Superior Temporal Sulcus—It's My Area: Or Is

Total Page:16

File Type:pdf, Size:1020Kb

Superior Temporal Sulcus—It's My Area: Or Is Superior Temporal Sulcus—It’s My Area: Or Is It? Grit Hein and Robert T. Knight Abstract Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/20/12/2125/1759317/jocn.2008.20148.pdf by guest on 18 May 2021 & The superior temporal sulcus (STS) is the chameleon of the portion, mainly involved in speech processing, and a poste- human brain. Several research areas claim the STS as the host rior portion recruited by cognitive demands of all these dif- brain region for their particular behavior of interest. Some see ferent research areas. The latter finding argues against a strict it as one of the core structures for theory of mind. For others, functional subdivision of the STS. In line with anatomical evi- it is the main region for audiovisual integration. It plays an dence from tracer studies, we propose that the function of important role in biological motion perception, but is also the STS varies depending on the nature of network coactiva- claimed to be essential for speech processing and processing tions with different regions in the frontal cortex and medial- of faces. We review the foci of activations in the STS from temporal lobe. This view is more in keeping with the notion multiple functional magnetic resonance imaging studies, focus- that the same brain region can support different cognitive ing on theory of mind, audiovisual integration, motion pro- operations depending on task-dependent network connec- cessing, speech processing, and face processing. The results tions, emphasizing the role of network connectivity analysis in indicate a differentiation of the STS region in an anterior neuroimaging. & INTRODUCTION often interpreted in line with this assumption. For In the last decade, the human superior temporal sulcus example, the left STS region is seen as a prime area (STS) and surrounding regions have been widely studied. for speech processing (Wernicke, 1874), with the MTG Paradoxically, the exploding numbers of findings have being more strongly involved in word comprehension, made the role of the STS region in the human brain even and the anterior STG, STS, and angular gyrus being more mysterious. The STS is a major sulcal landmark in more important for sentence processing (Dronkers, the temporal lobe and adjacent cortices on the surface of Wilkins, Van Valin, Redfern, & Jaeger, 2004). At the same the superior and middle temporal gyri (STG and MTG, time, a particular region in the upper bank of the left respectively) and the angular gyrus at the intersection to STS, intersecting the parietal lobe, has been proposed to the inferior parietal lobe posteriorly. The STS is claimed be the host of ToM because patients with a lesion in this to be the host brain region for theory of mind (ToM) and region showed a deficit in a false belief task (Samson, social perception (Saxe, 2006; Zilbovicious et al., 2006; Apperly, Chiavarino, & Humphreys, 2004). The anterior Gallagher & Frith, 2003), but also for audiovisual (AV) inte- portion of the right STG was suggested to play a role in gration (Amedi, von Kriegstein, van Atteveldt, Beauchamp, spatial awareness because it was shown to be the center & Naumer, 2005; Beauchamp, 2005; Calvert, 2001). For of lesion overlap in neglect patients (Karnath, 2001). some, it is the prime brain structure for biological mo- Other authors claim that the right STG hosts biological tion processing (Puce & Perrett, 2003; Allison, Puce, & motion processing because a patient with a lesion cir- McCarthy, 2000), whereas others discuss it in the con- cumscribing the entire right STG showed a deficit in bio- text of speech perception (Price, 2000) and face pro- logical motion perception (Akiyama, Kato, Muramatsu, cessing (Haxby, Hoffman, & Gobbini, 2000). Saito, Nakachi, et al., 2006; Akiyama, Kato, Muramatsu, What is the secret of the multifunctionality of the STS Saito, Umeda, et al., 2006). The observation of a behav- region? One assumption is that a large structure as the ioral deficit can make a strong case for the function of a STS and its adjacent cortices has some regional special- particular damaged brain region. However, such conclu- ization. According to this assumption, for example, one sions have to be drawn with caution. It is fair to say that subsection of the STS region might mainly be associated lesions exclusively focusing on the STS region are rare in with ToM and social perception, whereas another dis- humans and that most patients exhibit deficits in more tinct STS region might host AV integration. The results than one function. For example, Akiyama et al.’s patient of studies on patients with lesions in the STS region are showed spatial neglect in the acute stage, besides the impairment in biological motion processing. Samson et al.’s patients had deficits in speech comprehension in University of California at Berkeley addition to impairment in ToM. One explanation is that D 2008 Massachusetts Institute of Technology Journal of Cognitive Neuroscience 20:12, pp. 2125–2136 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/jocn.2008.20148 