Biological Motion Perception in Autism Spectrum Disorder: a Meta-Analysis Greta Krasimirova Todorova1* , Rosalind Elizabeth Mcbean Hatton2 and Frank Earl Pollick1

Total Page:16

File Type:pdf, Size:1020Kb

Biological Motion Perception in Autism Spectrum Disorder: a Meta-Analysis Greta Krasimirova Todorova1* , Rosalind Elizabeth Mcbean Hatton2 and Frank Earl Pollick1 Todorova et al. Molecular Autism (2019) 10:49 https://doi.org/10.1186/s13229-019-0299-8 RESEARCH Open Access Biological motion perception in autism spectrum disorder: a meta-analysis Greta Krasimirova Todorova1* , Rosalind Elizabeth Mcbean Hatton2 and Frank Earl Pollick1 Abstract Background: Biological motion, namely the movement of others, conveys information that allows the identification of affective states and intentions. This makes it an important avenue of research in autism spectrum disorder where social functioning is one of the main areas of difficulty. We aimed to create a quantitative summary of previous findings and investigate potential factors, which could explain the variable results found in the literature investigating biological motion perception in autism. Methods: A search from five electronic databases yielded 52 papers eligible for a quantitative summarisation, including behavioural, eye-tracking, electroencephalography and functional magnetic resonance imaging studies. Results: Using a three-level random effects meta-analytic approach, we found that individuals with autism generally showed decreased performance in perception and interpretation of biological motion. Results additionally suggest decreased performance when higher order information, such as emotion, is required. Moreover, with the increase of age, the difference between autistic and neurotypical individuals decreases, with children showing the largest effect size overall. Conclusion: We highlight the need for methodological standards and clear distinctions between the age groups and paradigms utilised when trying to interpret differences between the two populations. Keywords: Autism spectrum disorders, Biological motion, Meta-analysis, Age, Emotion recognition Background intellectual disability have been shown to have no prob- Biological motion (BM), namely the movement of other lem in identifying different types of motion [5, 6], humans, conveys information that allows the identifica- whereas individuals with social functioning difficulties tion of affective states and intentions [1–3]. BM process- such as autism spectrum disorder (ASD) have shown re- ing specifically is the ability of individuals to detect, label duced ability in extracting social information from BM and interpret human movement and to allocate certain [7]. Indeed, ASD’s main diagnostic characteristics in- emotional states to it. Thus, BM is an important compo- clude problems with social interaction and communica- nent of social perception. Moreover, neurotypically de- tion as well as repetitive and/or restrictive behaviours veloping (NT) individuals have been shown to be able to [8]. Thus, the social impairment in ASD can, to some readily extract socially relevant information from sparse extent, be readily related to a reduced ability to extract visual displays [1, 2]. Specifically, point-light displays information from BM. (PLDs), which portray BM with points located only on However, findings on BM in ASD tend to be mixed the major joints, are readily recognised as depicting dif- [7]. For example, some studies, which investigated the fering actions by NT [4]. identification or recognition of actions from BM [9–12], Pavlova [2] argues that an inability to extract socially did not find significant differences between NT and relevant information from BM could have damaging ef- ASD individuals, whereas others have found differences fects on social functioning. In fact, individuals with an between the two groups [13–15]. Simmons et al. [7] and McKay et al. [14] argue that this is because there is vari- ability between ASD individuals. Several factors have * Correspondence: [email protected] 1University of Glasgow, 62 Hillhead Street, Glasgow G12 8AD, UK been suggested to introduce this variability. Full list of author information is available at the end of the article © The Author(s). 2019, corrected publication 2021 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Todorova et al. Molecular Autism (2019) 10:49 Page 2 of 28 One of these potential factors is age. Specifically, on reduced visual orientation to biological motion [5, 26, 27]. the one hand, it appears that research in children tends This difference between NT and ASD has not been found to consistently show an impairment in BM interpret- in adults [28]. In contrast, Fujisawa et al. [29]showthat ation [5, 13, 16]. Whilst, on the other hand, research in pre-school children tend to have a greater preference for adults does not find differences in performance in action upright than inverted BM, which was additionally greater perception and BM recognition [9–11]. than that in NT children. Hence, it is apparent that incon- Person characteristics such as sex and IQ have also sistencies in eye-tracking studies also exist but cannot be been suggested to contribute to the variability of re- simply explained by age as a driving factor. sults. Specifically, IQ has been identified as a predictor One study argued that the mixed findings in the BM of performance in some studies [17, 18]butnotin literature within ASD are due to ASD utilising different others [9, 19, 20]. Furthermore, a recent meta-analysis brain networks which develop later in life. Hence, by Van der Hallen et al. [21] looked