Motionwear Color Chart.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Care Label Recommendations
CARE LABEL RECOMMENDATIONS RECOMMENDED CARE FOR APPAREL PRODUCTS Fiber content, fabric construction, color, product construction, finish applications and end use are all considered when determining recommended care. Following are recommended care instructions for Nordstrom Products, however; the product must be tested to confirm that the care label is suitable. GARMENT/ CONSTRUCTION/ FIBER CONTENT FABRICATION CARE LABEL Care ABREVIATION EMBELLISHMENTS Knits and Sweaters Acetate/Acetate Blends Knits / Sweaters K & S Dry Clean Only DCO Acrylic Sweater K & S Machine Wash Cold, Gentle Cycle With Like Colors Only Non-Chlorine Bleach If Needed MWC GC WLC ONCBIN TDL RP CIIN Tumble Dry Low, Remove Promptly Cool Iron If Needed Acrylic Gentle Or Open Construction, Chenille K & S Turn Garment Inside Out Or Loosely Knit Machine Wash Cold, Gentle Cycle With Like Colors TGIO MWC GC WLC ONCBIN R LFTD CIIN Only Non-Chlorine Bleach If Needed Reshape, Lay Flat To Dry Cool Iron If Needed Acrylic / Rayon Blends Sweaters / Gentle Or Open K & S Professionally Dry Clean Construction, Chenille Or Loosely Knit Short Cycle, No Steam PDC SC NS Acrylic / Wool Blends Sweaters with Embelishments K & S Hand Wash Cold, Separately Only Non-Chlorine Bleach If Needed, No Wring Or Twist Reshape, Lay Flat To Dry Cool Iron If Needed HWC S ONCBIN NWOT R LFTD CIIN DNID Do Not Iron Decoration Acrylic / Wool Blends Sweaters K & S Hand Wash Cold, Separately Only Non-Chlorine Bleach If Needed Roll In Towel To Remove Excess Moisture Reshape, Lay Flat To Dry HWC S ONCBIN RITTREM -
Choosing the Proper Short Cut Fiber for Your Nonwoven Web
Choosing The Proper Short Cut Fiber for Your Nonwoven Web ABSTRACT You have decided that your web needs a synthetic fiber. There are three important factors that have to be considered: generic type, diameter, and length. In order to make the right choice, it is important to know the chemical and physical characteristics of the numerous man-made fibers, and to understand what is meant by terms such as denier and denier per filament (dpf). PROPERTIES Denier Denier is a property that varies depending on the fiber type. It is defined as the weight in grams of 9,000 meters of fiber. The current standard of denier is 0.05 grams per 450 meters. Yarn is usually made up of numerous filaments. The denier of the yarn divided by its number of filaments is the denier per filament (dpf). Thus, denier per filament is a method of expressing the diameter of a fiber. Obviously, the smaller the denier per filament, the more filaments there are in the yarn. If a fairly closed, tight web is desired, then lower dpf fibers (1.5 or 3.0) are preferred. On the other hand, if high porosity is desired in the web, a larger dpf fiber - perhaps 6.0 or 12.0 - should be chosen. Here are the formulas for converting denier into microns, mils, or decitex: Diameter in microns = 11.89 x (denier / density in grams per milliliter)½ Diameter in mils = diameter in microns x .03937 Decitex = denier x 1.1 The following chart may be helpful. Our stock fibers are listed along with their density and the diameter in denier, micron, mils, and decitex for each: Diameter Generic Type -
Investigation of the Mechanical Properties of a Carbon Fibre-Reinforced Nylon Filament for 3D Printing
