Consumers Case Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) United States Patent (10) Patent No.: US 8,186,995 B2 Putrello, Jr
US008186995B2 (12) United States Patent (10) Patent No.: US 8,186,995 B2 Putrello, Jr. (45) Date of Patent: May 29, 2012 (54) SURVIVAL TOOL FIRE STARTER WITH 148/404; 44/507,506, 508; 280/87.042: MISCHMETAL FLINTROD 126/25 B; 149/38, 41,42; 7/158 See application file for complete search history. (76) Inventor: Andrew C. Putrello, Jr., Utica, NY (US) (56) References Cited (*) Notice: Subject to any disclaimer, the term of this U.S. PATENT DOCUMENTS patent is extended or adjusted under 35 2,908,071 A * 10/1959 Bungardt ...................... 428,585 U.S.C. 154(b) by 765 days. 3,275,484. A * 9, 1966 Foote et al. ..................... 149,38 3.278,009 A * 10/1966 Crump, Jr. .................... 206,121 4,089,706 A 5/1978 Zeiringer (21) Appl. No.: 12/392,535 4,698,068 A * 10/1987 Jensen ............................ 44,507 6,782.576 B1 8, 2004 Valencic et al. (22) Filed: Feb. 25, 2009 2005/O127630 A1* 6/2005 Kuhlman et al. ........ 280/87.042 (65) Prior Publication Data * cited by examiner US 2009/0214996 A1 Aug. 27, 2009 Primary Examiner — Steven B McAllister Assistant Examiner — Avinash Savani Related U.S. Application Data (74) Attorney, Agent, or Firm — Hiscock & Barclay, LLP (63) Continuation-in-part of application No. 12/070,741, (57) ABSTRACT filed on Feb. 22, 2008. A fire-starter device for Survival or emergency use has a (51) Int. C. handle portion and case portion that twist together, to sheath a mischmetal flint rod inside the case, and a seal ring protects F23O I/02 (2006.01) the flint rod from environmental moisture. -
Historical Development of the Periodic Classification of the Chemical Elements
THE HISTORICAL DEVELOPMENT OF THE PERIODIC CLASSIFICATION OF THE CHEMICAL ELEMENTS by RONALD LEE FFISTER B. S., Kansas State University, 1962 A MASTER'S REPORT submitted in partial fulfillment of the requirements for the degree FASTER OF SCIENCE Department of Physical Science KANSAS STATE UNIVERSITY Manhattan, Kansas 196A Approved by: Major PrafeLoor ii |c/ TABLE OF CONTENTS t<y THE PROBLEM AND DEFINITION 0? TEH-IS USED 1 The Problem 1 Statement of the Problem 1 Importance of the Study 1 Definition of Terms Used 2 Atomic Number 2 Atomic Weight 2 Element 2 Periodic Classification 2 Periodic Lav • • 3 BRIEF RtiVJiM OF THE LITERATURE 3 Books .3 Other References. .A BACKGROUND HISTORY A Purpose A Early Attempts at Classification A Early "Elements" A Attempts by Aristotle 6 Other Attempts 7 DOBEREBIER'S TRIADS AND SUBSEQUENT INVESTIGATIONS. 8 The Triad Theory of Dobereiner 10 Investigations by Others. ... .10 Dumas 10 Pettehkofer 10 Odling 11 iii TEE TELLURIC EELIX OF DE CHANCOURTOIS H Development of the Telluric Helix 11 Acceptance of the Helix 12 NEWLANDS' LAW OF THE OCTAVES 12 Newlands' Chemical Background 12 The Law of the Octaves. .........' 13 Acceptance and Significance of Newlands' Work 15 THE CONTRIBUTIONS OF LOTHAR MEYER ' 16 Chemical Background of Meyer 16 Lothar Meyer's Arrangement of the Elements. 17 THE WORK OF MENDELEEV AND ITS CONSEQUENCES 19 Mendeleev's Scientific Background .19 Development of the Periodic Law . .19 Significance of Mendeleev's Table 21 Atomic Weight Corrections. 21 Prediction of Hew Elements . .22 Influence -
In the Autumn 2011 Edition of the Quiver I Wrote an Article Touching on the Topic of Survival As It Applies to the Bowhunter
In the Autumn 2011 edition of The Quiver I wrote an article touching on the topic of survival as it applies to the bowhunter. In this article I want to talk about fire specifically and the different types of firestarters and techniques available. Fire is an important element in a survival situation as it provides heat for warmth, drying clothes or cooking as well as a psychological boost and if you’re hunting in a spot where you are one of the prey species it can keep predators away as well. There are many ways to start a fire; some ways relatively easy and some that would only be used as a last resort. There are pros and cons to most of these techniques. The most obvious tool for starting a fire is a match. While this is a great way to start a fire in your fireplace or fire pit I personally don’t like to carry matches in my pack or on my person. They are hard to keep dry and you are limited to one fire per match IF you can light a one match fire every time. It would be easy to run out of matches in a hurry as you are limited in how many you could reasonably carry. A Bic lighter or one of the more expensive windproof lighters is a slightly better choice for the bowhunter to carry. They are easy to use, easy to carry, fairly compact, and last for a reasonable amount of “lights”. They don’t work well when wet but can be dried out fairly easily. -
