Strict Local Martingales and Bubbles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CONFORMAL INVARIANCE and 2 D STATISTICAL PHYSICS −
CONFORMAL INVARIANCE AND 2 d STATISTICAL PHYSICS − GREGORY F. LAWLER Abstract. A number of two-dimensional models in statistical physics are con- jectured to have scaling limits at criticality that are in some sense conformally invariant. In the last ten years, the rigorous understanding of such limits has increased significantly. I give an introduction to the models and one of the major new mathematical structures, the Schramm-Loewner Evolution (SLE). 1. Critical Phenomena Critical phenomena in statistical physics refers to the study of systems at or near the point at which a phase transition occurs. There are many models of such phenomena. We will discuss some discrete equilibrium models that are defined on a lattice. These are measures on paths or configurations where configurations are weighted by their energy with a preference for paths of smaller energy. These measures depend on at leastE one parameter. A standard parameter in physics β = c/T where c is a fixed constant, T stands for temperature and the measure given to a configuration is e−βE . Phase transitions occur at critical values of the temperature corresponding to, e.g., the transition from a gaseous to liquid state. We use β for the parameter although for understanding the literature it is useful to know that large values of β correspond to “low temperature” and small values of β correspond to “high temperature”. Small β (high temperature) systems have weaker correlations than large β (low temperature) systems. In a number of models, there is a critical βc such that qualitatively the system has three regimes β<βc (high temperature), β = βc (critical) and β>βc (low temperature). -
Superprocesses and Mckean-Vlasov Equations with Creation of Mass
Sup erpro cesses and McKean-Vlasov equations with creation of mass L. Overb eck Department of Statistics, University of California, Berkeley, 367, Evans Hall Berkeley, CA 94720, y U.S.A. Abstract Weak solutions of McKean-Vlasov equations with creation of mass are given in terms of sup erpro cesses. The solutions can b e approxi- mated by a sequence of non-interacting sup erpro cesses or by the mean- eld of multityp e sup erpro cesses with mean- eld interaction. The lat- ter approximation is asso ciated with a propagation of chaos statement for weakly interacting multityp e sup erpro cesses. Running title: Sup erpro cesses and McKean-Vlasov equations . 1 Intro duction Sup erpro cesses are useful in solving nonlinear partial di erential equation of 1+ the typ e f = f , 2 0; 1], cf. [Dy]. Wenowchange the p oint of view and showhowtheyprovide sto chastic solutions of nonlinear partial di erential Supp orted byanFellowship of the Deutsche Forschungsgemeinschaft. y On leave from the Universitat Bonn, Institut fur Angewandte Mathematik, Wegelerstr. 6, 53115 Bonn, Germany. 1 equation of McKean-Vlasovtyp e, i.e. wewant to nd weak solutions of d d 2 X X @ @ @ + d x; + bx; : 1.1 = a x; t i t t t t t ij t @t @x @x @x i j i i=1 i;j =1 d Aweak solution = 2 C [0;T];MIR satis es s Z 2 t X X @ @ a f = f + f + d f + b f ds: s ij s t 0 i s s @x @x @x 0 i j i Equation 1.1 generalizes McKean-Vlasov equations of twodi erenttyp es. -
On Hitting Times for Jump-Diffusion Processes with Past Dependent Local Characteristics
Stochastic Processes and their Applications 47 ( 1993) 131-142 131 North-Holland On hitting times for jump-diffusion processes with past dependent local characteristics Manfred Schal Institut fur Angewandte Mathematik, Universitiit Bonn, Germany Received 30 March 1992 Revised 14 September 1992 It is well known how to apply a martingale argument to obtain the Laplace transform of the hitting time of zero (say) for certain processes starting at a positive level and being skip-free downwards. These processes have stationary and independent increments. In the present paper the method is extended to a more general class of processes the increments of which may depend both on time and past history. As a result a generalized Laplace transform is obtained which can be used to derive sharp bounds for the mean and the variance of the hitting time. The bounds also solve the control problem of how to minimize or maximize the expected time to reach zero. AMS 1980 Subject Classification: Primary 60G40; Secondary 60K30. hitting times * Laplace transform * expectation and variance * martingales * diffusions * compound Poisson process* random walks* M/G/1 queue* perturbation* control 1. Introduction Consider a process X,= S,- ct + uW, where Sis a compound Poisson process with Poisson parameter A which is disturbed by an independent standard Wiener process W This is the point of view of Dufresne and Gerber (1991). One can also look on X as a diffusion disturbed by jumps. This is the point of view of Ethier and Kurtz (1986, Section 4.10). Here u and A may be zero so that the jump term or the diffusion term may vanish. -
A Stochastic Processes and Martingales
