Hot Rocks from Cold Places: a Field, Geochemical and Geochronological Study from the High Arctic Large Igneous P Rovince (HALIP) at Axel Heiberg Island, Nunavut

Total Page:16

File Type:pdf, Size:1020Kb

Hot Rocks from Cold Places: a Field, Geochemical and Geochronological Study from the High Arctic Large Igneous P Rovince (HALIP) at Axel Heiberg Island, Nunavut ! !"#$%"&'($)*"+$,"-.$/-0&1(2$3$451-.6$71"&81+5&0-$09.$ 71"&8*"9"-":5&0-$;#<.=$)*"+$#81$!5:8$3*&#5&$>0*:1$ ?:91"<($/*"@59&1$A!3>?/B$0#$3C1-$!15D1*:$?(-09.6$ E<90@<#$ $ $ by Cole Girard Kingsbury A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Earth Sciences Ottawa – Carleton Geoscience Centre and Carleton University Ottawa, Ontario © 2016 Cole Girard Kingsbury ! ! !"#$%&'$() ) ) ) ) ) ) ) ) ) ) The geology of the Arctic is greatly influenced by a period of widespread Cretaceous magmatic activity, the High Arctic Large Igneous Province (HALIP). Two major tholeiitic magmatic pulses characterize HALIP: an initial 120 -130 Ma pulse that affected Arctic Canada and formally adjacent regions of Svalbard (Norway) and Franz Josef Land (Russia). In Canada, this pulse fed lava flows of the Isachsen Formation. A second 90-100 Ma pulse that apparently only affected the Canadian side of the Arctic, fed flood basalts of the Strand Fiord Formation. The goal of this thesis is to improve understanding of Arctic magmatism of the enigmatic HALIP through field, remote sensing, geochemical and geochronology investigations of mafic intrusive rocks collected in the South Fiord area of Axel Heiberg Island, Nunavut, and comparison with mafic lavas of the Isachsen and Strand Fiord Formations collected from other localities on the Island. Ground-based and remote sensing observations of the South Fiord area reveal a complex network of mafic sills and mainly SSE-trending dykes. Two new U-Pb baddeleyite ages of 95.18 ± 0.35 Ma and 95.56 ± 0.24 Ma from South Fiord intrusions along with geochemical similarity confirm these intrusions (including the SSE-trending dykes) are feeders for the Strand Fiord Formation lavas. The ages constrain a 3 Ma transition between the two pulses of older tholeiitic and the younger stage of alkaline magmatism that begins with the 92 Ma Wootton Igneous Complex. Based on trace element and Sm-Nd isotopic data, this 95 Ma pulse of South Fiord intrusives and Strand Fiord Formation lavas are derived from a homogenous upper mantle source that was crustally contaminated by sedimentary rocks of the Sverdrup Basin. In contrast, lavas of the older c. 120-130 Ma Isachsen Formation are derived from a heterogeneous mantle source and experienced significantly less crustal contamination. The mantle heterogeneity of lavas in the Isachsen Formation is probably defined in part by mantle melting that incorporated sediments from paleosubduction fronts ancestral to the Aleutian subduction zone. Furthermore, major element concentrations may also suggest contamination by evaporite diapirs from the Carboniferous Otto Fiord Formation. ! ""! ! !'*+,-./01/2/+$#() ) ) ) ) ) ) ) ) “It takes a village to raise a Child” ~African Proverb “It takes a community to intellectually raise a PhD student” ~Paraphrased from above A Doctor of Philosophy degree is a massive undertaking that takes a community of dedicated individuals guiding aspiring students such as myself through the hoops and milestones even though only one name – mine – appears on the cover of this thesis. Firstly, I would like to thank Drs. Richard Ernst and Brian Cousens for playing a big game of chance 4 years ago in accepting me as their PhD student, being very supportive while also maintaining high expectations. I thank them greatly for helping me through this monumental project from start to end, sharing a wealth of knowledge in the fields of igneous geochemistry and large igneous provinces (LIPs) as well as unwittingly being “honorary Professors of Cole Management” in the last weeks of this degree journey. I would also like to thank Dr. Marie-Claude Williamson of the Geological Survey of Canada (GSC) for serving on my advisory