The Rare Earths II
Redis co very of the Elements The Ra re Earth s–The Con fusing Years I A gallery of rare earth scientists and a timeline of their research I I James L. Marshall, Beta Eta 1971 , and Virginia R. Marshall, Beta Eta 2003 , Department of Chemistry, University of North Texas, Denton, TX 76203-5070, [email protected] The rare earths after Mosander. In the pre - vi ou s HEXAGON “Rediscovery” article, 1p we were introduced to the 17 rare earths, found in the f-block and the Group III chemical family of Figure 1. Important scientists dealing with rare earths through the nineteenth century. Johan Gadolin the Periodic Table. Because of a common (1760 –1852) 1g —discovered yttrium (1794). Jöns Jacob Berzelius (1779 –1848) and Martin Heinrich valence electron configuration, the rare earths Klaproth (1743 –1817) 1d —discovered cerium (1803). Carl Gustaf Mosander (1787 –1858) 1p —discovered have similar chemical properties, and their lanthanum (1839), didymium (1840), terbium, and erbium (1843). Jean-Charles deGalissard Marignac chemical separation from one another can be (1817 –1894) 1o —discovered ytterbium (1878) and gadolinium (1880). Per Teodor Cleve (1840 –1905) 1n — difficult. From preparations of the first two rare discovered holmium and thulium (1879). Lars Fredrik Nilson (1840 –1899) 1n —discovered scandium earth element s—yttrium and ceriu m—the (1879). Paul-Émile Lecoq de Boisbaudran (1838 –1912) —discovered samarium (1879) and dysprosium Swedish chemist Carl Gustaf Mosander (Figure (1886). 1b Carl Auer von Welsbach (1858 –1929) 1c —discovered praseodymium and neodymium (1885); 1, 2) was able to separate four additional ele - co-discovered lutetium (1907). -
Rounding up Lutetium
Rounding up lutetium Downloaded from: https://research.chalmers.se, 2019-05-11 19:07 UTC Citation for the original published paper (version of record): Öhrström, L. (2018) Rounding up lutetium Nature Chemistry, 10(3): 372- http://dx.doi.org/10.1038/nchem.2938 N.B. When citing this work, cite the original published paper. research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is administrated and maintained by Chalmers Library (article starts on next page) in your element Rounding up lutetium Lars Öhrström suspects that as time goes by, we may see more of lutetium — the last of the lanthanoids. e’ll always have Paris” Rick says motexafn (based on the ‘texaphyrins’), a “ to Ilsa in their fnal goodbye on sub-class of porphyrin-like macrocycles Wthe foggy airstrip of Casablanca with fve instead of four nitrogen atoms in in the eponymous flm. However, the an approximately planar ring. Motexafn question among chemists about the element lutetium, which features Lu3+ and two lutetium, named afer Lutetia, as the French acetate counter-ions coordinated on either capital was known in Roman times, is not so side of the macrocycle, is potentially a good much about having it (it is more abundant photosensitizer in dynamic phototherapy than silver in the Earth’s crust), but rather and has been going through phase I trials where to place it on the map. against prostate cancer2. With its valence electron confguration Uses of the naturally occurring element [Xe]4f 146s25d1, element 71 seems to belong are otherwise scarce, but its isotope Lu-177 is to group 3, but we ofen see it placed at successfully used in experimental and clinical BRITTA LANGEN, LANGEN, BRITTA SWEDEN UNIVERSITY OF GOTHENBURG, the very end of the lanthanoid series. -
Primitive Fire What If We Had a Local Disaster Like the Haitians And
