Guidance for Testators Wishing to Transfer a Wind Interest
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Digital Energy System 4.0
The Digital Energy System 4.0 2016 May 2016 Authors and Contributors: Main authors: Pieter Vingerhoets, Working Group coordinator Maher Chebbo, ETP SG Digital Energy Chair Nikos Hatziargyriou, Chairman ETP Smart Grids Authors of use cases: Authors Company Chapters E-mail Project Georges Kariniotakis Mines-Paritech 3.2 [email protected] Anemos/Safewind Rory Donnelly 3E 3.1. [email protected] SWIFT Steven de Boeck Energyville, 4.1. [email protected] iTesla KU Leuven Anna-Carin Schneider RWE 4.2. [email protected] GRID4EU Anderskim Johansson Vattenfall 4.3 [email protected] GRID4EU Stephane Dotto SAP 4.4. [email protected] SAP view Nikos Hatziargyriou NTUA 4.5, [email protected] NOBEL grid, 5.1., SmarterEMC2, 6.2. Smarthouse Smartgrid Paul Hickey ESB 4.6. [email protected] Servo Antonello Monti RWTH Aachen 6.3, [email protected] FINESCE, 6.4., IDE4L, 7.1. COOPERATE Pieter Vingerhoets Energyville 6.1. [email protected] Linear KU Leuven Nina Zalaznik, Cybergrid 7.2., [email protected] eBadge, Sasha Bermann 7.3. Flexiciency Marcel Volkerts USEF 7.4. [email protected] USEF Speakers on the digitalization workshop: Rolf Riemenscheider (European Commission), Patrick Van Hove (European Commission), Antonello Monti (Aachen University), Joachim Teixeira (EDP), Alessio Montone (ENEL), Paul Hickey (ESB), Tom Raftery (Redmonk), Svend Wittern (SAP), Jean-Luc Dormoy (Energy Innovator). ETP experts and reviewers: Venizelos Efthymiou, George Huitema, Fernando Garcia Martinez, Regine Belhomme, Miguel Gaspar, Joseph Houben, Marcelo Torres, Amador Gomez Lopez, Jonathan Leucci, Jochen Kreusel, Gundula Klesse, Ricardo Pastor, Artur Krukowski, Peter Hermans. -
A New Era for Wind Power in the United States
Chapter 3 Wind Vision: A New Era for Wind Power in the United States 1 Photo from iStock 7943575 1 This page is intentionally left blank 3 Impacts of the Wind Vision Summary Chapter 3 of the Wind Vision identifies and quantifies an array of impacts associated with continued deployment of wind energy. This 3 | Summary Chapter chapter provides a detailed accounting of the methods applied and results from this work. Costs, benefits, and other impacts are assessed for a future scenario that is consistent with economic modeling outcomes detailed in Chapter 1 of the Wind Vision, as well as exist- ing industry construction and manufacturing capacity, and past research. Impacts reported here are intended to facilitate informed discus- sions of the broad-based value of wind energy as part of the nation’s electricity future. The primary tool used to evaluate impacts is the National Renewable Energy Laboratory’s (NREL’s) Regional Energy Deployment System (ReEDS) model. ReEDS is a capacity expan- sion model that simulates the construction and operation of generation and transmission capacity to meet electricity demand. In addition to the ReEDS model, other methods are applied to analyze and quantify additional impacts. Modeling analysis is focused on the Wind Vision Study Scenario (referred to as the Study Scenario) and the Baseline Scenario. The Study Scenario is defined as wind penetration, as a share of annual end-use electricity demand, of 10% by 2020, 20% by 2030, and 35% by 2050. In contrast, the Baseline Scenario holds the installed capacity of wind constant at levels observed through year-end 2013. -
REPOWERING AMERICA: Transmission Investment for Economic Stimulus and Climate Change
REPOWERING AMERICA: Transmission investment for economic stimulus and climate change May 2021 Prepared for: London Economics International LLC 717 Atlantic Avenue, Suite 1A Boston, MA 02111 www.londoneconomics.com Disclaimer The analysis London Economics International LLC (“LEI”) provides in this study is intended to illustrate the potential economic benefit of transmission investment in terms of GDP and employment for the American economy (to support economic recovery), and as a potential public policy tool (to support longer term environmental goals to reduce carbon emissions, which will itself create positive economic benefits). While LEI has taken all reasonable care to ensure that its analysis is complete, the interplay of electric infrastructure investment and dynamics