committee and taking me on a field season on Axel Heiberg Island in part to help me with the field component of my project, setting me straight when required, as well as providing additional samples from her PhD thesis in order to supplement my thesis samples. In addition, I thank Dr. Steve Bergman of Shell –a generous and enthusiastic project sponsor – for his help in reviewing thesis chapters as well as lending his expertise on Arctic geology pertaining to HALIP. I also want to thank Rick McNeil and Steve Day (GSC team members who also were field members in 2013) for their company on Axel Heiberg Island during the 2013 field campaign and Gerry for skillful helicopter piloting and the company he provided during the extra days on the Island due to “Lowey” the low-pressure system. In addition I thank Jeff Harris for assistance in the remote sensing aspect of my work presented herein. Processing samples both for geochemical, isotopic and U-Pb age analysis took up the better part of my time in the middle years of this project, what I call the “dart- throwing” phase. I want to thank Tim Mount for assistance in teaching me how to use the ! """! ! rock saw, “blender,” and “Alvin” along with making my thin sections and the discussions about sample preparation process. Furthermore, I thank Etienne Menard and Matt Hanewitch for help in sample processing. Thanks to Dr. Shuangquan Zhang for help in guiding me through the process of turning rock powder into excellent Sm-Nd isotopic data including sample dissolution, ion exchange chromatography and mass-spectrometer loading and measurements. I also acknowledge Peter Jones in the microprobe lab here at Carleton University for helping me search for baddelyites in diabasic and gabbroic samples, Dr. Ulf, Soderlund at Lund University (Sweden) for separating these and Dr. Sandra Kamo (Jack Satterly geochronology lab, University of Toronto) for obtaining high quality U-Pb ages based on baddeleyites along with assistance in data interpretation. Finally I pay loads of thanks to Sonia Tanguay for being my Paul Menton Centre disability coordinator along with all the meetings we have had together in the last 4 years which helped me process emotions and thoughts and taught me that the sky is still up in the sky. In addition, I thank all of my fellow graduate students past and present in the LIPs and geochemistry research community for their camaraderie, help and support including Chris Rogers, Niko Kastek, Sarah Davey, Susan Kingdon, Dr. Ann Timmermans, Kim Klausen and Matthew Trenkler. Last but not least, I want to thank my friends and family back home in Oregon including my parental units Steve and Diane as well as friends at “16 ! Hour Fitness” and from KindTree Productions – Autism Rocks for their friendships and support from afar: this thesis is dedicated to them all and to all students presently writing their own thesis knowing that the journey to a complete thesis is a struggle – I salute you. This thesis was supported financially through an NSERC CRD Grant (CRDPJ 419503-11) to Dr. Richard Ernst, the Polar Continental Shelf Program (PCSP), the Geological Survey of Canada Environmental Geoscience project, a Geological Society of America Research Grant as well as a departmental scholarship. I count myself very lucky to be surrounded with very supportive people who can see beyond my Quirkiness. ! "#! ! 3%/4&'/()) ) ) ) ) ) ) ) ) ) ) STATEMENT OF CONTRIBUTIONS: Field and sample collections: I (Cole Kingsbury) conducted fieldwork in the South Fiord region of Axel Heiberg Island, northern Canada, that involved documenting structural information about igneous intrusions and their relations with sedimentary rocks as well as making decisions about sample selection under the watchful eyes of Dr. Marie-Claude Williamson and Steven Day (both Geological Survey of Canada). I decided upon the general field area (South Fiord) in consultation with Dr. Marie-Claude Williamson but the specific field traversing area was determined on the spot largely by where snow was sufficiently melted to permit field traverses