A Stochastic Processes and Martingales A.1 Stochastic Processes Let I be either IINorIR+.Astochastic process on I with state space E is a family of E-valued random variables X = {Xt : t ∈ I}. We only consider examples where E is a Polish space. Suppose for the moment that I =IR+. A stochastic process is called cadlag if its paths t → Xt are right-continuous (a.s.) and its left limits exist at all points. In this book we assume that every stochastic process is cadlag. We say a process is continuous if its paths are continuous. The above conditions are meant to hold with probability 1 and not to hold pathwise. A.2 Filtration and Stopping Times The information available at time t is expressed by a σ-subalgebra Ft ⊂F.An {F ∈ } increasing family of σ-algebras t : t I is called a filtration.IfI =IR+, F F F we call a filtration right-continuous if t+ := s>t s = t. If not stated otherwise, we assume that all filtrations in this book are right-continuous. In many books it is also assumed that the filtration is complete, i.e., F0 contains all IIP-null sets. We do not assume this here because we want to be able to change the measure in Chapter 4. Because the changed measure and IIP will be singular, it would not be possible to extend the new measure to the whole σ-algebra F. A stochastic process X is called Ft-adapted if Xt is Ft-measurable for all t. If it is clear which filtration is used, we just call the process adapted.The {F X } natural filtration t is the smallest right-continuous filtration such that X is adapted. -
THE MEASURABILITY of HITTING TIMES 1 Introduction
Elect. Comm. in Probab. 15 (2010), 99–105 ELECTRONIC COMMUNICATIONS in PROBABILITY THE MEASURABILITY OF HITTING TIMES RICHARD F. BASS1 Department of Mathematics, University of Connecticut, Storrs, CT 06269-3009 email: [email protected] Submitted January 18, 2010, accepted in final form March 8, 2010 AMS 2000 Subject classification: Primary: 60G07; Secondary: 60G05, 60G40 Keywords: Stopping time, hitting time, progressively measurable, optional, predictable, debut theorem, section theorem Abstract Under very general conditions the hitting time of a set by a stochastic process is a stopping time. We give a new simple proof of this fact. The section theorems for optional and predictable sets are easy corollaries of the proof. 1 Introduction A fundamental theorem in the foundations of stochastic processes is the one that says that, under very general conditions, the first time a stochastic process enters a set is a stopping time. The proof uses capacities, analytic sets, and Choquet’s capacibility theorem, and is considered hard. To the best of our knowledge, no more than a handful of books have an exposition that starts with the definition of capacity and proceeds to the hitting time theorem. (One that does is [1].) The purpose of this paper is to give a short and elementary proof of this theorem. The proof is simple enough that it could easily be included in a first year graduate course in probability. In Section 2 we give a proof of the debut theorem, from which the measurability theorem follows. As easy corollaries we obtain the section theorems for optional and predictable sets. This argument is given in Section 3. -
Lecture 19 Semimartingales
Lecture 19:Semimartingales 1 of 10 Course: Theory of Probability II Term: Spring 2015 Instructor: Gordan Zitkovic Lecture 19 Semimartingales Continuous local martingales While tailor-made for the L2-theory of stochastic integration, martin- 2,c gales in M0 do not constitute a large enough class to be ultimately useful in stochastic analysis. It turns out that even the class of all mar- tingales is too small. When we restrict ourselves to processes with continuous paths, a naturally stable family turns out to be the class of so-called local martingales. Definition 19.1 (Continuous local martingales). A continuous adapted stochastic process fMtgt2[0,¥) is called a continuous local martingale if there exists a sequence ftngn2N of stopping times such that 1. t1 ≤ t2 ≤ . and tn ! ¥, a.s., and tn 2. fMt gt2[0,¥) is a uniformly integrable martingale for each n 2 N. In that case, the sequence ftngn2N is called the localizing sequence for (or is said to reduce) fMtgt2[0,¥). The set of all continuous local loc,c martingales M with M0 = 0 is denoted by M0 . Remark 19.2. 1. There is a nice theory of local martingales which are not neces- sarily continuous (RCLL), but, in these notes, we will focus solely on the continuous case. In particular, a “martingale” or a “local martingale” will always be assumed to be continuous. 2. While we will only consider local martingales with M0 = 0 in these notes, this is assumption is not standard, so we don’t put it into the definition of a local martingale. tn 3. -
Locally Feller Processes and Martingale Local Problems