Primitive Fire What if we had a local disaster like the Haitians and were without utilities or could not live in our homes for an extended time period. How do we Cook, Heat, Purify water and etc.? Many of their citizens are still living in tents and eating mud cakes to satisfy the hunger pains. 2–3 times per month I am asked to teach primitive fire build methods to various groups. Primitive skills are perishable; these skills need to be practiced often. During a disaster our matches and or lighters will fail us at some point - We need to know how to build a life-saving fire using primitive methods. Benefits of Fire: Fire is magic, it has a positive psychological effect – Fire is comforting - Fire is our friend, when we are lonely or frightened. Fire is a tool - With fire we cook - Avoid hypothermia - Warm ourselves - Dry our clothing - Light our way - Signal a friend - Purify our water – Build a fire bed – Use coals to form our tools and etc. Fire Tools: • Fixed blade knife • Fat wood (Lowes Starter Stikks) • Cattails – the hot dog • Ferrocerium rods • Outer bark Juniper – Sage – Birch, • Monk’s cloth and a 4-inch tin with lid Inner bark Cottonwood or Aspen • Pitch / Sap • Dryer filter lint • Mountain man striker / Flint / Agate • Steel wool # 0000 & 9 volt battery • Phragmites flags - Rabbit bush flowers – • 100% cotton balls & & Vaseline Cottonwood or dandelion fluff • Charred Barks / Punk wood / Cloth • Fire bow method: Bow / Drill / Cord / • Jute or Sisal cord Hearth board / Coal catcher / Bearing • 35mm film canister with lid • Parabolic lens from a large flashlight Tool Sources: We purchased several Ferrocerium rods - The BlastMatch broke easily – the StrikeForce & Swedish FireSteel are great. -
GLOBAL RARE-EARTH PRODUCTION: HISTORY and OUTLOOK History – the Discovery
Center for Strategic and International Studies Rare Earth Elements: Geology, Geography, and Geopolitics James B. Hedrick Hedrick Consultants, Inc. U.S. Rare Earths, Inc. Burke, Virginia December 15, 2010 Washington, DC GLOBAL RARE-EARTH PRODUCTION: HISTORY AND OUTLOOK History – The Discovery . The rare earths were discovered in 1787 by Swedish Army Lieutenant Carl Axel Arrhenius . Carl, an amateur mineralogist collected the black mineral ytterbite, later renamed gadolinite, from a small feldspar and quartz mine at Ytterby, Sweden . With similar chemical structures the rare earths proved difficult to separate . It was not until 1794 that Finnish chemist Johann Gadolin separated the first impure yttrium oxide from the mineral ytterbite History – The Discovery History – The Commercialization . The rare earths were commercialized when the incandescent lamp mantle industry was established in 1884 with mantles of zirconium, lanthanum, and yttrium oxides with later improvements requiring only the oxides of thorium and cerium. The lamp mantle was discovered by Baron Carl Auer von Welsbach . The mantles also used small amounts of neodymium and praseodymium as an indelible brand name Welsbach label History – The Early Mining . Rare earths were first produced commercially in the 1880s with the mining in Sweden and Norway of the rare-earth thorium phosphate mineral monazite . Foreign Production Brazil produced monazite as early as 1887 India produced monazite starting in 1911 . Domestic Production Monazite production in the United States was first recorded in 1893 in North Carolina - a small tonnage of monazite was reportedly mined in 1887 Monazite mining in South Carolina began in 1903 History – The Processing . Three main methods for separating and refining the rare- earth elements since they were discovered . -
Producers Case Study the Changing
