevant carbinols or hydrols. The amino substituents used were dimethylamino, diethylamino, pyrrolidino, piperidino, morpholino, thiomorpholino and N-methylpiperazino. The rates of ailcalirie hydrolysis of the dyes at various hydroxide ion concentrations and temperatures have been investigated with a view to elucidating the reaction mèchanism and the nature of substituent effects. The rate data obtained for each dye studied have been used to obtain thermodynamic activation parameters and to test the applicability of an isokinetic relationship in the dye systems. The various methods of computation and their results have been compared and discussed in relation to literature data for similar dyes. A stopped-flow technique was used for the kinetic investigation of the fast reactions associated with the unstable dyes studied. The analysis of kinetic data using single substituent parameter regression techniques has enabled substituent constants for piperidine, thiomorpholine and N-methylpiperazine to be interpolated. The steric and electronic effects of the terminal amino substituents on the visible absorption spectra of the dyes have been examined in solvents of varying acidity. The steric and electronic symmetry of the Malachite Green type dyes has been investigated and is discussed. The results from the spectral investigation and the kinetic study indicate that diphenylmethane dyes are considerably less stable than the corresponding triphenylmethane dyes and the reasons for this behaviour are discussed. In addition, piperidino, morpholino, thiomorpholino and N-methylpiperazino are less able to stabilise a dye by electron donation than dimethylamino, diethylamino and pyrrolidino and the reasons for this behaviour are also discussed. The 'H and 13C nmr spectra of the dyes and carbinols have been recorded. Certain chemical shifts have been used to determine the relative electron donor ability of the terminal amino groups. The results from the 'H and 13C nmr spectra are discussed in relation to the steric and electronic effects of the heterocycic moieties. CONTENTS Page 1. INTRODUCTION 1 ii Brief history of dyes 1 1.2 Hydrolysis of TPM/DPM dyes 6 1.3 Kinetics 7 1.3.1 The dependence of rate of reaction ontemperature 9 1.3.2 The dependence of rate of reaction on ionic strength 16 1.3.3 The influence of solvent 17 1.3.4 The influence of substituents in the benzene ring on the rate of reaction 18 1.4 Basic theory of colour 26 1.5 Electronic absorption spectroscopy 29 1.6 Colour and constitution 33 1.6.1 Early colour theories 33 1.6.2 Valence bond theory 34 1.6.3 Molecular orbital models 35 1.6.4 The Free-Electron Molecular Orbital method 41 1.6.5 The Huckel Molecular Orbital method 44 1.6.6 The Pariser-Parr-Pople Molecular Orbital method 46 1.6.7 Configuration Interaction 47 1.6.8 The Perturbational Molecular Orbital method 48 1.6.9 The Hammett equation 54 1.7 Electronic absorption spectra of TPM/DPM dyes 57 1.7.1 Introduction 57 1.7.2 The effect of terntal groups on the absorption spectra 59 of 1'PM/DPM dyes 1.7.3 The effect of substitution at the 2-position of the phenyl rings 64 on the absorption spectra of TPMIDPM dyes 1.7.4 The effect of substitution at the 3-position of the phenyl rings 68 on the absorption spectra of TPM!DPM dyes 1.7.5 TPMIDPM dyes with extended chromophoric systems 72 2. RESULTS AND DISCUSSION 86 2.1 Synthetic work 89 2.1.1 Preparation of leuco bases 90 2.1.2 Preparation of intermediates and precursors 93 2.1.3 Preparation of benzophenones 97 2.1.4 Preparation of diarylcarbinols / 101 2.1.5 Preparation oftriarylcarbinols I 104 2.1.6 Preparation of perchiorate salts - .121 2.2 Absorption spectra 132 2.2.1 The absorption spectra of the diphenylcarbinols 133 2.2.2 The absorption spectra of some unsymmetrical analogues of MG 137 2.2.2.1 The effects of increased acidity 155 2.2.2.2 Electronic and structural symmetry 165 2.3 Kinetic investigations 172 2.3.1 General 172 2.3.2 Unsymmetrical MGs . 