based on helicopter reconnaissance. The samples I collected from South Fiord were supplemented by archived samples collected by Dr. Marie-Claude Williamson in the Geodetic Hills and Camp Five Creek localities of Axel Heiberg Island initially for her PhD thesis. These archived samples were bequeathed to me at Dr. Williamson’s decision for this thesis as a means for chemical comparisons. Geochemical processing: Once samples from South Fiord along with Dr. Williamson’s archived samples arrived, I processed the South Fiord samples to thin section pucks and powder for major- and trace-element along with isotopic geochemistry. Assistants were hired to process Dr. Williamson’s samples. Tim Mount (Carleton University) made standard and single- polished thin sections on my specifications. On return of major- and trace element data from ALS Laboratories in North Vancouver, BC, I chose samples for Sm-Nd isotopic analysis. I weighed and dissolved spiked powders with the spike provided by Dr. Shuangquan Zhang (Carleton University). I then took each through ion exchange chromatography, and prepared and ran each through the TIMS (Thermal Ionization Mass Spectrometer) instrument at Carleton University under guidance from Dr. Shuangquan Zhang and Dr. Brian Cousens. ! #! ! Geochronology processing: I selected the samples reported herein for U-Pb dating based on locating baddeleyites via electron microprobe with assistance from Peter Jones (Carleton University). I then secured the three samples chosen in separate labeled bags and then handed each to Dr. Richard Ernst (Carleton University) for shipment to Dr. Ulf Söderlund (Lund University, Sweden) for baddeleyite separation. Dr. Söderlund then shipped baddeleyite separates from the two samples that yielded baddeleyites to Dr. Sandra Kamo (University of Toronto) for Isotope Dilution Thermal Ionization Mass Sprectrometer (ID-TIMS) U-Pb dating. Thesis and manuscript construction: Unless otherwise indicated, I drafted all figures herein presented. In addition I took the lead in the interpretation of data and their broader significance but benefited greatly from substantive discussions and reviews from Drs. Richard Ernst and Brian Cousens (Carleton University), Dr. Marie-Claude Williamson (Geological Survey of Canada) and Dr.
Recommended publications
  • New Constraints on the Age, Geochemistry
    New constraints on the age, geochemistry, and environmental impact of High Arctic Large Igneous Province magmatism: Tracing the extension of the Alpha Ridge onto Ellesmere Island, Canada T.V. Naber1,2, S.E. Grasby1,2, J.P. Cuthbertson2, N. Rayner3, and C. Tegner4,† 1 Geological Survey of Canada–Calgary, Natural Resources Canada, Calgary, Canada 2 Department of Geoscience, University of Calgary, Calgary, Canada 3 Geological Survey of Canada–Northern, Natural Resources Canada, Ottawa, Canada 4 Centre of Earth System Petrology, Department of Geoscience, Aarhus University, Aarhus, Denmark ABSTRACT Island, Nunavut, Canada. In contrast, a new Province (HALIP), is one of the least studied U-Pb age for an alkaline syenite at Audhild of all LIPs due to its remote geographic lo- The High Arctic Large Igneous Province Bay is significantly younger at 79.5 ± 0.5 Ma, cation, and with many exposures underlying (HALIP) represents extensive Cretaceous and correlative to alkaline basalts and rhyo- perennial arctic sea ice. Nevertheless, HALIP magmatism throughout the circum-Arctic lites from other locations of northern Elles- eruptions have been commonly invoked as a borderlands and within the Arctic Ocean mere Island (Audhild Bay, Philips Inlet, and potential driver of major Cretaceous Ocean (e.g., the Alpha-Mendeleev Ridge). Recent Yelverton Bay West; 83–73 Ma). We propose anoxic events (OAEs). Refining the age, geo- aeromagnetic data shows anomalies that ex- these volcanic occurrences be referred to col- chemistry, and nature of these volcanic rocks tend from the Alpha Ridge onto the northern lectively as the Audhild Bay alkaline suite becomes critical then to elucidate how they coast of Ellesmere Island, Nunavut, Canada.