Producers Case Study The Changing Geography of Rare Earth Element Production Introduction The locations where rare earth elements are produced changed repeatedly throughout the 1900s and early 2000s. This variation suggests that production is not determined primarily by the geographic location of rare earth ores. Instead, the location of mines and separation plants is driven by a combination of market prices, government policies, and the actions of producers and manufacturers. As a result where and how rare earth elements are produced could change in the future. Initial Rare Earth Metal Production Although a mineral containing rare earth elements was identified in Sweden in 1788, it took more than 100 years for the first significant industrial product to be made using the rare earths. In the 1890s chemist Carl Auer von Welsbach developed a mantle made of a mixture of 99% thorium and 1% cerium for use with gas streetlights. More than five billion mantles were sold worldwide through the 1930s. Welsbach also developed mischmetal, a mixture of rare earth elements cerium, lanthanum, neodymium, and praseodymium. When alloyed with iron, mischmetal produced a metal that sparked when struck. It was widely used in pocket cigarette lighters as well as automobile ignition switches. The Welsbach Company mined rare earth deposits located in coastal sands in Brazil, India, and North Carolina. India’s coastal sands are also rich in the radioactive element thorium, which is not a rare earth element. India banned the export of these sands in 1948 to preserve its thorium supply for a potential nuclear energy program. At that time the price of rare earth metals spiked until newly established mining locations briefly made South Africa the world’s leading exporter of rare earth ores in the 1950s. -
Low-Impact Living Initiative
firecraft what is it? It's starting and managing fire, which requires fuel, oxygen and ignition. The more natural methods usually progress from a spark to an ember to a flame in fine, dry material (tinder), to small, thin pieces of wood (kindling) and then to firewood. Early humans collected embers from forest fires, lightning strikes and even volcanic activity. Archaeological evidence puts the first use of fire between 200-400,000 years ago – a time that corresponds to a change in human physique consistent with food being cooked - e.g. smaller stomachs and jaws. The first evidence of people starting fires is from around 10,000 years ago. Here are some ways to start a fire. Friction: rubbing things together to create friction Sitting around a fire has been a relaxing, that generates heat and produces embers. An comforting and community-building activity for example is a bow-drill, but any kind of friction will many millennia. work – e.g. a fire-plough, involving a hardwood stick moving in a groove in a piece of softwood. what are the benefits? Percussion: striking things together to make From an environmental perspective, the more sparks – e.g. flint and steel. The sharpness of the natural the method the better. For example, flint creates sparks - tiny shards of hot steel. strikers, fire pistons or lenses don’t need fossil Compression: fire pistons are little cylinders fuels or phosphorus, which require the highly- containing a small amount of tinder, with a piston destructive oil and chemical industries, and that is pushed hard into the cylinder to compress friction methods don’t require the mining, factories the air in it, which raises pressure and and roads required to manufacture anything at all. -
Rounding up Lutetium Lars Öhrström Suspects That As Time Goes By, We May See More of Lutetium — the Last of the Lanthanoids
in your element Rounding up lutetium Lars Öhrström suspects that as time goes by, we may see more of lutetium — the last of the lanthanoids. e’ll always have Paris” Rick says motexafin (based on the ‘texaphyrins’), a “ to Ilsa in their final goodbye on sub-class of porphyrin-like macrocycles Wthe foggy airstrip of Casablanca with five instead of four nitrogen atoms in in the eponymous film. However, the an approximately planar ring. Motexafin question among chemists about the element lutetium, which features Lu3+ and two lutetium, named after Lutetia, as the French acetate counter-ions coordinated on either capital was known in Roman times, is not so side of the macrocycle, is potentially a good much about having it (it is more abundant photosensitizer in dynamic phototherapy than silver in the Earth’s crust), but rather and has been going through phase I trials where to place it on the map. against prostate cancer2. With its valence electron configuration Uses of the naturally occurring element [Xe]4f 146s25d1, element 71 seems to belong are otherwise scarce, but its isotope Lu-177 is to group 3, but we often see it placed at successfully used in experimental and clinical BRITTA LANGEN, BRITTA SWEDEN UNIVERSITY OF GOTHENBURG, the very end of the lanthanoid series. Its treatments against some severe cancers by downstairs neighbour lawrencium, for which Illustration of a radiolabelled somatostatin hooking it up to a tetraazacyclododecane- experimental data are much more difficult to analogue built using PyMOL (https://pymol.org) tetraacetate (DOTA) ligand grafted to obtain, is in the same ambiguous situation. -
