The Course of Hermann Aron's
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Historical Development of the Periodic Classification of the Chemical Elements
THE HISTORICAL DEVELOPMENT OF THE PERIODIC CLASSIFICATION OF THE CHEMICAL ELEMENTS by RONALD LEE FFISTER B. S., Kansas State University, 1962 A MASTER'S REPORT submitted in partial fulfillment of the requirements for the degree FASTER OF SCIENCE Department of Physical Science KANSAS STATE UNIVERSITY Manhattan, Kansas 196A Approved by: Major PrafeLoor ii |c/ TABLE OF CONTENTS t<y THE PROBLEM AND DEFINITION 0? TEH-IS USED 1 The Problem 1 Statement of the Problem 1 Importance of the Study 1 Definition of Terms Used 2 Atomic Number 2 Atomic Weight 2 Element 2 Periodic Classification 2 Periodic Lav • • 3 BRIEF RtiVJiM OF THE LITERATURE 3 Books .3 Other References. .A BACKGROUND HISTORY A Purpose A Early Attempts at Classification A Early "Elements" A Attempts by Aristotle 6 Other Attempts 7 DOBEREBIER'S TRIADS AND SUBSEQUENT INVESTIGATIONS. 8 The Triad Theory of Dobereiner 10 Investigations by Others. ... .10 Dumas 10 Pettehkofer 10 Odling 11 iii TEE TELLURIC EELIX OF DE CHANCOURTOIS H Development of the Telluric Helix 11 Acceptance of the Helix 12 NEWLANDS' LAW OF THE OCTAVES 12 Newlands' Chemical Background 12 The Law of the Octaves. .........' 13 Acceptance and Significance of Newlands' Work 15 THE CONTRIBUTIONS OF LOTHAR MEYER ' 16 Chemical Background of Meyer 16 Lothar Meyer's Arrangement of the Elements. 17 THE WORK OF MENDELEEV AND ITS CONSEQUENCES 19 Mendeleev's Scientific Background .19 Development of the Periodic Law . .19 Significance of Mendeleev's Table 21 Atomic Weight Corrections. 21 Prediction of Hew Elements . .22 Influence -
Single Molecule Enzymology À La Michaelis-Menten
Single molecule enzymology à la Michaelis-Menten Ramon Grima1, Nils G. Walter2 and Santiago Schnell3* 1 School of Biological Sciences and SynthSys, University of Edinburgh, Edinburgh, UK 2 Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA 3 Department of Molecular & Integrative Physiology, Department of Computational Medicine & Bioinformatics, and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan, USA * To whom the correspondence should be addressed. E-mail: [email protected] Review article accepted for publication to FEBS Journal special issue on Enzyme Kinetics and Allosteric Regulation 1 Abstract In the past one hundred years, deterministic rate equations have been successfully used to infer enzyme-catalysed reaction mechanisms and to estimate rate constants from reaction kinetics experiments conducted in vitro. In recent years, sophisticated experimental techniques have been developed that allow the measurement of enzyme- catalysed and other biopolymer-mediated reactions inside single cells at the single molecule level. Time course data obtained by these methods are considerably noisy because molecule numbers within cells are typically quite small. As a consequence, the interpretation and analysis of single cell data requires stochastic methods, rather than deterministic rate equations. Here we concisely review both experimental and theoretical techniques which enable single molecule analysis with particular emphasis on the major developments in the field of theoretical stochastic enzyme kinetics, from its inception in the mid-twentieth century to its modern day status. We discuss the differences between stochastic and deterministic rate equation models, how these depend on enzyme molecule numbers and substrate inflow into the reaction compartment and how estimation of rate constants from single cell data is possible using recently developed stochastic approaches. -
The Rare Earths II
Redis co very of the Elements The Ra re Earth s–The Con fusing Years I A gallery of rare earth scientists and a timeline of their research I I James L. Marshall, Beta Eta 1971 , and Virginia R. Marshall, Beta Eta 2003 , Department of Chemistry, University of North Texas, Denton, TX 76203-5070, [email protected] The rare earths after Mosander. In the pre - vi ou s HEXAGON “Rediscovery” article, 1p we were introduced to the 17 rare earths, found in the f-block and the Group III chemical family of Figure 1. Important scientists dealing with rare earths through the nineteenth century. Johan Gadolin the Periodic Table. Because of a common (1760 –1852) 1g —discovered yttrium (1794). Jöns Jacob Berzelius (1779 –1848) and Martin Heinrich valence electron configuration, the rare earths Klaproth (1743 –1817) 1d —discovered cerium (1803). Carl Gustaf Mosander (1787 –1858) 1p —discovered have similar chemical properties, and their lanthanum (1839), didymium (1840), terbium, and erbium (1843). Jean-Charles deGalissard Marignac chemical separation from one another can be (1817 –1894) 1o —discovered ytterbium (1878) and gadolinium (1880). Per Teodor Cleve (1840 –1905) 1n — difficult. From preparations of the first two rare discovered holmium and thulium (1879). Lars Fredrik Nilson (1840 –1899) 1n —discovered scandium earth element s—yttrium and ceriu m—the (1879). Paul-Émile Lecoq de Boisbaudran (1838 –1912) —discovered samarium (1879) and dysprosium Swedish chemist Carl Gustaf Mosander (Figure (1886). 1b Carl Auer von Welsbach (1858 –1929) 1c —discovered praseodymium and neodymium (1885); 1, 2) was able to separate four additional ele - co-discovered lutetium (1907). -
Covalent Modification of Reduced Flavin Mononucleotide in Type-2 Isopentenyl Diphosphate Isomerase by Active-Site-Directed Inhibitors
Covalent modification of reduced flavin mononucleotide in type-2 isopentenyl diphosphate isomerase by active-site-directed inhibitors Takuya Nagaia,1, Hideaki Unnob,1, Matthew Walter Janczakc,1, Tohru Yoshimuraa, C. Dale Poulterc,2, and Hisashi Hemmia,2 aDepartment of Applied Molecular Bioscience, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan; bDivision of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi, Nagasaki, Nagasaki 852-8521, Japan; and cDepartment of Chemistry, University of Utah, 315 South 1400 East RM2020, Salt Lake City, UT 84112 Contributed by C. Dale Poulter, October 11, 2011 (sent for review July 9, 2011) Evidence for an unusual catalysis of protonation/deprotonation by not detect signals for putative radical intermediates (9). Attempts a reduced flavin mononucleotide cofactor is presented for type-2 to inhibit the enzyme by incubation with a cyclopropyl analogue isopentenyl diphosphate isomerase (IDI-2), which catalyzes isomer- of IPP, designed to rearrange to a homoallylic structure by a ization of the two fundamental building blocks of isoprenoid bio- radical clock mechanism, were unsuccessful (12, 13). Instead, the synthesis, isopentenyl diphosphate and dimethylallyl diphosphate. analogue was an alternate substrate that isomerized to the cor- The covalent adducts formed between irreversible mechanism- responding DMAPP derivative without a cyclopropylcarbinyl- based inhibitors, 3-methylene-4-penten-1-yl diphosphate or 3-oxi- homoallyl radical rearrangement. ranyl-3-buten-1-yl diphosphate, and the flavin cofactor were inves- Mechanism-based inhibitors of IDI-1, which are activated by tigated by X-ray crystallography and UV-visible spectroscopy. Both protonation of epoxide and diene moieties in these compounds, the crystal structures of IDI-2 binding the flavin-inhibitor adduct – and the UV-visible spectra of the adducts indicate that the covalent also inactivate IDI-2 (12 15). -
Maud Menten, a Physician and Biochemist
Maud Menten Canadian medical researcher Maud Menten (1879-1960) has been called the "grandmother of biochemistry," a "radical feminist 1920s flapper," and a "petite dynamo." Not only was she an author of Michaelis-Menten equation for enzyme kinetics (like the plot in indigo in my portrait), she invented the azo-dye coupling for alkaline phosphatase, the first example of enzyme histochemistry, still used in histochemistry imaging of tissues today (which inspired the histology background of the portrait), and she also performed the first electrophoretic separation of blood haemoglobin in 1944! Born in Port Lambton, Ontario, she studied at the University of Toronto, earning her bachelor's in 1904, and then graduated from medical school (M.B., bachelor's of medicine) in 1907. She published her first paper with Archibald Macallum, the Professor of Physiology at U of T (who went on to set up the National Research Council of Canada), on the distribution of chloride ions in nerve cells in 1906. She worked a year at the Rockefeller Institute in New York, where along with Simon Flexner, first director of the Institute, she co-authored a book on radium bromide and cancer, the first publication produced by the Institute - barely 10 years after Marie Curie had discovered radium. She completed the first of two fellowships at Western Reserve University (now Case Western Reserve University), then she earned a doctorate in medical research in 1911 at U of T. She was one of the first Canadian women to earn such an advanced medical degree. She then moved to Berlin (travelling by boat, unfazed by the recent sinking of the Titanic) to work with Leonor Michaelis. -