of local economies are highly complex, and thus this illustrative analysis does not quantify all tradeoffs and substitution effects, nor attempt to quantify various positive effects from reduced carbon emissions and containment of damages from Climate Change. Furthermore, certain recent developments in the US economy and transmission investment plans of various regions of the US may or may not be included in LEI’s illustrative analysis. This report is not intended to be an evaluation of any specific transmission investment or a definitive assessment of future economic conditions in the US. The opinions expressed in this report as well as any errors or omissions, are solely those of the authors and do not represent the opinions of other clients of London Economics International LLC. ii London Economics International LLC 717 Atlantic Avenue, Suite 1A Boston, MA 02111 www.londoneconomics.com Table of contents ACRONYMS ........................................................................................................................................................... VI 1 EXECUTIVE SUMMARY ............................................................................................................................... -
Policy 11.Qxd.Qxd
1755 Massachusetts Ave., NW Suite 700 Washington, D.C. 20036 – USA T:•(+1-202) 332-9312 F: (+1-202) 265-9531 E: [email protected] www.aicgs.org 45 AICGS POLICY REPORT INTELLECTUAL PROPERTY RIGHTS AND GREEN TECHNOLOGY TRANSFER: GERMAN AND U.S. PERSPECTIVES Located in Washington, D.C., the American Institute for Contemporary German Studies is an independent, non-profit public policy organization that works in Germany and the United States to address current and emerging policy challenges. Founded in 1983, the Institute is affiliated with The Johns Hopkins University. The Institute is governed by its own Board of Trustees, which includes prominent German and American leaders from the business, policy, and academic communities. Robert V. Percival Building Knowledge, Insights, and Networks for German-American Relations Miranda A. Schreurs AMERICAN INSTITUTE FOR CONTEMPORARY GERMAN STUDIES THE JOHNS HOPKINS UNIVERSITY TABLE OF CONTENTS Foreword 3 About the Authors 5 The American Institute for Contemporary German Studies strengthens the German-American relation - Strategies for Promoting Green Energy Innovation, Deployment, ship in an evolving Europe and changing world. The Institute produces objective and original analyses of and Technology 7 developments and trends in Germany, Europe, and the United States; creates new transatlantic networks; and facilitates dialogue among the busi - German Perspectives on Ecological Modernization, Technology ness, political, and academic communities to manage Transfer, and Intellectual Property Rights in the Case of Climate differences and define and promote common inter - ests. Change 61 ©2010 by the American Institute for Contemporary German Studies ISBN 978-1-933942-31-5 ADDITIONAL COPIES: Additional Copies of this Policy Report are available for $5.00 to cover postage and handling from the American Institute for Contemporary German Studies, 1755 Massachusetts Avenue, NW, Suite 700, Washington, DC 20036. -
Wind Powering America Fy08 Activities Summary
WIND POWERING AMERICA FY08 ACTIVITIES SUMMARY Energy Efficiency & Renewable Energy Dear Wind Powering America Colleague, We are pleased to present the Wind Powering America FY08 Activities Summary, which reflects the accomplishments of our state Wind Working Groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. At the beginning of 2008, there were more than 16,500 megawatts (MW) of wind power installed across the United States, with an additional 7,000 MW projected by year end, bringing the U.S. installed capacity to more than 23,000 MW by the end of 2008. When our partnership was launched in 2000, there were 2,500 MW of installed wind capacity in the United States. At that time, only four states had more than 100 MW of installed wind capacity. Twenty-two states now have more than 100 MW installed, compared to 17 at the end of 2007. We anticipate that four or five additional states will join the 100-MW club in 2009, and by the end of the decade, more than 30 states will have passed the 100-MW milestone. WPA celebrates the 100-MW milestones because the first 100 megawatts are always the most difficult and lead to significant experience, recognition of the wind energy’s benefits, and expansion of the vision of a more economically and environmentally secure and sustainable future. Of course, the 20% Wind Energy by 2030 report (developed by AWEA, the U.S. Department of Energy, the National Renewable Energy Laboratory, and other stakeholders) indicates that 44 states may be in the 100-MW club by 2030, and 33 states will have more than 1,000 MW installed (at the end of 2008, there were six states in that category). -