    [Show full text]
  • Wolf-Sightings on the Canadian Arctic Islands FRANK L
    ARCTIC VOL. 48, NO.4 (DECEMBER 1995) P. 313–323 Wolf-Sightings on the Canadian Arctic Islands FRANK L. MILLER1 and FRANCES D. REINTJES1 (Received 6 April 1994; accepted in revised form 13 March 1995) ABSTRACT. A wolf-sighting questionnaire was sent to 201 arctic field researchers from many disciplines to solicit information on observations of wolves (Canis lupus spp.) made by field parties on Canadian Arctic Islands. Useable responses were obtained for 24 of the 25 years between 1967 and 1991. Respondents reported 373 observations, involving 1203 wolf-sightings. Of these, 688 wolves in 234 observations were judged to be different individuals; the remaining 515 wolf-sightings in 139 observations were believed to be repeated observations of 167 of those 688 wolves. The reported wolf-sightings were obtained from 1953 field-weeks spent on 18 of 36 Arctic Islands reported on: no wolves were seen on the other 18 islands during an additional 186 field-weeks. Airborne observers made 24% of all wolf-sightings, 266 wolves in 48 packs and 28 single wolves. Respondents reported seeing 572 different wolves in 118 separate packs and 116 single wolves. Pack sizes averaged 4.8 ± 0.28 SE and ranged from 2 to 15 wolves. Sixty-three wolf pups were seen in 16 packs, with a mean of 3.9 ± 2.24 SD and a range of 1–10 pups per pack. Most (81%) of the different wolves were seen on the Queen Elizabeth Islands. Respondents annually averaged 10.9 observations of wolves ·100 field-weeks-1 and saw on average 32.2 wolves·100 field-weeks-1· yr -1 between 1967 and 1991.
    [Show full text]
  • Geographical Report of the Crocker Land Expedition, 1913-1917
    5.083 (701) Article VL-GEOGRAPHICAL REPORT OF THE CROCKER LAND EXPEDITION, 1913-1917. BY DONALD B. MACMILLAN CONTENTS PAGE INTRODUCTION......................................................... 379 SLEDGE TRIP ON NORTH POLAR SEA, SPRING, 1914 .......................... 384 ASTRONOMICAL OBSERVATIONS-ON NORTH POLAR SEA, 1914 ................ 401 ETAH TO POLAR SEA AND RETURN-MARCH AVERAGES .............. ........ 404 WINTER AND SPRING WORK, 1915-1916 ............. ......................... 404 SPRING WORK OF 1917 .................................... ............ 418 GENERAL SUMMARY ....................................................... 434 INTRODUCTJON The following report embraces the geographical work accomplished by the Crocker Land Expedition during -four years (Summer, 19.13, to Summer, 1917) spent at Etah, NortJaGreenland. Mr. Ekblaw, who was placed in charge of the 1916 expeditin, will present a separate report. The results of the expedition, naturally, depended upon the loca tion of its headquarters. The enforced selection of Etah, North Green- land, seriously handicapped the work of the expedition from start to finish, while the. expenses of the party were more than doubled. The. first accident, the grounding of the Diana upon the coast of Labrador, was a regrettable adventure. The consequent delay, due to unloading, chartering, and reloading, resulted in such a late arrival at Etah that our plans were disarranged. It curtailed in many ways the eageimess of the men to reach their objective point at the head of Flagler Bay, te proposed site of the winter quarters. The leader and his party being but passengers upon a chartered ship was another handicap, since the captain emphatically declared that he would not steam across Smith Sound. There was but one decision to be made, namely: to land upon the North Greenland shore within striking distance of Cape Sabine.