178 2.3.3 Analogues of Michler's Hydrol Blue 227 3. EXPERIMENTAL 235 3.1 Organic synthesis 236 3.1.1 Preparation of disubstituted benzophenones 236 3.1.2 Preparation of monosubstituted benzophenones 237 3.1.3 Preparation of diarylhydrols 239 3.1.4 Preparation of intermediates 241 3.1.5 Preparation of aryllithium compounds 243 3.1.6 Preparation of the unsymmetrical derivatives of Malachite Green 244 3.1.7 Preparation of the perchlorate salts 251 3.2 Kinetic studies 260 3.2.1 Chemicals 260 3.2.2 Apparatus 260 3.2.3 Instrumentation 261 3.2.4 Experimental methods 263 4. CONCLUSIONS 266 5. REFERENCES 270 APPENDICES FIGURES Page 1A Conformational changes accompanying the hydrolysis of a TPM dye and the ionisation of its dye base 6 lB The proportion of molecules having energy in excess of E.. 10 1 C The concentrations of reactants (A), products (C) and intermediates (B) for a first order reaction as postulated in the Transition State Theory 12 1D A potential energy curve for a reaction 13 1E The proportionality of AG and AFT arising from the temperature invariance ofa 1 IF The nonLproportionality of AG and AH leading to a breakdown of the Hammett equation 24 1G The absorption spectra of the classes of cones 28 IH The wavelength and type of electromagnetic radiation 29 11 Apparatus used in the constant-flow technique 32 1J Apparatus used in the stopped-flow technique 32 1K Postulated resonance forms of MHB 34 1L Molecular and atomic orbitals 37 1M A Jablonski scheme 40 IN FEMO wave functions for a linear, conjugated molecule 43 10 m MOs for a linear, conjugated molecule in (a) the FEMO model and (b) the HMO model 45 1 P Some examples of alternant and non-alternant systems 49 1Q The effect on the energies of the orbitals and the first electronic transition by replacing a carbon atom of an odd-altemant with an atom of differing electronegativity 51 2A The relationship between a univalent cationic dye and its immediate precursors 89 2B A plot of 'H chemical shift for the proton adjacent to the amino-bearing carbon atom against & substituent constants 119 2C Enantiomers for the unsymmetrical MGs 120 2D Nitrogen-phenyl ring resonance interaction for N-phenylpyrrolidine 146 2E Nitrogen-phenyl ring resonance interaction for N-phenylpiperidine 146 2F Transition state formed during reaction of enamines with electrophile 150 2G The formation of protonated Pyrrolidine Green 159 211 Visible absorption spectrum of Pyrrolidine Green, PG, (A) and protonated Pyrrolidine Green, PGH2 , (B) 160 21 Two extreme resonance configurations for the structurally unsymmetrical dye Mo-Pi 166 2J A plot of s(x) against X,,(x) deviation for twelve unsymmetrical MGtype dyes 170 2K Plot of In absorbance against time for varying concentrations of EtDPM at 293.8K; (•) 4.67x104 , (U) 2.52x104 and(S) 1.12x104 moldni3 iø [OH-] = 0.5 mol dm 3 , I = 0.01 mol dm 3 175 21, Isokinetic relationship in the co-ordinates log k 2 versus log k293 with k2at 303 K(U),318K(•)and333K(S) 207 3A Schematic diagram of the Hi-Tech Scientific SFA-1 1 Rapid
Recommended publications
  • Directive Effects in Abstraction Reactions of the Phenyl Radical Robert Frederick Bridger Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1963 Directive effects in abstraction reactions of the phenyl radical Robert Frederick Bridger Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Bridger, Robert Frederick, "Directive effects in abstraction reactions of the phenyl radical " (1963). Retrospective Theses and Dissertations. 2336. https://lib.dr.iastate.edu/rtd/2336 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been 63-5170 microfilmed exactly as received BRIDGER, Robert Frederick, 1934- DIRECTIVE EFFECTS IN ABSTRACTION RE­ ACTIONS OF THE PHENYL RADICAL. Iowa State University of Science and Technology Ph.D., 1963 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan DIRECTIVE EFFECTS IN ABSTRACTION REACTIONS OF THE PHENYL RADICAL by Robert Frederick Bridger A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Organic Chemistry Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major Depart me6jb Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa 1963 ii TABLE OF CONTENTS Page INTRODUCTION 1 LITERATURE REVIEW 3 RESULTS 6 DISCUSSION 36 EXPERIMENTAL 100 SUMMARY 149 REFERENCES CITED 151 ACKNOWLEDGEMENTS 158 iii LIST OF FIGURES Page Figure 1.