by guest on 26 September 2021 the patients’ lesions extended from, for example, the On the one hand, these data provide evidence for a ‘‘ToM region’’ to the ‘‘speech processing region’’ of the functional subdivision of the STS region in nonhuman STS. Alternatively, the finding that lesions in similar STS primates. On the other hand, the variety of reciprocal regions cause different functional deficits could argue connections between certain STS regions and distinct against a strict functional subdivision. higher-order areas could be the anatomical basis for Lesion studies or single-cell recordings in nonhuman an alternative assumption. Instead of a strict functional primates are spatially more precise than lesions in the subdivision, the multifunctionality of the STS region human brain. Although the comparability of human and might be based on coactivations with other brain re- monkey STS is uncertain, there are similarities in ana- gions, such as the frontal, parietal, and mesial temporal tomical projections, permitting assumptions about the cortex. In this case, STS region activity would be deter- Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/20/12/2125/1759317/jocn.2008.20148.pdf by guest on 18 May 2021 human STS on the basis of nonhuman data (Keysers & mined by the nature of the network interactions with Perrett, 2004; Petrides & Pandya, 2001). There are a num- other brain regions it is coactivated with. For example, ber of findings indicating that a region in the anterior coactivation with ventral and medial frontal regions, pro- portion of the upper STS is selectively involved in the jecting to the limbic system, might determine a role of processing of body movements, including gaze direc- the STS in ToM, whereas coactivation with premotor tion (Oram & Perrett, 1994, 1996; reviewed in Keysers areas would make it part of the network for motion pro- & Perrett, 2004). Other single-cell studies report neu- cessing, and so forth. The findings from patient studies rons in the STS region, which selectively respond to and studies on nonhuman primates, to date, are insuffi- moving images, faces, or nonface complex visual stimuli cient to clarify the function of the STS region in the hu- (Desimone & Ungerleider, 1986; Van Essen, Maunsell, & man brain. Bixby, 1981; Seltzer & Pandya, 1978). Most of these neu- In this review, we consider the contribution of func- rons are reported in a multimodal region (TPO) in the tional magnetic resonance imaging (fMRI) studies to this upper bank of the STS (Baylis, Rolls, & Leonard, 1987). question. We review foci of activation in the STS region This multimodal region could be distinguished from a of multiple fMRI studies, investigating ToM, AV integra- more dorsal area involved in auditory processing (TAa) tion, motion processing, speech processing, and face and a more ventral region which mainly processes visual processing. If there is regional specialization within the stimuli (TEa and TEm) (Baylis et al., 1987). Apart from STS region, one would predict that foci of activations preferences for input modalities and visual properties, from studies investigating the same cognitive function the different STS regions are also characterized by the are clustered in a particular STS subregion. A distribu- pattern of anatomical connections with other brain re- tion of foci of activations independently of the inves- gions (Seltzer & Pandya, 1989a, 1994). The auditory and tigated cognitive function would be more in line with multimodal sections in the upper bank of the STS (TAa the assumption that STS functions are determined via and TPO) are reciprocally connected with the frontal network coactivations. cortex. The anterior portion of the multimodal TPO projects to and receives inputs from ventral and medial areas of the frontal lobe, which themselves project to METHODS the limbic system (Barbas, 2000; Carmichael & Price, 1995). The middle portion of the TPO is mainly con- The integration of foci of activation from multiple fMRI nected to lateral prefrontal regions around the principal studies is challenging and has its own inherent problems sulcus. The posterior portion of the TPO projects to (see also Duncan & Owen, 2000). One issue concerns dorsal prefrontal and premotor areas. Moreover, all STS statistical power. Statistical power is limited in any given subregions project to the parietal cortex. The three TPO study. Consequently, only a part of the activation pattern subregions differ not only in intercortical connectivity passes a certain conventional threshold. It is possible butalsoincytoarchitecturalandchemoarchitectural that noise differences between two studies investigating properties. The posterior TPO is characterized by large the same cognitive function might lead to activations pyramidal neurons in layer III and clearly separable lay- in different subregions of the STS, even if they actually ers V and VI. The middle TPO contains a well-developed recruit a common STS subregion. The noise, which can layer III with medium large pyramidal cells, but no dis- contribute to such a pattern of results, is increased if the tinction between layers V and VI.