White Paper: the KCC Scientific Model 1900W-UNV Clock Winder for Standard Electric Clocks Ken Reindel, KCC Scientific Updated 1-26-13
White Paper: The KCC Scientific Model 1900W-UNV Clock Winder For Standard Electric Clocks Ken Reindel, KCC Scientific Updated 1-26-13 The purpose of this White Paper is to help provide some background on Standard Electric Time master clock, what a Model 1900W-UNV Clock Winder can do for it, and how the Model 1900W-UNV works. Historical Perspective. From the 1880s and beyond, inventors became interested in applying the principles of telegraphy to horology. The idea of a battery-wound master clock which would drive multiple slave clocks, effectively communicating the time signal to them, began to take shape. Additionally, it became fascinating to inventors that the “slave” clocks could be very simple with no escapements or springs, no internal batteries, and requiring little if any maintenance. Charles Warner, who founded the Standard Electric Time Company in 1884,1 was one such inventor. Very early on, Standard Electric borrowed heavily from the Self Winding Clock Company for the design of its master clock movements. Master clocks would have the characteristics described above and relied on special contacts to drive the slaves. Later on, this same concept would be extended to driving program wheels and punched tape ribbons within the clocks themselves, to provide bell timing and other electrical sequences to businesses, schools, etc. For example, many such clocks have been found in schoolhouses and were at one time responsible for ringing bells at the proper times throughout different parts of the building to send students to the next class, as well as driving classroom slave clocks. Standard Electric’s master clock movements eventually took a shape similar to that of the slave clocks: simple, elegant minute impulse ratchet designs for winding the 60, 72, or 80 beat pendulum movements. -
Leonor Michaelis and Maud Leonora Menten Celebrating 100 Years of the Michaelis–Menten Equation
ARTICLE-IN-A-BOX Leonor Michaelis and Maud Leonora Menten Celebrating 100 years of the Michaelis–Menten Equation Leonor Michaelis was an honoured German biochemist and Maud Leonora Menten an honoured Canadian pathologist, during the nineteenth century. Though Michaelis sustained his interest in enzymology and biochemistry, Menten moved to pathology and became a renowned pathologist later in her career. The research collaboration of Michaelis and Menten was phenomenal resulting in the celebrated ‘Michaelis–Menten Equation’. Michaelis and Menten’s classic paper titled ‘Die Kinetik der Invertin wirkung’, published in Biochemische Zeitschrift in 1913 marks its centenary this year. This seminal paper which proved vital for the teaching of enzyme kinetics, was acknowledged with so much appreciation and attention that no textbook in biology for undergraduate and graduate students across the world is complete without a discussion of the Michaelis–Menten Equation. An earlier paper by Victor Henri and Brown lacked one important insight which was reported by Michaelis and Menten: that insight was the analysis of reaction in terms of the initial rate. Michaelis and Menten introduced the concept of measuring the initial activity of the enzyme by mixing it with substrate so that product accumulation would not inhibit the activity. Leonor Michaelis (1875–1949) Leonor Michaelis was born in Berlin, Germany on January 16, 1875. He graduated from the ‘humanistic’ Koellnisches Gymnasium in 1893. This gymnasium was special as unlike the other humanistic gymnasiums, it also included chemistry and physics labs which were not in general use and it was only the keen initiative of two professors that enabled interested students learn the subjects. -
Rounding up Lutetium