    [Show full text]
  • Working with Hazardous Chemicals
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]
  • Thesis-1967-S562e.Pdf
    AN EXAMINATION OF THE MECHANISM OF THE REACTION OF TRITYL ACETATE WITH PHENYLMAGNESIUM BROMIDE-PROOF OF RADICAL INTERMEDIATES By RUSSELL DWAYNE SHUPE I/ Bachelor of Science Oklahoma State University . Stillwater, Oklahoma 1965 Submitted to the faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE July, 1967 T h112'f:/5 I 9/o 7 5 St::, ,-:1,_._p~· c.op, , .. , '1RUHOMA STAl£ UN/fifft~Tff L4BiRARY JAN 18 l~-8 AN EXAMINATION OF 'i;HEMECHANISM OF THE REACTION OF TRIT'lL ACETATE WITH PHENYLMAGNESIUM BROMIDE-PROOF OF RADICAL INTERMEDIATES Thesis Approved: Thesis Adviser ~ n n flw., ...... _ Dean of the Graduate College 660279 ii ACKNOW:LEDGMENTS The authot: wishes to express his gratitude to Dr. K. Darrell Berlin, for his enthusiasm, zeal .and particularly his aura of pleasantness, while so ,competently directing the research without which this thesis . would not have been possible. Appreciation is also extended to· Dr. O. C. Dermer for his meticu­ lous critic~sm of the manuscript of thts thesis as well as for his help­ ful suggestions throughout the course of study here. The author would also like to express acknowledgment to several fellow chemists. for their valuable technical assistance during the course ·of this study; particularly t:o Dr. Ronald D. Grigsby,-Dr •. Earl D. Mitchell, .Jr., Dr. George R. Waller, Lenton G. Williams .and Robert B. Hanson, as·well as many other chemistry graduate students at the Okla­ homa State University. Gratitude ts also extended to the Nation.al Aeronautics and Space _Administration for financial assistance in the form ·of a· fellowship during my course of studies here.
    [Show full text]
  • Contributions to Aluminum Chloride in Organic Chemistry
    CONTRIBUTIONS TO ALUMINUM CHLORIDE IN ORGANIC CHEMISTRY Part I. CONDENSATIONS OP ALIPHATIC ALCOHOLS WITH PHENOL AND WITH BENZENE OR ITS HOMOLOGS. Part II. REARRANGEMENT OP BENZYL PHENYL ETHERS. A DISSERTATION Submitted to the Faculty of Michigan State College Tor the Degree of Doctor of Philosophy toy T. Y. Hsieh 1935 ProQuest Number: 10008336 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10008336 Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106 - 1346 Kranzlei»fs "Aluminiumohlorid in der organ!sehen Chemle" has been revised in 1932* This dissertation may be considered to be two contributions to that monograph* Parts of both Part I and I^art II have been presented at the Cleveland and Indianapolis meetings of the American Chemical Society in 1934 and in 1931* respectively* To Dr* H* C# Huston, Dean of Applied Science and Professor of Organic Chemistry of Michigan State College* the writer is indebted for suggestions and encouragement in carrying out this work;* The writer also wishes to express his gratitude to Dr* Huston for the personal help given him during the more than two years he has attended Michigan Qtate College.