at local vs. global McKay et al. [14] investigated BM perception between paradigms, where individuals have to ignore the global ASD and NT and found that the brain areas that com- context to be able to focus and perform a task on the municate with each other in ASD are not the same as specific parts or vice-a-versa. They observed greater dif- the ones found in NT. Specifically, functional magnetic ferences when the proportion of females was higher. resonance imaging (fMRI) studies tend to find reduced Hence, these demographic characteristics of the sam- activation in ASD for areas such as the superior tem- ples should be investigated as potential contributors to poral sulcus, middle temporal gyrus and inferior parietal the variability in the findings. lobule. These are all areas that have been found to be re- The task at hand has also been considered as a con- lated to the perception and interpretation of human mo- tributing factor. Koldewyn et al. [22] argue that individ- tion and actions [30–32]. NT individuals, however, show uals with ASD are able to identify BM presented connectivity within areas involved with action and hu- through simple PLDs from noise and classify them; how- man motion observation—such as the inferior and su- ever, it is the extraction of higher order information, perior parietal lobules. On the other hand, individuals such as emotional content, that shows the largest per- with autism have been found to have brain networks formance difference. In fact, although Hubert et al. [9] that involve connectivity with the fusiform, middle tem- and Parron et al. [12] did not find differences between poral and occipital gyri, which are all areas considered to NT and ASD in action recognition, they found differ- be involved in more basic level motion perception rather ences in emotion recognition from biological motion for than action recognition [14, 31]. adults and children. Additionally, Fridenson-Hayo et al. Similarly, the mirror neuron network (MNN) has been [23] found that in children, this difference in emotion implied to be related to social functioning as it is associ- recognition from BM is evident for both basic (e.g. ated with observing and understanding the actions of happy, sad) and complex emotions (e.g. disappointed, others. Thus, Kaiser and Shiffrar [33] argue that the proud) as well as being evident cross culturally (Britain, MNN could contribute to the impairments seen in ASD. Sweden, Israel). Thus, both children and adults with Moreover, Villalobos et al. [34] have shown reduced ASD tend to be less sensitive to emotional content. functional connectivity in the prefrontal mirror neuron It has been suggested that eye-tracking research can in- area in individuals with ASD. The MNN has mainly form our understanding of the social difficulties in ASD. been investigated in imitation paradigms [35, 36] and in- A review and meta-analysis of eye-tracking studies showed deed, dysfunctional activation has been identified in in- that in ASD, attention to social versus non-social stimuli dividuals with ASD. However, since the MNN is also may be reduced [24]. The analysis also found that de- involved in understanding others’ actions, its activation creased attention might be given to the eyes and increased during simple action observation has also been investi- attention to the mouth and body compared to NT individ- gated in ASD because understanding others’ actions is uals. However, Chita-Tegmark [24] noted that the results an integral part of social functioning. Most commonly, were very mixed. This may have been because the authors mu-suppression has been used to assess human mirror tried to include a large number of studies and thus inevit- activity [37] and reduced mu-suppression
Recommended publications
  • Recognizing People from Their Movement
    Journal of Experimental Psychology: Copyright 2005 by the American Psychological Association Human Perception and Performance 0096-1523/05/$12.00 DOI: 10.1037/0096-1523.31.1.210 2005, Vol. 31, No. 1, 210–220 Recognizing People From Their Movement Fani Loula, Sapna Prasad, Kent Harber, and Maggie Shiffrar Rutgers, The State University of New Jersey, Newark Human observers demonstrate impressive visual sensitivity to human movement. What defines this sensitivity? If motor experience influences the visual analysis of action, then observers should be most sensitive to their own movements. If view-dependent visual experience determines visual sensitivity to human movement, then observers should be most sensitive to the movements of their friends. To test these predictions, participants viewed sagittal displays of point-light depictions of themselves, their friends, and strangers performing various actions. In actor identification and discrimination tasks, sensitivity to one’s own motion was highest. Visual sensitivity to friends’, but not strangers’, actions was above chance. Performance was action dependent. Control studies yielded chance performance with inverted and static displays, suggesting that form and low-motion cues did not define performance. These results suggest that both motor and visual experience define visual sensitivity to human action. As inherently social beings, humans depend on other people for 2003; Johansson, 1973). The goal of the current studies was to everything from emotional support to pedestrian safety. A funda- compare the contributions of both visual experience and motor mental prerequisite for successful social interaction is the ability to experience to visual sensitivity to a fundamental social attribute, perceive and interpret the actions of others.