Jacobson and Delucchi (2009) Electricity Transport Heat/Cool 100% WWS All New Energy: 2030
Energy Policy 39 (2011) 1154–1169 Contents lists available at ScienceDirect Energy Policy journal homepage: www.elsevier.com/locate/enpol Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials Mark Z. Jacobson a,n, Mark A. Delucchi b,1 a Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020, USA b Institute of Transportation Studies, University of California at Davis, Davis, CA 95616, USA article info abstract Article history: Climate change, pollution, and energy insecurity are among the greatest problems of our time. Addressing Received 3 September 2010 them requires major changes in our energy infrastructure. Here, we analyze the feasibility of providing Accepted 22 November 2010 worldwide energy for all purposes (electric power, transportation, heating/cooling, etc.) from wind, Available online 30 December 2010 water, and sunlight (WWS). In Part I, we discuss WWS energy system characteristics, current and future Keywords: energy demand, availability of WWS resources, numbers of WWS devices, and area and material Wind power requirements. In Part II, we address variability, economics, and policy of WWS energy. We estimate that Solar power 3,800,000 5 MW wind turbines, 49,000 300 MW concentrated solar plants, 40,000 300 MW solar Water power PV power plants, 1.7 billion 3 kW rooftop PV systems, 5350 100 MW geothermal power plants, 270 new 1300 MW hydroelectric power plants, 720,000 0.75 MW wave devices, and 490,000 1 MW tidal turbines can power a 2030 WWS world that uses electricity and electrolytic hydrogen for all purposes. -
Smart Grid Deployment in Colorado: Challenges and Opportunities
Smart Grid deployment in Colorado: Challenges and OppOrtunities University of Colorado at Boulder • June 2010 Kevin Doran, Frank Barnes, Puneet Pasrich, eds. Smart Grid Deployment in Colorado: Challenges and Opportunities University of Colorado at Boulder June 2010 Kevin Doran, Frank Barnes, Puneet Pasrich, eds. AcknOwledgements We would like to express our appreciation to Angela Cifor and Sophia Lenz for their invaluable editorial assistance in preparing this report. TABle OF COntents intrOduCtiOn i COnsOLIDATED reCOMMENDATIOns 1 1. OVerView OF STATE aCtiVities and seleCt INTERNATIOnal 15 smart grid aCtiVities: Angela Cifor, Sophia Lenz 2. SMART grid arChiteCture and an OVerView OF energY stORAGE, 33 grid STABilitY, and interOperaBilitY: Akash Shyam Agrawal, Frank Barnes, Ewald Fuchs, Purva Basvraj Adke, Puneet Pasrich 3. COnsumer priVaCY: Kevin Doran, Elias Quinn 42 4. COst reCOVerY: Adam Reed, Stephen Chesterton 53 5. COmmuniCATIOns arChiteCture: Amit Kumar Barik 59 6. ELECtriC transpORTATIOn: Puneet Pasrich, Dragan Masksimovic 62 7. GRID and CYBer seCuritY: Jose Ramon Santos, Arun Gerra 69 8. IMPACts OF smart grid On CO2 emissiOns: Rebecca Johnson 80 9. RETAIL priCing struCtures: Stephen Lawrence 86 10. WOrkFOrCe deVelOpment: Stephen Lawrence 90 11. COnsumer BehaViOr: Barbara Farhar, Robert J. Kemp 94 12. SAFetY issues in distriButed and RENEWABle 100 energY INSTALLATIOns: Aditya Kaushik 13. COlOradO emergenCY serViCes and energY assuranCe PLANNING: 102 Puneet Pasrich, Arun Gerra reFerenCes 107 intrOduCtiOn The U.S. electric grid—a staggeringly complex network of interconnected electric systems—is poised to undergo a major physical, operational and conceptual transformation with far reaching implications. By incorporating literally millions of new intelligent components into the electric grid that deploy advanced two-way communication networks with interoperable and open protocols, the “smart grid” heralds a fundamental change in the electricity paradigm that has prevailed for more than a century. -