    [Show full text]
  • Evidence for Slab Material Under Greenland and Links to Cretaceous
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Evidence for slab material under Greenland 10.1002/2016GL068424 and links to Cretaceous High Key Points: Arctic magmatism • Mid-mantle seismic and gravity anomaly under Greenland identified G. E. Shephard1, R. G. Trønnes1,2, W. Spakman1,3, I. Panet4, and C. Gaina1 • Jurassic-Cretaceous slab linked to paleo-Arctic ocean closure, prior to 1Centre for Earth Evolution and Dynamics (CEED), Department of Geosciences, University of Oslo, Oslo, Norway, 2Natural Amerasia Basin opening 3 • Possible arc-mantle signature in History Museum, University of Oslo, Oslo, Norway, Department of Earth Sciences, Utrecht University, Utrecht, Netherlands, 4 Cretaceous High Arctic LIP volcanism Institut National de l’Information Géographique et Forestière, Laboratoire LAREG, Université Paris Diderot, Paris, France Supporting Information: Abstract Understanding the evolution of extinct ocean basins through time and space demands the • Supporting Information S1 integration of surface kinematics and mantle dynamics. We explore the existence, origin, and implications Correspondence to: of a proposed oceanic slab burial ground under Greenland through a comparison of seismic tomography, G. E. Shephard, slab sinking rates, regional plate reconstructions, and satellite-derived gravity gradients. Our preferred [email protected] interpretation stipulates that anomalous, fast seismic velocities at 1000–1600 km depth imaged in independent global tomographic models, coupled with gravity gradient perturbations, represent paleo-Arctic oceanic slabs Citation: that subducted in the Mesozoic. We suggest a novel connection between slab-related arc mantle and Shephard, G. E., R. G. Trønnes, geochemical signatures in some of the tholeiitic and mildly alkaline magmas of the Cretaceous High Arctic W.
    [Show full text]
  • Building and Breaking a Large Igneous Province: an Example from The
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Building and breaking a large igneous province: An 10.1002/2016GL072420 example from the High Arctic Key Points: Arne Døssing1 , Carmen Gaina2 , and John M. Brozena3 • An early Aptian giant High-Arctic LIP dyke swarm, >2000 km long, formed 1DTU Space, Lyngby, Denmark, 2Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway, 3United States as part of early rifting of the Amerasia Basin Naval Research Laboratory, Washington, District of Columbia, USA • Middle-to-Late Cretaceous HALIP flood basalts subsequently covered the northern Amerasia Basin, centered Abstract The genesis of the Amerasia Basin in the Arctic Ocean has been difficult to discern due to over the proto-Alpha Ridge overprint of the Cretaceous High-Arctic Large Igneous Province (HALIP). Based on detailed analysis of • Latest Cretaceous to middle Paleocene rifting and seafloor bathymetry data, new Arctic magnetic and gravity compilations, and recently published radiometric and spreading within the Makarov Basin seismic data, we present a revised plate kinematic model of the northernmost Amerasia Basin. We show broke apart the proto-Alpha Ridge that the smaller Makarov Basin is formed by rifting and seafloor spreading during the latest Cretaceous (to middle Paleocene). The opening progressively migrated into the Alpha Ridge structure, which was the Supporting Information: focus of Early-to-Middle Cretaceous HALIP formation, causing breakup of the proto-Alpha Ridge into the • Supporting Information S1 present-day Alpha Ridge and Alpha Ridge West Plateau. We propose that breakup of the Makarov Basin was triggered by extension between the North America and Eurasian plates and possibly North Pacific Correspondence to: A.