    [Show full text]
  • A Causal Role of the Right Superior Temporal Sulcus in Emotion Recognition from Biological Motion
    A Causal Role of the Right Superior Temporal Sulcus in Emotion Recognition From Biological Motion 1 2 1 1 Rochelle A. Basil , Margaret L. Westwater ,MartinWiener , and James C. Thompson 1George Mason University 2Department of Psychiatry, Addenbrooke’s Hospital, University of Cambridge Keywords: biological motion, superior temporal sulcus, emotion recognition, transcranial magnetic stimulation Downloaded from http://direct.mit.edu/opmi/article-pdf/2/1/26/1868315/opmi_a_00015.pdf by guest on 28 September 2021 an open access journal ABSTRACT Understanding the emotions of others through nonverbal cues is critical for successful social interactions. The right posterior superior temporal sulcus (pSTS) is one brain region thought to be key in the recognition of the mental states of others based on body language and facial expression. In the present study, we temporarily disrupted functional activity of the right pSTS by using continuous, theta-burst transcranial magnetic stimulation (cTBS) to test the hypothesis that the right pSTS plays a causal role in emotion recognition from body movements. Participants (N = 23) received cTBS to the right pSTS, which was individually localized using fMRI, and a vertex control site. Before and after cTBS, we tested participants’ ability to identify emotions from point-light displays (PLDs) of biological motion stimuli and a nonbiological global motion identification task. Results revealed that accurate identification of emotional states from biological motion was reduced following cTBS to the right pSTS, but accuracy was not impaired following vertex stimulation. Accuracy on the global motion task was unaffected by cTBS to either site. These results support the causal role of the right pSTS in decoding information about others’ emotional state from their body movements Citation: Basil, R.
    [Show full text]
  • Neural Activity During Social Signal Perception Correlates with Self-Reported Empathy
    BRAIN RESEARCH 1308 (2010) 100– 113 available at www.sciencedirect.com www.elsevier.com/locate/brainres Research Report Neural activity during social signal perception correlates with self-reported empathy Christine I. Hookera,⁎, Sara C. Veroskyb, Laura T. Germinea, Robert T. Knightc,d, Mark D'Espositoc,d aHarvard University, Psychology Department, Cambridge, MA, USA bDepartment of Psychology, Princeton University, Princeton, NJ, USA cHelen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA dDepartment of Psychology, University of California at Berkeley, Berkeley, CA, USA ARTICLE INFO ABSTRACT Article history: Empathy is an important component of human relationships, yet the neural mechanisms Accepted 2 October 2009 that facilitate empathy are unclear. The broad construct of empathy incorporates both Available online 22 October 2009 cognitive and affective components. Cognitive empathy includes mentalizing skills such as perspective-taking. Affective empathy consists of the affect produced in response to Keywords: someone else's emotional state, a process which is facilitated by simulation or “mirroring.” fMRI Prior evidence shows that mentalizing tasks engage a neural network which includes the Social cognition temporoparietal junction, superior temporal sulcus, and medial prefrontal cortex. On the Theory of Mind other hand, simulation tasks engage the fronto-parietal mirror neuron system (MNS) which Emotion includes the inferior frontal gyrus (IFG) and the somotosensory related cortex (SRC). Here, Empathy we tested whether neural activity in these two neural networks was related to self-reports of Mentalizing cognitive and affective empathy in daily life. Participants viewed social scenes in which the shift of direction of attention of a character did or did not change the character's mental and emotional state.