Recommended publications
  • Biological Motion Perception in Autism Spectrum Disorder: a Meta-Analysis Greta Krasimirova Todorova1* , Rosalind Elizabeth Mcbean Hatton2 and Frank Earl Pollick1
    Todorova et al. Molecular Autism (2019) 10:49 https://doi.org/10.1186/s13229-019-0299-8 RESEARCH Open Access Biological motion perception in autism spectrum disorder: a meta-analysis Greta Krasimirova Todorova1* , Rosalind Elizabeth Mcbean Hatton2 and Frank Earl Pollick1 Abstract Background: Biological motion, namely the movement of others, conveys information that allows the identification of affective states and intentions. This makes it an important avenue of research in autism spectrum disorder where social functioning is one of the main areas of difficulty. We aimed to create a quantitative summary of previous findings and investigate potential factors, which could explain the variable results found in the literature investigating biological motion perception in autism. Methods: A search from five electronic databases yielded 52 papers eligible for a quantitative summarisation, including behavioural, eye-tracking, electroencephalography and functional magnetic resonance imaging studies. Results: Using a three-level random effects meta-analytic approach, we found that individuals with autism generally showed decreased performance in perception and interpretation of biological motion. Results additionally suggest decreased performance when higher order information, such as emotion, is required. Moreover, with the increase of age, the difference between autistic and neurotypical individuals decreases, with children showing the largest effect size overall. Conclusion: We highlight the need for methodological standards and clear distinctions
    [Show full text]
  • Brain Sulci and Gyri: a Practical Anatomical Review
    Journal of Clinical Neuroscience 21 (2014) 2219–2225 Contents lists available at ScienceDirect Journal of Clinical Neuroscience journal homepage: www.elsevier.com/locate/jocn Neuroanatomical study Brain sulci and gyri: A practical anatomical review ⇑ Alvaro Campero a,b, , Pablo Ajler c, Juan Emmerich d, Ezequiel Goldschmidt c, Carolina Martins b, Albert Rhoton b a Department of Neurological Surgery, Hospital Padilla, Tucumán, Argentina b Department of Neurological Surgery, University of Florida, Gainesville, FL, USA c Department of Neurological Surgery, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina d Department of Anatomy, Universidad de la Plata, La Plata, Argentina article info abstract Article history: Despite technological advances, such as intraoperative MRI, intraoperative sensory and motor monitor- Received 26 December 2013 ing, and awake brain surgery, brain anatomy and its relationship with cranial landmarks still remains Accepted 23 February 2014 the basis of neurosurgery. Our objective is to describe the utility of anatomical knowledge of brain sulci and gyri in neurosurgery. This study was performed on 10 human adult cadaveric heads fixed in formalin and injected with colored silicone rubber. Additionally, using procedures done by the authors between Keywords: June 2006 and June 2011, we describe anatomical knowledge of brain sulci and gyri used to manage brain Anatomy lesions. Knowledge of the brain sulci and gyri can be used (a) to localize the craniotomy procedure, (b) to Brain recognize eloquent areas of the brain, and (c) to identify any given sulcus for access to deep areas of the Gyri Sulci brain. Despite technological advances, anatomical knowledge of brain sulci and gyri remains essential to Surgery perform brain surgery safely and effectively.
    [Show full text]
  • Anatomy of the Temporal Lobe
    Hindawi Publishing Corporation Epilepsy Research and Treatment Volume 2012, Article ID 176157, 12 pages doi:10.1155/2012/176157 Review Article AnatomyoftheTemporalLobe J. A. Kiernan Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada N6A 5C1 Correspondence should be addressed to J. A. Kiernan, [email protected] Received 6 October 2011; Accepted 3 December 2011 Academic Editor: Seyed M. Mirsattari Copyright © 2012 J. A. Kiernan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Only primates have temporal lobes, which are largest in man, accommodating 17% of the cerebral cortex and including areas with auditory, olfactory, vestibular, visual and linguistic functions. The hippocampal formation, on the medial side of the lobe, includes the parahippocampal gyrus, subiculum, hippocampus, dentate gyrus, and associated white matter, notably the fimbria, whose fibres continue into the fornix. The hippocampus is an inrolled gyrus that bulges into the temporal horn of the lateral ventricle. Association fibres connect all parts of the cerebral cortex with the parahippocampal gyrus and subiculum, which in turn project to the dentate gyrus. The largest efferent projection of the subiculum and hippocampus is through the fornix to the hypothalamus. The choroid fissure, alongside the fimbria, separates the temporal lobe from the optic tract, hypothalamus and midbrain. The amygdala comprises several nuclei on the medial aspect of the temporal lobe, mostly anterior the hippocampus and indenting the tip of the temporal horn. The amygdala receives input from the olfactory bulb and from association cortex for other modalities of sensation.