RBRC-32 BNL-6835.4 PARITY ODD BUBBLES in HOT QCD D. KHARZEEV in This ~A~Er We Give a Pedawwicalintroduction~0 Recent Work Of
RBRC-32 BNL-6835.4 PARITY ODD BUBBLES IN HOT QCD D. KHARZEEV RIKEN BNL Research Center, Br$ookhauenNational Laboratory, . Upton, New York 11973-5000, USA R.D. PISARSKI Department of Physics, Brookhaven National Laboratoy, Upton, New York 11973-5000, USA M.H.G. TYTGAT Seruice de Physique Th&orique, (7P 225, Uniuersitc4Libre de Bruzelles, B[ud. du !t%iomphe, 1050 Bruxelles, Belgium We consider the topological susceptibility for an SU(N) gauge theory in the limit of a large number of colors, N + m. At nonzero temperature, the behavior of the topological susceptibility depends upon the order of the reconfining phrrse transition. The meet interesting possibility is if the reconfining transition, at T = Td, is of second order. Then we argue that Witten’s relation implies that the topological suscepti~lfity vanishes in a calculable fdion at Td. Ae noted by Witten, this implies that for sufficiently light quark messes, metaetable etates which act like regions of nonzero O — parity odd bubbles — can arise at temperatures just below Td. Experimentally, parity odd bubbles have dramatic signature% the rI’ meson, and especially the q meson, become light, and are copiously produced. Further, in parity odd bubbles, processes which are normally forbidden, such as q + rr”ro, are allowed. The most direct way to detect parity violation is by measuring a parity odd global seymmetry for charged pions, which we define. 1 Introduction In this .-~a~er we give a Pedawwicalintroduction~0 recent work of ours? We I consider an SU(IV) gau”ge t~e~ry in the limit of a large number of colors, N + co, This is, of course, a familiar limit? We use the large N expansion I to investigate the behavior of the theory at nonzero temperature, especially for the topological susceptibility. -
Fire Before Matches
Fire before matches by David Mead 2020 Sulang Language Data and Working Papers: Topics in Lexicography, no. 34 Sulawesi Language Alliance http://sulang.org/ SulangLexTopics034-v2 LANGUAGES Language of materials : English ABSTRACT In this paper I describe seven methods for making fire employed in Indonesia prior to the introduction of friction matches and lighters. Additional sections address materials used for tinder, the hearth and its construction, some types of torches and lamps that predate the introduction of electricity, and myths about fire making. TABLE OF CONTENTS 1 Introduction; 2 Traditional fire-making methods; 2.1 Flint and steel strike- a-light; 2.2 Bamboo strike-a-light; 2.3 Fire drill; 2.4 Fire saw; 2.5 Fire thong; 2.6 Fire plow; 2.7 Fire piston; 2.8 Transporting fire; 3 Tinder; 4 The hearth; 5 Torches and lamps; 5.1 Palm frond torch; 5.2 Resin torch; 5.3 Candlenut torch; 5.4 Bamboo torch; 5.5 Open-saucer oil lamp; 5.6 Footed bronze oil lamp; 5.7 Multi-spout bronze oil lamp; 5.8 Hurricane lantern; 5.9 Pressurized kerosene lamp; 5.10 Simple kerosene lamp; 5.11 Candle; 5.12 Miscellaneous devices; 6 Legends about fire making; 7 Additional areas for investigation; Appendix: Fire making in Central Sulawesi; References. VERSION HISTORY Version 2 [13 June 2020] Minor edits; ‘candle’ elevated to separate subsection. Version 1 [12 May 2019] © 2019–2020 by David Mead All Rights Reserved Fire before matches by David Mead Down to the time of our grandfathers, and in some country homes of our fathers, lights were started with these crude elements—flint, steel, tinder—and transferred by the sulphur splint; for fifty years ago matches were neither cheap nor common.