    [Show full text]
  • Emotion and the Perception of Biological Motion
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 5-2009 Emotion and the perception of biological motion Dillon Niederhut College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Neuroscience and Neurobiology Commons Recommended Citation Niederhut, Dillon, "Emotion and the perception of biological motion" (2009). Undergraduate Honors Theses. Paper 266. https://scholarworks.wm.edu/honorstheses/266 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Niederhut 1 Introduction The pervading theory of visual perception hypothesizes an encapsulated system that reconstructs an accurate three dimensional representation of the world based on where in the retina photons of light impinge on receptors (Goldstein, 2007). This information is then sent to the lateral geniculate nucleus of the thalamus, and then to the occipital cortex, where, based on the position in the retina, the angles of incidence of various rays of light are calculated. These visual angles are then, by use of monocular and binocular depth cues, as well as pictorial depth cues, summed together to re-create a representation of the environment that includes information not present in the two dimensional world which exists on the retina of the eye. While this approach to studying vision – one based on looking at what information could possibly be transmitted by the retina and then hypothesizing a means by which it could be transformed to match our subjective experience of vision – has certainly been fruitful, it is far from complete.
    [Show full text]
  • The Perception of Biological Motion………………………… 11
    TTHE PERCEPTION OF BBIOLOGICAL MOTION - UNDER SPECIAL CONSIDERATION OF THE TWO VISUAL SYSTEMS FRAMEWORK - Pascal Wallisch University of Chicago Student-ID 923227 [email protected] - Contents - 1 Introduction……………………………………………………. 3 2 The two visual system framework………………………….. 4 2.1. Evolution and history of the approach….…………………… 4 2.2. Evidence supporting the theory of two visual systems…… 6 2.3. Controversial issues……………………….…………………. 9 3 The perception of biological motion………………………… 11 3.1. The establishment of the biological motion phenomenon 11 3.2. Properties of biological motion perception……………….. 23 3.3. Implications for the theory of two visual systems……….. 31 4 Discussion, Summary and Questions for further research. 33 5 References…………………………………………………….. 37 2 1 Introduction The perception of biological motion is – as will be pointed out in this paper – a fascinating instance of the form-from-motion-effect (FFM), as well as part of social cognition. Moreover, perception of biological motion is a paradigmatical case for many other issues in cognitive psychology: It emphasises the reconstructive nature of the visual system, it shows the power of top-down processing and could be of primary importance for the two visual systems framework, which has become widely accepted in cognitive neuroscience in recent years. Furthermore, biological motions are very ecologically valid stimuli and in many respects, the perception of biological motion is quite similar to face perception: Both are stimuli that are physically complex, yet psychologically very important; computational complex, but done with ease and even by young infants suggesting a specially devoted neural machinery for both. The striking similarities and important differences between face perception and perception of biological motion will be addressed later in this paper.
    [Show full text]
  • Evidence from EEG Activity in the Mu/Alpha Frequency Range
    Social Neuroscience ISSN: 1747-0919 (Print) 1747-0927 (Online) Journal homepage: http://www.tandfonline.com/loi/psns20 Exploring motor system contributions to the perception of social information: Evidence from EEG activity in the mu/alpha frequency range Anat Perry , Nikolaus F. Troje & Shlomo Bentin To cite this article: Anat Perry , Nikolaus F. Troje & Shlomo Bentin (2010) Exploring motor system contributions to the perception of social information: Evidence from EEG activity in the mu/alpha frequency range, Social Neuroscience, 5:3, 272-284, DOI: 10.1080/17470910903395767 To link to this article: http://dx.doi.org/10.1080/17470910903395767 Published online: 17 Feb 2010. Submit your article to this journal Article views: 334 View related articles Citing articles: 38 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=psns20 Download by: ["Queen's University Libraries, Kingston"] Date: 22 February 2016, At: 14:22 SOCIAL NEUROSCIENCE, 2010, 5 (3), 272–284 PSNSExploring motor system contributions to the perception of social information: Evidence from EEG activity in the mu/alpha frequency range Social Factors Affecting Mu/Alpha Rhythm Anat Perry Hebrew University of Jerusalem, Jerusalem, Israel Nikolaus F. Troje Queen’s University, Kingston, Canada Shlomo Bentin Hebrew University of Jerusalem, Jerusalem, Israel Putative contributions of a human mirror neuron system (hMNS) to the perception of social information have been assessed by measuring the suppression of EEG oscillations in the mu/alpha (8–12 Hz), beta (15–25 Hz) and low-gamma (25–25 Hz) ranges while participants processed social information revealed by point-light displays of human motion.