Integrating the Built and Natural Environments Through Renewable Energy Technologies: Supplying Wind Power to Kirkmont Center
Integrating the Built and Natural Environments Through Renewable Energy Technologies: Supplying Wind Power to Kirkmont Center A thesis submitted to the Miami University Honors Program in partial fulfillment of the requirements for University Honors with Distinction by Mark Cerny Miami University Oxord, Ohio May, 2006 ii ABSTRACT Integrating the Built and Natural Environments Through Renewable Energy Technologies: Supplying Wind Power to Kirkmont Center by Mark Cerny Wind power is a renewable energy technology currently experiencing a huge growth in popularity due to its cheap cost, widespread availability, and clean nature. Ohio currently has largely unexplored wind resources waiting to be utilized for the generation of electricity. This thesis summarizes an initial feasibility study I conducted to understand the potential for installing a wind turbine at Kirkmont Center in Bellefontaine, OH to take advantage of wind resources on the site. Kirkmont boasts the second highest elevation in the state of Ohio, which makes it an excellent candidate for generating wind power, with average wind speeds of 6-7 m/sec at 30m. In addition, the wind turbine will correspond with the construction of a new interactive educational facility, serving as a valuable educational and marketing tool. My work also included finding potential funding sources, grants, and incentives to help cover the cost of constructing and maintaining the turbine; contacting manufacturers regarding providing their services to Kirkmont; and presenting my findings to the Kirkmont Building Committee. The research for this project was also used for the California Green Stop rest stop design competition with me serving as a consultant on wind power for the design team. -
Download Paper
Charging the Future: Challenges and Opportunities for Electric Vehicle Adoption Faculty Research Working Paper Series Henry Lee Harvard Kennedy School Alex Clark Climate Policy Initiative September 2018 RWP18-026 Visit the HKS Faculty Research Working Paper Series at: https://www.hks.harvard.edu/research-insights/publications?f%5B0%5D=publication_types%3A121 The views expressed in the HKS Faculty Research Working Paper Series are those of the author(s) and do not necessarily reflect those of the John F. Kennedy School of Government or of Harvard University. Faculty Research Working Papers have not undergone formal review and approval. Such papers are included in this series to elicit feedback and to encourage debate on important public policy challenges. Copyright belongs to the author(s). Papers may be downloaded for personal use only. www.hks.harvard.edu ENVIRONMENT AND NATURAL RESOURCES Charging the Future Challenges and Opportunities for Electric Vehicle Adoption Henry Lee Alex Clark PAPER AUGUST 2018 Environment and Natural Resources Program Belfer Center for Science and International Affairs Harvard Kennedy School 79 JFK Street Cambridge, MA 02138 www.belfercenter.org/ENRP The authors of this report invites use of this information for educational purposes, requiring only that the reproduced material clearly cite the full source: Lee, Henry, and Alex Clark, “Charging the Future: Challenges and Opportunities for Electric Vehicle Adoption.” Belfer Center for Science and International Affairs, Cambridge, Mass: Harvard University, August 2018. Statements and views expressed in this report are solely those of the authors and do not imply endorsement by Harvard University, the Harvard Kennedy School, or the Belfer Center for Science and International Affairs. -
Hydrogen Energy Storage: Grid and Transportation Services February 2015
02 Hydrogen Energy Storage: Grid and Transportation Services February 2015 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy EfficiencyWorkshop Structure and Renewable / 1 Energy, operated by the Alliance for Sustainable Energy, LLC. Hydrogen Energy Storage: Grid and Transportation Services February 2015 Hydrogen Energy Storage: Grid and Transportation Services Proceedings of an Expert Workshop Convened by the U.S. Department of Energy and Industry Canada, Hosted by the National Renewable Energy Laboratory and the California Air Resources Board Sacramento, California, May 14 –15, 2014 M. Melaina and J. Eichman National Renewable Energy Laboratory Prepared under Task No. HT12.2S10 Technical Report NREL/TP-5400-62518 February 2015 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 www.nrel.gov NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. -