    [Show full text]
  • Antoniades.2005A.Pdf
    Journal of Paleolimnology (2005) 33: 349–360 Ó Springer 2005 -1 Quantitative estimates of recent environmental changes in the Canadian High Arctic inferred from diatoms in lake and pond sediments Dermot Antoniades1,*, Marianne S.V. Douglas1 and John P. Smol2 1Department of Geology, University of Toronto, 22 Russell St., Toronto ON, M5S 3B1, Canada 2Paleoecological Environmental Assessment and Research Lab (PEARL), Department of Biology, Queen’s University, Kingston ON, K7L 3N6, Canada; *Author for correspondence (e-mail: dermot.antoniades@ utoronto.ca) Received 26 May 2004; accepted in revised form 4 November 2004 Key words: Arctic, Climate, Diatoms, Ellef Ringnes Island, Ellesmere Island, Environmental change, Limnology, pH, Proxies Abstract Diatoms were examined in three lacustrine sediment records from Alert, northern Ellesmere Island, and from Isachsen, Ellef Ringnes Island. Diatom assemblages changed markedly since the mid-19th century following relatively stable community composition that spanned centuries to millennia. Three different assemblages, primarily composed of Fragilaria pinnata, Diadesmis spp., or Pinnularia spp., dominated the pre-1850 period at the three sites, but were replaced with different, more diverse assemblages in recent sediments. These species shifts occurred in the mid- to late-19th century in the Isachsen sites, and in the mid- to late-20th century in our Alert site. This difference in timing appears to be a result of the different sensitivities of lakes and ponds to environmental change, rather than of site-specific chemical properties. Reconstructions of pH using diatom inference models indicated increases from 0.5 to 0.8 pH units at these sites over this period of assemblage change. The diatom-inferred pH record from Alert showed agreement with measured climate data from Alert over the last 30 years.
    [Show full text]
  • Queen Elizabeth Islands: Problems Associated with Water Balance Research
    Northern Research Basins Water Balance (Proceedings of a workshop held at Victoria, Canada, March 2004). IAHS Publ. 290, 2004 Queen Elizabeth Islands: problems associated with water balance research KATHY L. YOUNG1 & MING-KO WOO2 1 Geography Department, York University, 4700 Keele Street, Toronto, Ontario, M3JIP3, Canada klyoung(S>.vorku.ca 2 School of Geography and Geology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada Abstract The Queen Elizabeth Islands in Arctic Canada are in an extremely remote region with long, cold winters, and 2- to 3-month summers, with 24-h daylight. Snow is a major part of annual precipitation, but there are few Arctic weather stations and precipitation data accuracy is hampered by gauge undercatch. Large spatial variations in snowmelt and evaporation make it difficult to extend point calculations over a basin. Currently no official hydrometric station exists in the Islands and the short-term available records are afflicted by stream gauging problems during peak flows. Annual water balances are often not closed, as not all the components are measured or calculated; this applies to early studies and to all glacierized catchments. Given the sensitivity of polar regions to climatic change and the likely importance of freshwater input to the Arctic Ocean, performing proper water balances for the basins in the Arctic Archipelago is a challenge. Key words Canadian Arctic; evaporation; permafrost; precipitation; Queen Elizabeth Islands; runoff; storage; water balance INTRODUCTION In the early 1970s, interest in Arctic hydrological research was largely stimulated by the planning of megaprojects in the Canadian Arctic Islands, such as the opening of mines and the designing of gas pipelines.
    [Show full text]
  • Redacted for Privacy Abstract Approved: John V
    AN ABSTRACT OF THE THESIS OF MIAH ALLAN BEAL for the Doctor of Philosophy (Name) (Degree) in Oceanography presented on August 12.1968 (Major) (Date) Title:Batymety and_Strictuof_thp..4rctic_Ocean Redacted for Privacy Abstract approved: John V. The history of the explordtion of the Central Arctic Ocean is reviewed.It has been only within the last 15 years that any signifi- cant number of depth-sounding data have been collected.The present study uses seven million echo soundings collected by U. S. Navy nuclear submarines along nearly 40, 000 km of track to construct, for the first time, a reasonably complete picture of the physiography of the basin of the Arctic Ocean.The use of nuclear submarines as under-ice survey ships is discussed. The physiography of the entire Arctic basin and of each of the major features in the basin are described, illustrated and named. The dominant ocean floor features are three mountain ranges, generally paralleling each other and the 40°E. 140°W. meridian. From the Pacific- side of the Arctic basin toward the Atlantic, they are: The Alpha Cordillera; The Lomonosov Ridge; andThe Nansen Cordillera. The Alpha Cordillera is the widest of the three mountain ranges. It abuts the continental slopes off the Canadian Archipelago and off Asia across more than550of longitude on each slope.Its minimum width of about 300 km is located midway between North America and Asia.In cross section, the Alpha Cordillera is a broad arch rising about two km, above the floor of the basin.The arch is marked by volcanoes and regions of "high fractured plateau, and by scarps500to 1000 meters high.The small number of data from seismology, heat flow, magnetics and gravity studies are reviewed.The Alpha Cordillera is interpreted to be an inactive mid-ocean ridge which has undergone some subsidence.