    [Show full text]
  • Superior Temporal Sulcus—It's My Area: Or Is
    Superior Temporal Sulcus—It’s My Area: Or Is It? Grit Hein and Robert T. Knight Abstract Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/20/12/2125/1759317/jocn.2008.20148.pdf by guest on 18 May 2021 & The superior temporal sulcus (STS) is the chameleon of the portion, mainly involved in speech processing, and a poste- human brain. Several research areas claim the STS as the host rior portion recruited by cognitive demands of all these dif- brain region for their particular behavior of interest. Some see ferent research areas. The latter finding argues against a strict it as one of the core structures for theory of mind. For others, functional subdivision of the STS. In line with anatomical evi- it is the main region for audiovisual integration. It plays an dence from tracer studies, we propose that the function of important role in biological motion perception, but is also the STS varies depending on the nature of network coactiva- claimed to be essential for speech processing and processing tions with different regions in the frontal cortex and medial- of faces. We review the foci of activations in the STS from temporal lobe. This view is more in keeping with the notion multiple functional magnetic resonance imaging studies, focus- that the same brain region can support different cognitive ing on theory of mind, audiovisual integration, motion pro- operations depending on task-dependent network connec- cessing, speech processing, and face processing. The results tions, emphasizing the role of network connectivity analysis in indicate a differentiation of the STS region in an anterior neuroimaging.
    [Show full text]
  • Links to Social Cognition and Motor Imagery ⇑ Luke E
    Cognition 128 (2013) 140–148 Contents lists available at SciVerse ScienceDirect Cognition journal homepage: www.elsevier.com/locate/COGNIT Individual differences in the perception of biological motion: Links to social cognition and motor imagery ⇑ Luke E. Miller a, , Ayse P. Saygin a,b a Department of Cognitive Science, University of California, San Diego, USA b Neurosciences Program, University of California, San Diego, USA article info abstract Article history: Biological motion perception is often claimed to support social cognition, and to rely upon Received 16 October 2012 embodied representations and motor imagery. Are people with higher levels of social traits Revised 10 March 2013 or more vivid motor imagery better at biological motion perception? We administered four Accepted 25 March 2013 experiments measuring sensitivity in using (global) form and (local) motion cues in biolog- ical motion, plus well-established measures of social cognition (e.g., empathy) and motor imagery (e.g., kinesthetic motor imagery). This first systematic investigation of individual Keywords: variability in biological motion processing demonstrated significant relationships between Individual differences these domains, along with a dissociation. Sensitivity for using form cues in biological Biological motion Social cognition motion processing was correlated with social (and not the imagery) measures; sensitivity Motor imagery for using motion cues was correlated with motor imagery (and not the social) measures. These results could not be explained by performance on non-biological control stimuli. We thus show that although both social cognition and motor imagery predict sensitivity to biological motion, these skills likely tap into different aspects of perception. Ó 2013 Elsevier B.V. All rights reserved.
    [Show full text]
  • The Role of MT+/V5 During Biological Motion Perception in Asperger Syndrome: an Fmri Study
    Research in Autism Spectrum Disorders 1 (2007) 14–27 http://ees.elsevier.com/RASD/default.asp The role of MT+/V5 during biological motion perception in Asperger Syndrome: An fMRI study John D. Herrington a,*, Simon Baron-Cohen a, Sally J. Wheelwright a, Krishna D. Singh b, Edward T. Bullmore c, Michael Brammer d, Steve C.R. Williams d a Departments of Psychology and Psychiatry, Autism Research Centre, University of Cambridge, UK b CUBRIC and School of Psychology, Cardiff University, Cardiff, UK c Department of Psychiatry, University of Cambridge, Cambridge, UK d Institute of Psychiatry, Kings College London, London, UK Abstract Asperger Syndrome (AS), a condition on the autistic spectrum, is characterized by deficits in the ability to use social cues to infer mental state information. Few studies have examined whether these deficits might be understood in terms of differences in visual information processing. The present study employed functional magnetic resonance imaging to examine differences in brain activity among individuals with AS while performing a task that typically leads to the automatic interpreta- tion of human movement. Despite similar behavioural performance, significantly less activity was found for the AS group (relative to a control group) in inferior, middle and superior temporal regions, including the human analogue of MT+/V5. These data suggest that AS is associated with unique patterns of brain activity during the perception of visually presented social cues. # 2006 Elsevier Ltd. All rights reserved. Keywords: Asperger Syndrome; Autism; fMRI; Motion perception; MT+/V5; Temporal lobe * Correspondence to: Department of Psychology, University of Illinois at Urbana-Champaign, 603 E.