    [Show full text]
  • The Neurobiology of Agrammatic Sentence Comprehension: a Lesion Study
    The Neurobiology of Agrammatic Sentence Comprehension: A Lesion Study Corianne Rogalsky1, Arianna N. LaCroix1, Kuan-Hua Chen2,3, Steven W. Anderson2, Hanna Damasio4, Tracy Love5, and Gregory Hickok6 Abstract ■ Broca’s area has long been implicated in sentence compre- average did not exhibit the expected agrammatic compre- hension. Damage to this region is thought to be the central hension pattern—for example, their performance was >80% source of “agrammatic comprehension” in which performance on noncanonical sentences in the sentence–picture matching is substantially worse (and near chance) on sentences with non- task. Patients with ATL damage (n = 18) also did not exhibit canonical word orders compared with canonical word order an agrammatic comprehension pattern. Across our entire sentences (in English). This claim is supported by functional patient sample, the lesions of patients with agrammatic com- neuroimaging studies demonstrating greater activation in prehension patterns in either task had maximal overlap in pos- Broca’s area for noncanonical versus canonical sentences. terior superior temporal and inferior parietal regions. Using However, functional neuroimaging studies also have frequently voxel-based lesion–symptom mapping, we find that lower per- implicated the anterior temporal lobe (ATL) in sentence pro- formances on canonical and noncanonical sentences in each cessing more broadly, and recent lesion–symptom mapping task are both associated with damage to a large left superior studies have implicated the ATL and mid temporal regions in temporal–inferior parietal network including portions of the agrammatic comprehension. This study investigates these ATL, but not Broca’s area. Notably, however, response bias in seemingly conflicting findings in 66 left-hemisphere patients plausibility judgments was significantly associated with damage with chronic focal cerebral damage.
    [Show full text]
  • Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans Ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai
    Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai To cite this version: Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai. Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex. Frontiers in Neuroanatomy, Frontiers, 2018, 12, pp.93. 10.3389/fnana.2018.00093. hal-01929541 HAL Id: hal-01929541 https://hal.archives-ouvertes.fr/hal-01929541 Submitted on 21 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 19 November 2018 doi: 10.3389/fnana.2018.00093 Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans J. ten Donkelaar 1*†, Nathalie Tzourio-Mazoyer 2† and Jürgen K. Mai 3† 1 Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands, 2 IMN Institut des Maladies Neurodégénératives UMR 5293, Université de Bordeaux, Bordeaux, France, 3 Institute for Anatomy, Heinrich Heine University, Düsseldorf, Germany The gyri and sulci of the human brain were defined by pioneers such as Louis-Pierre Gratiolet and Alexander Ecker, and extensified by, among others, Dejerine (1895) and von Economo and Koskinas (1925).
    [Show full text]
  • The Role of the Superior Temporal Sulcus and the Mirror Neuron System in Imitation
    r Human Brain Mapping 31:1316–1326 (2010) r The Role of the Superior Temporal Sulcus and the Mirror Neuron System in Imitation Pascal Molenberghs,* Christopher Brander, Jason B. Mattingley, and Ross Cunnington The University of Queensland, Queensland Brain Institute & School of Psychology, St Lucia, Queensland, Australia r r Abstract: It has been suggested that in humans the mirror neuron system provides a neural substrate for imitation behaviour, but the relative contributions of different brain regions to the imitation of manual actions is still a matter of debate. To investigate the role of the mirror neuron system in imita- tion we used fMRI to examine patterns of neural activity under four different conditions: passive ob- servation of a pantomimed action (e.g., hammering a nail); (2) imitation of an observed action; (3) execution of an action in response to a word cue; and (4) self-selected execution of an action. A net- work of cortical areas, including the left supramarginal gyrus, left superior parietal lobule, left dorsal premotor area and bilateral superior temporal sulcus (STS), was significantly active across all four con- ditions. Crucially, within this network the STS bilaterally was the only region in which activity was significantly greater for action imitation than for the passive observation and execution conditions. We suggest that the role of the STS in imitation is not merely to passively register observed biological motion, but rather to actively represent visuomotor correspondences between one’s own actions and the actions of others. Hum Brain Mapp 31:1316–1326, 2010. VC 2010 Wiley-Liss, Inc. Key words: fMRI; imitation; mirror neuron system r r INTRODUCTION ror neurons are visuomotor neurons that fire both when an action is performed and when a similar or identical Motor imitation involves observing the action of another action is passively observed [Rizzolatti and Craighero, individual and matching one’s own movements to those 2004].