    [Show full text]
  • Submission to The
    SUBMISSION TO THE NUNAVUT WILDLIFE MANAGEMENT BOARD FOR Information: Decision: X Issue: Southampton Island (SHI) Caribou Management Background: • The Southampton Island caribou herd was in decline beginning in June 2003, and by June 2011 had declined to levels unable to sustain the estimated subsistence harvest. • The main cause of the decline was a reproductive disease termed Brucellosis. This disease causes severe reproductive declines within caribou populations, negatively impacting birth rates in females and sperm production in reproductive males through testicular tissue damage. • Though the disease is thought to have caused the decline, intra-territorial sales of caribou meat from SHI to primarily Baffin Communities dramatically accelerated the decline in 2010 and 2011. • The establishment of a TAH helped control this intra-territorial sale, helping to stabilize the population. • Management actions have proven effective thus far but all parties are very concerned about finding a way to control the intra-territorial sale of caribou meat if we are to secure the herds future. Current Status • The SHI caribou population has increased from an estimated 7,287 caribou in May 2013 to 12,297 caribou in May 2015. • Both the Department of Environment (DOE) and the Coral Harbour Hunters and Trappers Organization (HTO) believe this increase is at least in part related to an emigration event detected by Coral Harbour hunters in the winter of 2013/2014 from mainland Nunavut. • DOE is currently comparing genetic profiles of recent caribou samples with pre- immigration samples in an attempt to confirm this immigration event. • Additionally both Coral Harbour harvesters and DOE survey crews have detected an increase in calf observations between the 2012/13 harvesting season and the present suggesting an increase in productivity over the same period.
    [Show full text]
  • United States Arctic Weather Station Programme
    JOINT ARCTIC WEATHER STATIONS FIVE YEAR REPORT 1946-1951 JOINT CANADIAN -UNITED STATES ARCTIC WEATHER STATION PROGRAMME A REVIEW OF THE ESTABLISHMENT AND OPERATION OF THE JOINT ARCTIC WEATHER STATIONS AT EUREKA, RESOLUTE, ISACHSEN, MOULD BAY, AND ALERT AND A SUMMARY OF THE SCIENTIFIC ACTIVITIES AT THESE STATIONS 1946-1951 Compiled by METEOROLOGICAL DIVISION - DEPARTMENT OF TRANSPORT - CANADA and U.S. WEATHER BUREAU - DEPARTMENT OF COMMERCE – UNITED STATES CONTENTS CHAPTER PAGE 1. Introduction 1 2. Establishment of Stations 8 Eureka 8 Resolute 10 Isachsen 12 Mould Bay 14 Alert 15 Reconnaissance of Bridport Inlet 16 3. Station Maintenance 20 4. Methods of Re-supply 27 Summer Sea Supply Mission 27 Problems of Ice Navigation 29 Airlift Operations 35 5. Personnel 37 6. Meteorological Programme 42 Surface Observations 42 Upper Air Observations 46 7. Special Scientific Projects by Weather Station Personnel 48 Low Level Air Temperature Measurements 48 Permafrost Drilling and Soil Temperature Measurements at Resolute 49 Tidal Observations 59 Ice Thickness Measurements 61 Sea Ice Reports 63 Ice and Sea Water Temperatures 75 Lake Water Temperatures at Resolute 76 Observations of Arctic Snow Characteristics 77 Snow Crystal Replicas 81 Arctic Test of U.S. Navy Model, TDM-l, Automatic Weather Station 82 Salinity of Sea Water 85 Atmospheric Refraction 86 Solar Radiation 87 8. Stations Established at Resolute in Addition to the Weather Station 89 --ii-- CHAPTER PAGE Resolute Magnetic Observatory 89 Resolute Seismograph Station 90 Resolute Ionospheric Station 91 9. Arctic Buildings 92 Foundations 92 Prefabricated Buildings 95 Experimental Hut at Alert, N.W.T. 99 10. Projects by Transient Scientific Personnel 100 Wildlife Survey of Slidre Fiord Area 101 National Museum of Canada Investigations 101 Geological Survey - Cornwallis Island 104 Northern Insect Survey Investigations 109 Northern Insect Survey at Resolute, N.W.T.-1949 110 Northern Insect Survey at Alert, N.W.T.-l95l 114 Geographical Investigations at Eureka, N.W.T.