Turbocompound Reheat Gas Turbine Combined Cycle
U.S. DOE 2018 UTSR Meeting Bechtel National, Inc. – FE0031618 Turbo-Compound Reheat Gas Turbine Combined Cycle PI: John Gülen ([email protected]) PO: Robin Ames ([email protected]) CS: Chuck Tomasiak Best Thermodynamic Cycle (Only Four Processes) The Objective: Approximating Carnot Cycle • Isentropic Compression • Constant Volume Heat Addition • Isentropic Expansion • Constant Pressure Heat Rejection Existing Version: ICE – that’s why gas-fired diesels are nearly 50% efficient! This is why “detonation combustion” is investigated… Holtzwarth Gas Turbine (1905) Curtis Wheel (Turbine) Combustion Chamber (“Explosive” Constant Volume Combustion) Second Best Cycle (> Four Processes) The Objective: Approximating Carnot Cycle Very High Cycle • Isentropic Compression Pressure Ratio • Heat Addition • Isentropic Expansion “Imitation” of Isothermal Heat Addition • Heat Addition • Isentropic Expansion • Constant Pressure Heat Rejection Existing Version: ABB/Alstom/GE/Ansaldo GT24/26 Gas Turbine… Turbocompound Reheat Two Cycle Enablers in One GAS GENERATOR: JET ENGINE G AERODERIVATIVE GT Power Turbine TURBOCOMPOUND GAS GENERATOR: RECIP ENGINES ENGINE - Gotaverken (Sweden) diesel gas generator plus turbine drive for railroad locomotive (1933) G - Pratt & Whitney PT1 aircraft engine (1941) - Napier Nomad (UK) aircraft engine (1950- 55) Power - Scania/Volvo truck engines (current) Turbine - Fort George Power Plant in Mauritius (2000) Kettle GAS GENERATOR: RECIP ENGINES Evaporator Power Turbine (7EA, 6FA, etc.) TURBOCOMPOUND G REHEAT GTCC BACKGROUND US Patent 9,249,723 (2/2/2016) Reheat Combustor Project Objectives The objective of this project is to develop of the proposed Turbo- Compound Reheat Gas Turbine Combined Cycle (TC-RHT GTCC) technology to a stage of readiness for a small-scale demo/test system to be built and run to prove: (i) successful integration of the key components; (ii) operability; and (iii) multifuel compatibility. -
Renewable Energy Cost Analysis: Hydropower
IRENA International Renewable Energy Agency ER P A G P IN K R RENEWABLE ENERGY TECHNOLOGIES: COST ANALYSIS SERIES O IRENA W Volume 1: Power Sector Issue 3/5 Hydropower June 2012 Copyright © IRENA 2012 Unless otherwise indicated, material in this publication may be used freely, shared or reprinted, but acknowledgement is requested. About IRENA The International Renewable Energy Agency (IRENA) is an intergovernmental organisation dedi- cated to renewable energy. In accordance with its Statute, IRENA’s objective is to “promote the widespread and increased adoption and the sustainable use of all forms of renewable energy”. This concerns all forms of energy produced from renewable sources in a sustainable manner and includes bioenergy, geothermal energy, hydropower, ocean, solar and wind energy. As of May 2012, the membership of IRENA comprised 158 States and the European Union (EU), out of which 94 States and the EU have ratified the Statute. Acknowledgement This paper was prepared by the IRENA Secretariat. The paper benefitted from an internal IRENA review, as well as valuable comments and guidance from Ken Adams (Hydro Manitoba), Eman- uel Branche (EDF), Professor LIU Heng (International Center on Small Hydropower), Truls Holtedahl (Norconsult AS), Frederic Louis (World Bank), Margaret Mann (NREL), Judith Plummer (Cam- bridge University), Richard Taylor (IHA) and Manuel Welsch (KTH). For further information or to provide feedback, please contact Michael Taylor, IRENA Innovation and Technology Centre, Robert-Schuman-Platz 3, 53175 Bonn, Germany; [email protected]. This working paper is available for download from www.irena.org/Publications Disclaimer The designations employed and the presentation of materials herein do not imply the expression of any opinion whatsoever on the part of the Secretariat of the International Renewable Energy Agency concerning the legal status of any country, territory, city or area or of its authorities, or con- cerning the delimitation of its frontiers or boundaries.