    [Show full text]
  • Methanol and Tris(4-Chlorophenyl)Methane
    Chemical Information Profile for Tris(4-chlorophenyl)methanol [CAS No. 3010-80-8] and Tris(4-chlorophenyl)methane [CAS No. 27575-78-6] Supporting Nomination for Toxicological Evaluation by the National Toxicology Program June 2009 National Toxicology Program National Institute of Environmental Health Sciences National Institutes of Health U.S. Department of Health and Human Services Research Triangle Park, NC http://ntp.niehs.nih.gov/ Data Availability Checklist for Tris(4-chlorophenyl)methanol [CAS No. 3010-80-8] and Tris(4-chlorophenyl)methane [CAS No. 27575-78-6] Abbreviations: H = human; L = Lepus (rabbit); M = mouse; R = rat Note: No judgement of whether the available data are adequate for evaluation of these endpoints in the context of human health hazard or risk assessment has been made. ENDPOINT H M R L ENDPOINT HM R L ADME Developmental Toxicity Absorption Developmental abnormalities Distribution Embryonic/fetal effects Metabolism Newborn effects Excretion X Carcinogenicity Acute Toxicity (up to 1 week) Dermal Dermal Inhalation Inhalation Oral Injection Anticarcinogenicity Ocular Anticarcinogenic effects Oral Genotoxicity Subchronic Toxicity (1 to <26 weeks) Cytogenetic effects Dermal Microbial gene mutation X Inhalation Gene mutation in vitro Injection Gene mutation in vivo Oral X Germ cell effects Chronic Toxicity (≥26 weeks) Neurotoxicity Dermal Behavioral activity Inhalation Motor activity Injection Immunotoxicity Oral Immunotoxic effects X Synergism/Antagonism Cardiovascular Toxicity Synergistic effects Cardiovascular effects Antagonistic effects Mechanistic Data Cytotoxicity Target Organs/Tissues X Cytotoxic effects X Endocrine modulation X X Reproductive Toxicity Effect on enzymes X Fertility effects Modes of action Maternal effects Effect on metabolic pathways X Paternal effects X Structure-Activity Relationships XX XX The above table provides an overview of the data summarized in this profile.
    [Show full text]
  • Jeffrey E. Lucius U.S. Geological Survey This Report Is Preliminary
    U. S. DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY PHYSICAL AND CHEMICAL PROPERTIES AND HEALTH EFFECTS OF THIRTY-THREE TOXIC ORGANIC CHEMICALS Jeffrey E. Lucius U.S. Geological Survey Open-File Report 87-428 August 1987 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey. CONTENTS Page Introduction 4 The Properties 6 Abbreviations 13 Conversion Factors 16 Summary Tables 17 Acetic acid 27 Acetone 31 Benzene 34 Bis(2-ethylhexyl)phthalate 37 Bromoform 39 Carbon tetrachloride 42 Chlorobenzene 46 Chloroethane 49 Chloroform 52 Cyclohexane 55 Di-n-butyl phthalate 58 1.1-Dichloroethane 60 1.2-Dichloroethane 63 1,1-Dichloroethene 66 trans-1,2-Dichloroethene 69 Dimethyl sulfoxide 71 1,4-Dioxane 74 Ethanol 77 Ethylbenzene 81 Ethylene dibromide 84 Methanol 87 Methylene chloride 91 Naphthalene 94 Phenol 97 Quinoline 101 Tetrachloroethene 103 Toluene 106 1,1,1-Trichloroethane 109 Trichloroethene 112 Vinyl chloride 115 Water 118 m-Xylene 121 o-Xylene 124 p-Xylene 127 References and Bibliography 130 SUMMARY TABLES page 1. Ranking of top 20 organic ground water contaminants based on number of sites at which each contaminant was detected. 17 2. Selected toxic organic chemicals ordered by Chemical Abstract Service Registry Number (CAS RN). Those chemicals on the U.S. EPA top 100 hazardous substances list are also noted. 18 3. Selected toxic organic chemicals ordered by number of carbon and hydrogen atoms. 19 4. Ranking of selected toxic organic chemicals by specific gravity at room temperature.