Rounding up lutetium Downloaded from: https://research.chalmers.se, 2019-05-11 19:07 UTC Citation for the original published paper (version of record): Öhrström, L. (2018) Rounding up lutetium Nature Chemistry, 10(3): 372- http://dx.doi.org/10.1038/nchem.2938 N.B. When citing this work, cite the original published paper. research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is administrated and maintained by Chalmers Library (article starts on next page) in your element Rounding up lutetium Lars Öhrström suspects that as time goes by, we may see more of lutetium — the last of the lanthanoids. e’ll always have Paris” Rick says motexafn (based on the ‘texaphyrins’), a “ to Ilsa in their fnal goodbye on sub-class of porphyrin-like macrocycles Wthe foggy airstrip of Casablanca with fve instead of four nitrogen atoms in in the eponymous flm. However, the an approximately planar ring. Motexafn question among chemists about the element lutetium, which features Lu3+ and two lutetium, named afer Lutetia, as the French acetate counter-ions coordinated on either capital was known in Roman times, is not so side of the macrocycle, is potentially a good much about having it (it is more abundant photosensitizer in dynamic phototherapy than silver in the Earth’s crust), but rather and has been going through phase I trials where to place it on the map. against prostate cancer2. With its valence electron confguration Uses of the naturally occurring element [Xe]4f 146s25d1, element 71 seems to belong are otherwise scarce, but its isotope Lu-177 is to group 3, but we ofen see it placed at successfully used in experimental and clinical BRITTA LANGEN, LANGEN, BRITTA SWEDEN UNIVERSITY OF GOTHENBURG, the very end of the lanthanoid series. -
GLOBAL RARE-EARTH PRODUCTION: HISTORY and OUTLOOK History – the Discovery
Center for Strategic and International Studies Rare Earth Elements: Geology, Geography, and Geopolitics James B. Hedrick Hedrick Consultants, Inc. U.S. Rare Earths, Inc. Burke, Virginia December 15, 2010 Washington, DC GLOBAL RARE-EARTH PRODUCTION: HISTORY AND OUTLOOK History – The Discovery . The rare earths were discovered in 1787 by Swedish Army Lieutenant Carl Axel Arrhenius . Carl, an amateur mineralogist collected the black mineral ytterbite, later renamed gadolinite, from a small feldspar and quartz mine at Ytterby, Sweden . With similar chemical structures the rare earths proved difficult to separate . It was not until 1794 that Finnish chemist Johann Gadolin separated the first impure yttrium oxide from the mineral ytterbite History – The Discovery History – The Commercialization . The rare earths were commercialized when the incandescent lamp mantle industry was established in 1884 with mantles of zirconium, lanthanum, and yttrium oxides with later improvements requiring only the oxides of thorium and cerium. The lamp mantle was discovered by Baron Carl Auer von Welsbach . The mantles also used small amounts of neodymium and praseodymium as an indelible brand name Welsbach label History – The Early Mining . Rare earths were first produced commercially in the 1880s with the mining in Sweden and Norway of the rare-earth thorium phosphate mineral monazite . Foreign Production Brazil produced monazite as early as 1887 India produced monazite starting in 1911 . Domestic Production Monazite production in the United States was first recorded in 1893 in North Carolina - a small tonnage of monazite was reportedly mined in 1887 Monazite mining in South Carolina began in 1903 History – The Processing . Three main methods for separating and refining the rare- earth elements since they were discovered . -
Producers Case Study the Changing
Producers Case Study The Changing Geography of Rare Earth Element Production Introduction The locations where rare earth elements are produced changed repeatedly throughout the 1900s and early 2000s. This variation suggests that production is not determined primarily by the geographic location of rare earth ores. Instead, the location of mines and separation plants is driven by a combination of market prices, government policies, and the actions of producers and manufacturers. As a result where and how rare earth elements are produced could change in the future. Initial Rare Earth Metal Production Although a mineral containing rare earth elements was identified in Sweden in 1788, it took more than 100 years for the first significant industrial product to