    [Show full text]
  • Where Do Mirror Neurons Come From?.Pdf
    G Model NBR-1240; No of Pages 9 Neuroscience and Biobehavioral Reviews xxx (2009) xxx–xxx Contents lists available at ScienceDirect Neuroscience and Biobehavioral Reviews journal homepage: www.elsevier.com/locate/neubiorev Review Where do mirror neurons come from? Cecilia Heyes All Souls College & Department of Experimental Psychology, University of Oxford, All Souls College, High Street, Oxford OX1 4AL, UK ARTICLE INFO ABSTRACT Article history: Debates about the evolution of the ‘mirror neuron system’ imply that it is an adaptation for action Received 24 October 2009 understanding. Alternatively, mirror neurons may be a byproduct of associative learning. Here I argue Received in revised form 6 November 2009 that the adaptation and associative hypotheses both offer plausible accounts of the origin of mirror Accepted 7 November 2009 neurons, but the associative hypothesis has three advantages. First, it provides a straightforward, testable explanation for the differences between monkeys and humans that have led some researchers to Keywords: question the existence of a mirror neuron system. Second, it is consistent with emerging evidence that Action understanding mirror neurons contribute to a range of social cognitive functions, but do not play a dominant, Adaptation specialised role in action understanding. Finally, the associative hypothesis is supported by recent data Associative learning Associative Sequence Learning showing that, even in adulthood, the mirror neuron system can be transformed by sensorimotor Counter-mirror neurons learning. The associative account implies that mirror neurons come from sensorimotor experience, and Evolution that much of this experience is obtained through interaction with others. Therefore, if the associative Evolutionary byproduct account is correct, the mirror neuron system is a product, as well as a process, of social interaction.
    [Show full text]
  • The Mirror Neuron System and Empathy: a Meta-Analysis 1
    THE MIRROR NEURON SYSTEM AND EMPATHY: A META-ANALYSIS 1 Is the Putative Mirror Neuron System Associated with Empathy? A Systematic Review and Meta-Analysis THE MIRROR NEURON SYSTEM AND EMPATHY: A META-ANALYSIS 2 Abstract Theoretical perspectives suggest that the mirror neuron system (MNS) is an important neurobiological contributor to empathy, yet empirical support is mixed. Here, we adopt a summary model for empathy, consisting of motor, emotional, and cognitive components of empathy. This review provides an overview of existing empirical studies investigating the relationship between putative MNS activity and empathy in healthy populations. 52 studies were identified that investigated the association between the MNS and at least one domain of empathy, representing data from 1044 participants. Our results suggest that emotional and cognitive empathy are moderately correlated with MNS activity, however, these domains were mixed and varied across techniques used to acquire MNS activity (TMS, EEG, and fMRI). Few studies investigated motor empathy, and of those, no significant relationships were revealed. Overall, results provide preliminary evidence for a relationship between MNS activity and empathy. However, our findings highlight methodological variability in study design as an important factor in understanding this relationship. We discuss limitations regarding these methodological variations and important implications for clinical and community translations, as well as suggestions for future research. Keywords: Mirror neurons, simulation, empathy, meta-analysis, systematic review THE MIRROR NEURON SYSTEM AND EMPATHY: A META-ANALYSIS 3 Is the Putative Mirror Neuron System Associated with Empathy? A Meta-Analysis Empathy is a broad concept that refers to the reactions of an individual in response to the experiences of an observed other (Davis, 1994).
    [Show full text]
  • Deciphering Human Motion to Discriminate Social
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Deciphering human motion to discriminate social interactions: a developmental neuroimaging study Laurie-Anne Sapey-Triomphe, Laurie Centelles, Muriel Roth, Pierre Fonlupt, Marie-Anne Henaff, Christina Schmitz, Christine Assaiante To cite this version: Laurie-Anne Sapey-Triomphe, Laurie Centelles, Muriel Roth, Pierre Fonlupt, Marie-Anne Henaff, et al.. Deciphering human motion to discriminate social interactions: a developmental neuroimaging study. Social Cognitive and Affective Neuroscience, Oxford University Press (OUP), 2017, 12(2), pp.340-351. 10.1093/scan/nsw117. hal-02379256 HAL Id: hal-02379256 https://hal.archives-ouvertes.fr/hal-02379256 Submitted on 25 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Social Cognitive and Affective Neuroscience Advance Access published December 21, 2016 Social Cognitive and Affective Neuroscience, 2016, 1–12 doi: 10.1093/scan/nsw117 Original
    [Show full text]