    [Show full text]
  • Elevation Changes of Ice Caps in the Canadian Arctic Archipelago W
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, F04007, doi:10.1029/2003JF000045, 2004 Elevation changes of ice caps in the Canadian Arctic Archipelago W. Abdalati,1 W. Krabill,2 E. Frederick,3 S. Manizade,3 C. Martin,3 J. Sonntag,3 R. Swift,3 R. Thomas,3 J. Yungel,3 and R. Koerner4 Received 17 April 2003; revised 19 July 2004; accepted 8 September 2004; published 20 November 2004. [1] Precise repeat airborne laser surveys were conducted over the major ice caps in the Canadian Arctic Archipelago in the spring of 1995 and 2000 in order to measure elevation changes in the region. Our measurements reveal thinning at lower elevations (below 1600 m) on most of the ice caps and glaciers but either very little change or thickening at higher elevations in the ice cap accumulation zones. Recent increases in precipitation in the area can account for the slight thickening where it was observed but not for the thinning at lower elevations. For the northern ice caps on the Queen Elizabeth Islands, thinning was generally <0.5 m yrÀ1, which is consistent with what would be expected from the warm temperature anomalies in the region for the 5 year period between surveys, and appears to be a continuation of a trend that began in the mid-1980s. Farther south, however, on the Barnes and Penny ice caps on Baffin Island, this thinning was much more pronounced at over 1 m yrÀ1 in the lower elevations. Here temperature anomalies were very small, and the thinning at low elevations far exceeds any associated enhanced ablation.
    [Show full text]
  • Late Wisconsinan Glaciation of Southern Eureka Sound: Evidence for Extensive Innuitian Ice in the Canadian High Arctic During Th
    Quaternary Science Reviews 19 (2000) 1319}1341 Late Wisconsinan glaciation of southern Eureka Sound: evidence for extensive Innuitian ice in the Canadian High Arctic during the Last Glacial Maximum Colm OD Cofaigh! *, John England!, Marek Zreda" !Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E3 "Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona 85721, USA Abstract Southern Eureka Sound was originally proposed as the centre of an Innuitian Ice Sheet in the Canadian High Arctic at the Last Glacial Maximum (LGM) based largely on the pattern of Holocene emergence. This paper focuses on the glacial geological evidence for such an ice sheet in the region. Granite dispersal trains and ice-moulded bedrock record regional, westward #ow of warm-based ice into Eureka Sound from SE Ellesmere Island. Regional ice was coalescent with local ice domes on inter-"ord peninsulas. Marine limit in the form of raised deltas, beaches and washing limits formed during deglaciation of the regional ice. Throughout southern Eureka Sound, marine limit dates )9.2 ka BP, indicating that ice commenced retreat during the early Holocene. Ice-divides were located along the highlands of central Ellesmere and Axel Heiberg islands, from which ice inundated Eureka Sound, #owing north and south along the channel. Regional radiocarbon dates on marine limit show that deglaciation occurred in two steps. Initial break-up and radial retreat of ice from Eureka Sound to the inner "ords was rapid and preceded stabilisation along adjacent coastlines and at "ord heads. Two-step deglaciation is also re#ected in di!erences in glacial geomorphology between the inner and outer parts of many "ords.
    [Show full text]