    [Show full text]
  • EPA's Hazardous Waste Listing
    Hazardous Waste Listings A User-Friendly Reference Document September 2012 Table of Contents Introduction ..................................................................................................................................... 3 Overview of the Hazardous Waste Identification Process .............................................................. 5 Lists of Hazardous Wastes .............................................................................................................. 5 Summary Chart ............................................................................................................................... 8 General Hazardous Waste Listing Resources ................................................................................. 9 § 261.11 Criteria for listing hazardous waste. .............................................................................. 11 Subpart D-List of Hazardous Wastes ............................................................................................ 12 § 261.31 Hazardous wastes from non-specific sources. ............................................................... 13 Spent solvent wastes (F001 – F005) ......................................................................................... 13 Wastes from electroplating and other metal finishing operations (F006 - F012, and F019) ... 18 Dioxin bearing wastes (F020 - F023, and F026 – F028) .......................................................... 22 Wastes from production of certain chlorinated aliphatic hydrocarbons (F024
    [Show full text]
  • Wednesday 13 June 2012 – Morning A2 GCE CHEMISTRY B (SALTERS) F335 Chemistry by Design *F337330612* Candidates Answer on the Question Paper
    Wednesday 13 June 2012 – Morning A2 GCE CHEMISTRY B (SALTERS) F335 Chemistry by Design *F337330612* Candidates answer on the Question Paper. A calculator may be used for this paper. Duration: 2 hours OCR supplied materials: • Data Sheet for Chemistry B (Salters) (inserted) Other materials required: • Scientific calculator *F335* INSTRUCTIONS TO CANDIDATES • The Insert will be found in the centre of this document. • Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters. • Use black ink. HB pencil may be used for graphs and diagrams only. • Answer all the questions. • Read each question carefully. Make sure you know what you have to do before starting your answer. • Write your answer to each question in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown. • Do not write in the bar codes. INFORMATION FOR CANDIDATES • The number of marks is given in brackets [ ] at the end of each question or part question. • Where you see this icon you will be awarded marks for the quality of written communication in your answer. This means for example you should: • ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear; • organise information clearly and coherently, using specialist vocabulary when appropriate. • You may use a scientific calculator. • A copy of the Data Sheet for Chemistry B (Salters) is provided as an insert with this question paper. • You are advised to show all the steps in any calculations.
    [Show full text]
  • The Comparative Study on the Rapid Decolorization of Azo, Anthraquinone and Triphenylmethane Dyes by Anaerobic Sludge
    International Journal of Environmental Research and Public Health Article The Comparative Study on the Rapid Decolorization of Azo, Anthraquinone and Triphenylmethane Dyes by Anaerobic Sludge Daizong Cui †, Hao Zhang †, Rubao He and Min Zhao * College of Life Science, Northeast Forestry University, Harbin 150040, China; [email protected] (D.C.); [email protected] (H.Z.); [email protected] (R.H.) * Correspondence: [email protected]; Tel./Fax: +86-451-8219-1513 † These authors contribute equally to this work. Academic Editor: Miklas Scholz Received: 20 August 2016; Accepted: 21 October 2016; Published: 28 October 2016 Abstract: An anaerobic sludge (AS), capable of decolorizing a variety of synthetic dyes, was acclimated and is reported here. The sludge presented a much better dye decolorizing ability than that of different individual strains. A broad spectrum of dyes could be decolorized by the sludge. Continuous decolorization tests showed that the sludge exhibited the ability to decolorize repeated additions of dye. The chemical oxygen demand (COD) removal rate of the dye wastewater reached 52% after 12 h of incubation. Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) profiles revealed that the microbial community changed as a result of varying initial concentrations of dyes. Phylogenetic analysis indicated that microbial populations in the sludge belonged to the phyla Acidobacteria, Firmicutes, Bacteroidetes, Chloroflexi and Proteobacteria. The degradation products of the three types of dye were identified. For azo dyes, the anaerobic sludge converted Methyl Orange to N,N-dimethylbenzene-1,4-diamine and 4-aminobenzenesulfonic acid; for triphenylmethane dyes, after Malachite Green was decolorized, the analyzed products were found to be a mixture of N,N-dimethylbenzenamine, 3-dimethyl-aminophenol and 4-dimethylaminobenzophenone; for anthraquinone dyes, two products (acetophenone and 2-methylbenzoic acid) were observed after Reactive Blue 19 decolorization.