be made using the rare earths. In the 1890s chemist Carl Auer von Welsbach developed a mantle made of a mixture of 99% thorium and 1% cerium for use with gas streetlights. More than five billion mantles were sold worldwide through the 1930s. Welsbach also developed mischmetal, a mixture of rare earth elements cerium, lanthanum, neodymium, and praseodymium. When alloyed with iron, mischmetal produced a metal that sparked when struck. It was widely used in pocket cigarette lighters as well as automobile ignition switches. The Welsbach Company mined rare earth deposits located in coastal sands in Brazil, India, and North Carolina. India’s coastal sands are also rich in the radioactive element thorium, which is not a rare earth element. India banned the export of these sands in 1948 to preserve its thorium supply for a potential nuclear energy program. At that time the price of rare earth metals spiked until newly established mining locations briefly made South Africa the world’s leading exporter of rare earth ores in the 1950s. -
Remembering the First Battery-Operated Clock
© 2015 Antiquarian Horological Society. Reproduction prohibited without permission. ANTIQUARIAN HOROLOGY Remembering the first battery-operated clock Beverley F. Ronalds* Francis Ronalds invented a reliable electric clock in 1815, twenty-five years before Alexander Bain’s patent. It was powered by dry piles, a modified form of battery that has extremely long life but the disadvantage that its electrical properties vary with the weather. Ronalds had considerable success in creating regulating mechanisms for his clock to ensure accurate time-keeping in all meteorological conditions. He did not go on to commercialise his ideas, although others made and sold comparable timepieces on the Continent. This year marks the bicentenary of the with the electrically dissimilar metals. The publication of the first battery-operated dry pile was found to have an electric clock. It was rediscovered in the 1970s by potential difference or voltage across its two Charles Aked, Council member of the ends but, unlike Volta’s pile, did not exhibit Antiquarian Horology Society and first an electric current when the terminals were Chairman of the Electrical Horology Group, joined in a circuit. Its potential difference and further information has since come to was also maintained in use whereas a voltaic hand.1 pile ceased to work after a while.3 The clock was created by a prolific Two of the scientists in England who inventor named (later Sir) Francis Ronalds developed and improved the dry pile were FRS (1788–1873); he lived on the Upper Jean-André de Luc (1727–1817) and Mall in Hammersmith, London, at the time George Singer (1786–1817). -
CLOCKS – TIMERS ASTROTECH QUARTZ CHRONOM E TERS SUPERCLOCK from a Fine Quality Instrument to Satisfy All Cockpit Clock/Timer Needs
CLOCKS – TIMERS ASTROTECH QUARTZ CHRO NOM E TERS SUPERCLOCK FROM A fine quality instrument to satisfy all cockpit clock/timer needs. 12 or 24 hour clock, 24 hour elapsed timer with time- ELECTRONICS INTERNATIONAL Displays local and Zulu time. May be set to display in a 12 out or hold feature, month and date. Will operate on internal or 24-hr format. A 10-year lithium battery keeps the clock CM battery for 2 years or can be connected to electrical system. running even if the aircraft battery is removed. Displays an 12 or 28V DC operation. Up Timer. This Timer will start running when the engine Part no. Model Description Price is started. In this manner the Timer acts as an automatic Flight Timer. 10-15508 LC-2 Panel Mount Aircraft Powered 14/28V . The Up Timer may be started, stopped or reset. A Recurring Alarm may 10-15515 LC-2 Aircraft Powered Panel Clock 28V . be set to alert you at appropriate time intervals. Example: If the alarm is WP 10-15512 LC-2A-5 King Air, 28 volts . set for 30 minutes, you will get an alarm at 30 minutes, 60 minutes, 90 10-15513 LC-2A-6 Beechcraft 28V Clock . minutes, etc. This alarm can be used to remind you to check your fuel 10-15514 LC-2E Embaraer 5V CLOCKClock . level or switch tanks at set time intervals. Displays a Down Timer. This 10-15507 LC-2P Central Wheel 14V A/C Powered . Timer counts down from a programmed start time. The Down Timer may NOTE: For Aircraft Application Information on Astrotech Chronometers visit be started, stopped or reset.