    [Show full text]
  • Introduction and Methods the Field of Neuroesthetics Is a Recent Marriage
    Introduction and Methods The field of neuroesthetics is a recent marriage of the realms of neuroscience and art. The objective of neuroesthetics is to comprehend the perception and subjective experience of art in terms of their neural substrates. In this study, we examined the effect of a number of original pieces of art on the brain of the artist herself and on that of a novice as she experienced the artwork for the first time. This allowed us to compare neural responses not only amongst different visual conditions but also between an expert (i.e. the artist) and a novice. Lia Cook lent her artwork to be used in this study. The pieces, which she believes to have an innate emotional quality, are cotton and rayon textiles. All of the pieces are portraits with a somewhat abstract, pixelated appearance imparted by the medium. In order to better understand the neural effects of the woven facial images, we used several types of control images. These included (i) scrambled woven pieces, or textiles that were controlled for color, contrast, and size but contained no distinct facial forms; and (ii) photographs, which were all photographs of human faces but were printed on heavy paper and lacked the texture and unique visual appearance of the textiles. All of the pieces are 12.5 in. x 18 in. The expert and novice were each scanned with functional MRI while they viewed and touched the tapestries and photographs. The subjects completed 100 trials divided across two functional scans. Each trial lasted a total of 12 s, with jittered intervals of 4 s to 6 s between trials.
    [Show full text]
  • 01 05 Lateral Surface of the Brain-NOTES.Pdf
    Lateral Surface of the Brain Medical Neuroscience | Tutorial Notes Lateral Surface of the Brain 1 MAP TO NEUROSCIENCE CORE CONCEPTS NCC1. The brain is the body's most complex organ. LEARNING OBJECTIVES After study of the assigned learning materials, the student will: 1. Demonstrate the four paired lobes of the cerebral cortex and describe the boundaries of each. 2. Sketch the major features of each cerebral lobe, as seen from the lateral view, identifying major gyri and sulci that characterize each lobe. NARRATIVE by Leonard E. WHITE and Nell B. CANT Duke Institute for Brain Sciences Department of Neurobiology Duke University School of Medicine Overview When you view the lateral aspect of a human brain specimen (see Figures A3A and A102), three structures are usually visible: the cerebral hemispheres, the cerebellum, and part of the brainstem (although the brainstem is not visible in the specimen photographed in lateral view for Fig. 1 below). The spinal cord has usually been severed (but we’ll consider the spinal cord later), and the rest of the subdivisions are hidden from lateral view by the hemispheres. The diencephalon and the rest of the brainstem are visible on the medial surface of a brain that has been cut in the midsagittal plane. Parts of all of the subdivisions are also visible from the ventral surface of the whole brain. Over the next several tutorials, you will find video demonstrations (from the brain anatomy lab) and photographs (in the tutorial notes) of these brain surfaces, and sufficient detail in the narrative to appreciate the overall organization of the parts of the brain that are visible from each perspective.
    [Show full text]
  • The Human Brain Hemisphere Controls the Left Side of the Body and the Left What Makes the Human Brain Unique Is Its Size
    About the brain Cerebrum (also known as the The brain is made up of around 100 billion nerve cells - each one cerebral cortex or forebrain) is connected to another 10,000. This means that, in total, we The cerebrum is the largest part of the brain. It is split in to two have around 1,000 trillion connections in our brains. (This would ‘halves’ of roughly equal size called hemispheres. The two be written as 1,000,000,000,000,000). These are ultimately hemispheres, the left and right, are joined together by a bundle responsible for who we are. Our brains control the decisions we of nerve fibres called the corpus callosum. The right make, the way we learn, move, and how we feel. The human brain hemisphere controls the left side of the body and the left What makes the human brain unique is its size. Our brains have a hemisphere controls the right side of the body. The cerebrum is larger cerebral cortex, or cerebrum, relative to the rest of the The human brain is the centre of our nervous further divided in to four lobes: frontal, parietal, occipital, and brain than any other animal. (See the Cerebrum section of this temporal, which have different functions. system. It is the most complex organ in our fact sheet for further information.) This enables us to have abilities The frontal lobe body and is responsible for everything we do - such as complex language, problem-solving and self-control. The frontal lobe is located at the front of the brain.