Locally Feller processes and martingale local problems Mihai Gradinaru and Tristan Haugomat Institut de Recherche Math´ematique de Rennes, Universit´ede Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France fMihai.Gradinaru,[email protected] Abstract: This paper is devoted to the study of a certain type of martingale problems associated to general operators corresponding to processes which have finite lifetime. We analyse several properties and in particular the weak convergence of sequences of solutions for an appropriate Skorokhod topology setting. We point out the Feller-type features of the associated solutions to this type of martingale problem. Then localisation theorems for well-posed martingale problems or for corresponding generators are proved. Key words: martingale problem, Feller processes, weak convergence of probability measures, Skorokhod topology, generators, localisation MSC2010 Subject Classification: Primary 60J25; Secondary 60G44, 60J35, 60B10, 60J75, 47D07 1 Introduction The theory of L´evy-type processes stays an active domain of research during the last d d two decades. Heuristically, a L´evy-type process X with symbol q : R × R ! C is a Markov process which behaves locally like a L´evyprocess with characteristic exponent d q(a; ·), in a neighbourhood of each point a 2 R . One associates to a L´evy-type process 1 d the pseudo-differential operator L given by, for f 2 Cc (R ), Z Z Lf(a) := − eia·αq(a; α)fb(α)dα; where fb(α) := (2π)−d e−ia·αf(a)da: Rd Rd (n) Does a sequence X of L´evy-type processes, having symbols qn, converges toward some process, when the sequence of symbols qn converges to a symbol q? What can we say about the sequence X(n) when the corresponding sequence of pseudo-differential operators Ln converges to an operator L? What could be the appropriate setting when one wants to approximate a L´evy-type processes by a family of discrete Markov chains? This is the kind of question which naturally appears when we study L´evy-type processes. -
The Ito Integral
Notes on the Itoˆ Calculus Steven P. Lalley May 15, 2012 1 Continuous-Time Processes: Progressive Measurability 1.1 Progressive Measurability Measurability issues are a bit like plumbing – a bit ugly, and most of the time you would prefer that it remains hidden from view, but sometimes it is unavoidable that you actually have to open it up and work on it. In the theory of continuous–time stochastic processes, measurability problems are usually more subtle than in discrete time, primarily because sets of measures 0 can add up to something significant when you put together uncountably many of them. In stochastic integration there is another issue: we must be sure that any stochastic processes Xt(!) that we try to integrate are jointly measurable in (t; !), so as to ensure that the integrals are themselves random variables (that is, measurable in !). Assume that (Ω; F;P ) is a fixed probability space, and that all random variables are F−measurable. A filtration is an increasing family F := fFtgt2J of sub-σ−algebras of F indexed by t 2 J, where J is an interval, usually J = [0; 1). Recall that a stochastic process fYtgt≥0 is said to be adapted to a filtration if for each t ≥ 0 the random variable Yt is Ft−measurable, and that a filtration is admissible for a Wiener process fWtgt≥0 if for each t > 0 the post-t increment process fWt+s − Wtgs≥0 is independent of Ft. Definition 1. A stochastic process fXtgt≥0 is said to be progressively measurable if for every T ≥ 0 it is, when viewed as a function X(t; !) on the product space ([0;T ])×Ω, measurable relative to the product σ−algebra B[0;T ] × FT . -
Tight Inequalities Among Set Hitting Times in Markov Chains
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000–000 S 0002-9939(XX)0000-0 TIGHT INEQUALITIES AMONG SET HITTING TIMES IN MARKOV CHAINS SIMON GRIFFITHS, ROSS J. KANG, ROBERTO IMBUZEIRO OLIVEIRA, AND VIRESH PATEL Abstract. Given an irreducible discrete-time Markov chain on a finite state space, we consider the largest expected hitting time T (α) of a set of stationary measure at least α for α ∈ (0, 1). We obtain tight inequalities among the values of T (α) for different choices of α. One consequence is that T (α) ≤ T (1/2)/α for all α < 1/2. As a corollary we have that, if the chain is lazy in a certain sense as well as reversible, then T (1/2) is equivalent to the chain’s mixing time, answering a question of Peres. We furthermore demonstrate that the inequalities we establish give an almost everywhere pointwise limiting characterisation of possible hitting time functions T (α) over the domain α ∈ (0, 1/2]. 1. Introduction Hitting times are a classical topic in the theory of finite Markov chains, with connections to mixing times, cover times and electrical network representations [5, 6]. In this paper, we consider a natural family of extremal problems for maximum expected hitting times. In contrast to most earlier work on hitting times that considered the maximum expected hitting times of individual states, we focus on hitting sets of states of at least a given stationary measure. Informally, we are interested in the following basic question: how much more difficult is it to hit a smaller set than a larger one? (We note that other, quite different extremal problems about hitting times have been considered, e.g. -
First Passage Times of Diffusion Processes and Their Applications To