    [Show full text]
  • The Diphenylmethane Case
    Has the Bacterial Biphenyl Catabolic Pathway Evolved Primarily To Degrade Biphenyl? The Diphenylmethane Case Thi Thanh My Pham, Michel Sylvestre Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Quebec, Canada In this work, we have compared the ability of Pandoraea pnomenusa B356 and of Burkholderia xenovorans LB400 to metabolize diphenylmethane and benzophenone, two biphenyl analogs in which the phenyl rings are bonded to a single carbon. Both chem- icals are of environmental concern. P. pnomenusa B356 grew well on diphenylmethane. On the basis of growth kinetics analyses, diphenylmethane and biphenyl were shown to induce the same catabolic pathway. The profile of metabolites produced during growth of strain B356 on diphenylmethane was the same as the one produced by isolated enzymes of the biphenyl catabolic path- way acting individually or in coupled reactions. The biphenyl dioxygenase oxidizes diphenylmethane to 3-benzylcyclohexa-3,5- diene-1,2-diol very efficiently, and ultimately this metabolite is transformed to phenylacetic acid, which is further metabolized by a lower pathway. Strain B356 was also able to cometabolize benzophenone through its biphenyl pathway, although in this case, this substrate was unable to induce the biphenyl catabolic pathway and the degradation was incomplete, with accumulation of 2-hydroxy-6,7-dioxo-7-phenylheptanoic acid. Unlike strain B356, B. xenovorans LB400 did not grow on diphenylmethane. Its biphenyl pathway enzymes metabolized diphenylmethane, but they poorly metabolize benzophenone. The fact that the biphenyl catabolic pathway of strain B356 metabolized diphenylmethane and benzophenone more efficiently than that of strain LB400 brings us to postulate that in strain B356, this pathway evolved divergently to serve other functions not related to biphenyl degradation.
    [Show full text]
  • Catalytic Hydroconversion of Diphenylmethane with Unsupported Mos2
    Catalytic Hydroconversion of Diphenylmethane with Unsupported MoS2 by Ross S. Kukard B.Sc. Eng. Chem. (hons), The University of Cape Town, 2006 M.Sc. Eng. Chem., The University of Cape Town, 2009 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Chemical and Biological Engineering) The University of British Columbia (Vancouver) September 2014 © Ross S. Kukard, 2014 Abstract The mechanism by which hydroconversion catalysts promote residue conversion and coke suppression is unclear. Several theories are proposed in the literature but these have all been opposed, usually due to their lack of controlled mechanistic studies. A promising catalyst for residue hydroconversion is unsupported MoS2. This catalyst is effective but expensive and deactivates during the reaction. Model compound studies were needed to elucidate the mechanism of MoS2 catalysis in hydroconversion reactions, how this relates to residue hydroconversion and hence propose deactivation mechanisms and regeneration methodologies. Model compound screening in a commercially available stirred slurry-phase batch reactor identified diphenylmethane (DPM) as a suitable model reagent. Ex- periments were conducted at industrially applicable conditions of 445◦C, 13.8 MPa H2 and catalyst loadings of 0 - 1800 ppm Mo (introduced as Mo octoate which formed the MoS2 active phase in-situ). Slow heat-up rates and wall catalysis, how- ever, made this reactor unsuitable for detailed mechanistic studies. A novel mixed slurry-phase micro-reactor system was designed using externally applied vortex mixing and removable glass-inserts to allow for greater analytical resolution and determination of the thermocatalytic mechanism.
    [Show full text]
  • An Investigation Into Synthetic Routes to Optically Active Trityl Systems
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 1-1-1964 An investigation into synthetic routes to optically active trityl systems. Joseph M. Prokipcak University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Prokipcak, Joseph M., "An investigation into synthetic routes to optically active trityl systems." (1964). Electronic Theses and Dissertations. 6037. https://scholar.uwindsor.ca/etd/6037 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. AN INVESTIGATION INTO SYNTHETIC ROUTES TO I OPTICALLY ACTIVE TRITYL SYSTEMS BY JOSEPH M. PROKIPCAK A Thesis Submitted to the Faculty of Graduate Studies through the Department of Chemistry in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Windsor Windsor, Ontario 1964 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
    [Show full text]