    [Show full text]
  • A Core Speech Circuit Between Primary Motor, Somatosensory, and Auditory Cortex
    bioRxiv preprint doi: https://doi.org/10.1101/139550; this version posted May 18, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Speech core 1 A core speech circuit between primary motor, somatosensory, and auditory cortex: Evidence from connectivity and genetic descriptions * ^ Jeremy I Skipper ​ and Uri Hasson ​ ​ * Experimental​ Psychology, University College London, UK ^ Center​ for Mind/Brain Sciences (CIMeC), University of Trento, Italy, and Center for Practical Wisdom, Dept. of Psychology, The University of Chicago Running title: Speech core ​ Words count: 20,362 ​ Address correspondence to: Jeremy I Skipper University College London Experimental Psychology 26 Bedford Way London WC1H OAP United Kingdom E-mail: [email protected] ​ bioRxiv preprint doi: https://doi.org/10.1101/139550; this version posted May 18, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Speech core 2 Abstract What adaptations allow humans to produce and perceive speech so effortlessly? We show that speech is supported by a largely undocumented core of structural and functional connectivity between the central sulcus (CS or primary motor and somatosensory cortex) and the transverse temporal gyrus (TTG or primary auditory cortex). Anatomically, we show that CS and TTG cortical thickness covary across individuals and that they are connected by white matter tracts.
    [Show full text]
  • Surgical Anatomy of the Insula Christophe Destrieux, Igor Lima Maldonado, Louis-Marie Terrier, Ilyess Zemmoura
    Surgical Anatomy of the Insula Christophe Destrieux, Igor Lima Maldonado, Louis-Marie Terrier, Ilyess Zemmoura To cite this version: Christophe Destrieux, Igor Lima Maldonado, Louis-Marie Terrier, Ilyess Zemmoura. Surgical Anatomy of the Insula. Mehmet Turgut; Canan Yurttaş; R. Shane Tubbs. Island of Reil (Insula) in the Human Brain. Anatomical, Functional, Clinical and Surgical Aspects, 19, Springer, pp.23-37, 2018, 978-3-319-75467-3. 10.1007/978-3-319-75468-0_3. hal-02539550 HAL Id: hal-02539550 https://hal.archives-ouvertes.fr/hal-02539550 Submitted on 15 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Surgical Anatomy of the insula Christophe Destrieux1, 2, Igor Lima Maldonado3, Louis-Marie Terrier1, 2, Ilyess Zemmoura1, 2 1 : Université François-Rabelais de Tours, Inserm, Imagerie et cerveau UMR 930, Tours, France 2 : CHRU de Tours, Service de Neurochirurgie , Tours, France 3 : Universidade Federal da Bahia, Laboratório de Anatomia e Dissecção, Departamento de Biomorfologia - Instituto de Ciências da Saúde, Salvador-Bahia, Brazil 1. Abstract The insula was for a long time considered as one of the most challenging areas of the brain. This is mainly related to its location, deep and medial to the fronto-parietal, temporal and fronto-orbital opercula.
    [Show full text]
  • Function of Cerebral Cortex
    FUNCTION OF CEREBRAL CORTEX Course: Neuropsychology CC-6 (M.A PSYCHOLOGY SEM II); Unit I By Dr. Priyanka Kumari Assistant Professor Institute of Psychological Research and Service Patna University Contact No.7654991023; E-mail- [email protected] The cerebral cortex—the thin outer covering of the brain-is the part of the brain responsible for our ability to reason, plan, remember, and imagine. Cerebral Cortex accounts for our impressive capacity to process and transform information. The cerebral cortex is only about one-eighth of an inch thick, but it contains billions of neurons, each connected to thousands of others. The predominance of cell bodies gives the cortex a brownish gray colour. Because of its appearance, the cortex is often referred to as gray matter. Beneath the cortex are myelin-sheathed axons connecting the neurons of the cortex with those of other parts of the brain. The large concentrations of myelin make this tissue look whitish and opaque, and hence it is often referred to as white matter. The cortex is divided into two nearly symmetrical halves, the cerebral hemispheres . Thus, many of the structures of the cerebral cortex appear in both the left and right cerebral hemispheres. The two hemispheres appear to be somewhat specialized in the functions they perform. The cerebral hemispheres are folded into many ridges and grooves, which greatly increase their surface area. Each hemisphere is usually described, on the basis of the largest of these grooves or fissures, as being divided into four distinct regions or lobes. The four lobes are: • Frontal, • Parietal, • Occipital, and • Temporal.
    [Show full text]