First Passage Times of Diffusion Processes and Their Applications to Finance A thesis presented for the degree of Doctor of Philosophy Luting Li Department of Statistics The London School of Economics and Political Science United Kingdom April 2019 Declaration I certify that the thesis I have presented for examination for the Ph.D. degree of the London School of Economics and Political Science is solely my own work other than where I have clearly indicated that it is the work of others (in which case the extent of any work carried out jointly by me and any other person is clearly identified in it). The copyright of this thesis rests with the author. Quotation from it is permitted, provided that full acknowledgement is made. This thesis may not be reproduced without the prior written consent of the author. I warrant that this authorisation does not, to the best of my belief, infringe the rights of any third party. Statement of conjoint work A version of parts of Chapters 3-6 has been submitted for publication in two articles jointly authored with A. Dassios. A version of Chapter 7 has been submitted for publication jointly authored with H. Xing. i Acknowledgements Just before writing down the words appearing on this page, I sit at my desk on the 7th floor of the Columbia House, recalling those countless yet enjoyable days and nights that I have spent on pursuing knowledge and exploring the world. To me, the marvellous beauty of this journey is once in a lifetime. I would like to, first and foremost, express my sincere gratitude to my supervisors Angelos Dassios and Hao Xing, for providing me the opportunity of carrying out my research under their supervisions, for their constant support and the freedom they granted me to conduct my work according to my preferences. -
Martingale Theory
CHAPTER 1 Martingale Theory We review basic facts from martingale theory. We start with discrete- time parameter martingales and proceed to explain what modifications are needed in order to extend the results from discrete-time to continuous-time. The Doob-Meyer decomposition theorem for continuous semimartingales is stated but the proof is omitted. At the end of the chapter we discuss the quadratic variation process of a local martingale, a key concept in martin- gale theory based stochastic analysis. 1. Conditional expectation and conditional probability In this section, we review basic properties of conditional expectation. Let (W, F , P) be a probability space and G a s-algebra of measurable events contained in F . Suppose that X 2 L1(W, F , P), an integrable ran- dom variable. There exists a unique random variable Y which have the following two properties: (1) Y 2 L1(W, G , P), i.e., Y is measurable with respect to the s-algebra G and is integrable; (2) for any C 2 G , we have E fX; Cg = E fY; Cg . This random variable Y is called the conditional expectation of X with re- spect to G and is denoted by E fXjG g. The existence and uniqueness of conditional expectation is an easy con- sequence of the Radon-Nikodym theorem in real analysis. Define two mea- sures on (W, G ) by m fCg = E fX; Cg , n fCg = P fCg , C 2 G . It is clear that m is absolutely continuous with respect to n. The conditional expectation E fXjG g is precisely the Radon-Nikodym derivative dm/dn. -
Threshold Regression for Survival Analysis: Modeling Event Times by a Stochastic Process Reaching a Boundary
Statistical Science 2006, Vol. 21, No. 4, 501–513 DOI: 10.1214/088342306000000330 c Institute of Mathematical Statistics, 2006 Threshold Regression for Survival Analysis: Modeling Event Times by a Stochastic Process Reaching a Boundary Mei-Ling Ting Lee and G. A. Whitmore Abstract. Many researchers have investigated first hitting times as models for survival data. First hitting times arise naturally in many types of stochastic processes, ranging from Wiener processes to Markov chains. In a survival context, the state of the underlying process repre- sents the strength of an item or the health of an individual. The item fails or the individual experiences a clinical endpoint when the process reaches an adverse threshold state for the first time. The time scale can be calendar time or some other operational measure of degradation or disease progression. In many applications, the process is latent (i.e., unobservable). Threshold regression refers to first-hitting-time models with regression structures that accommodate covariate data. The pa- rameters of the process, threshold state and time scale may depend on the covariates. This paper reviews aspects of this topic and discusses fruitful avenues for future research. Key words and phrases: Accelerated testing, calendar time, compet- ing risk, cure rate, duration, environmental studies, first hitting time, gamma process, lifetime, latent variable models, maximum likelihood, operational time, occupational exposure, Ornstein–Uhlenbeck process, Poisson process, running time, stochastic process, stopping time, sur- vival analysis, threshold regression, time-to-event, Wiener diffusion pro- cess. 1. INTRODUCTION a stochastic process, which may be latent or observ- arXiv:0708.0346v1 [stat.ME] 2 Aug 2007 able.