machines Article Investigation of the Mechanical Properties of a Carbon Fibre-Reinforced Nylon Filament for 3D Printing Flaviana Calignano 1,* , Massimo Lorusso 2 , Ignanio Roppolo 3 and Paolo Minetola 1 1 Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; [email protected] 2 Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies IIT@Polito, Corso Trento 21, 10129 Turin, Italy; [email protected] 3 Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; [email protected] * Correspondence: fl[email protected]; Tel.: +39-011-090-7218 Received: 19 July 2020; Accepted: 2 September 2020; Published: 4 September 2020 Abstract: Additive manufacturing (i.e., 3D printing) has rapidly developed in recent years. In the recent past, many researchers have highlighted the development of in-house filaments for fused filament fabrication (FFF), which can extend the corresponding field of application. Due to the limited mechanical properties and deficient functionality of printed polymer parts, there is a need to develop printable polymer composites that exhibit high performance. This study analyses the actual mechanical characteristics of parts fabricated with a low-cost printer from a carbon fibre-reinforced nylon filament. The results show that the obtained values differ considerably from the values presented in the datasheets of various filament suppliers. Moreover, the hardness and tensile strength are influenced by the building direction, the infill percentage, and the thermal stresses, whereas the resilience is affected only by the building direction. Furthermore, the relationship between the mechanical properties and the filling factor is not linear. -
Review Article
Indian Journalof Fibre & Textile Research Vol. 29, December 2004, pp. 483-492 Review Article Development and processing of lyocell R B Chavan Department of Textile Technology, Indian Institute of Technology, New Delhi 110 016, India and A K Patra' The Technological Institute of Textile & Sciences, Bhiwani 127 02 1, India Received 20 June 2003; revised received and accepted December 2003 5 An account of Iyocell, covering the hindsight of its development and available brands has been reported. This wonder fibre surpasses all other cellulosic fibres in terms of properties, aesthetics and. quite importantly. ecology in manufacturing. Among the various names with which Iyocell is available. Tencel and Tencel A 100 are the prominent and widely used. Be sides dealing with the various attributes of Iyocell, the options for wet treatment of the fibre with reference to steps of proc essing. suitability of dyes and process parameters have also been addressed. Keywords: Fibrillation, Lyocell, Peach-skin effect. Tencel. Tencei A 100 IPC Code: CI. DO 1 F 2/00. D2 1 H 13/08 I nl. 7 1 Introduction solved solids. The viscose rayon manufacturing proc ' There has been a growing demand for absorbent fi ess is also energy-intensive. Besides this, viscose bres with the need hinging on comfort and fashion. rayon production has high labour demand, mainly due Since cotton production can not go beyond a particu to the complexity and number of steps involved in lar level due to limited land availability, the other ob converting pulp into rayon fibre. vious options are viscose and the likes. But again, Among the modified viscose fibres, high wet with the increasing awareness of ecofriendly con modulus (HWM) rayon involves relatively simple and cepts, viscose is not quite highly rated because its economical manufacturing process, but the zinc used manufacturing plants have inherent problem of efflu in this process is a known pollutant. -
Nylon Wool Fiber Columns
U.S. Corporate Headquarters Polysciences Europe GmbH Polysciences Asia-Pacific, Inc. 400 Valley Rd. Badener Str. 13 2F-1, 207 DunHua N. Rd. Warrington, PA 18976 69493 Hirschberg an der Taipei, Taiwan 10595 1(800) 523-2575 / (215) 343-6484 Bergstrasse, Germany (886) 2 8712 0600 1(800)343-3291 fax +(49) 6201 845 20 0 (886) 2 8712 2677 fax [email protected] +(49) 6201 845 20 20 fax [email protected] [email protected] TECHNICAL DATA SHEET 425A Page 1 of 2 Nylon Wool Fiber Columns BACKGROUND NYLON WOOL FIBER VS. SHEEP RBC ROSETTING METHODS Researchers have been using nylon wool fiber procedures to separate T-cell and Wong and Mittal (1981)9 did extensive research comparing the methods of Nylon B-cell lymphocytes for more than 20 years. In the early 1970’s M. H. Julius et al Wool Fiber separation and the commonly- used and well-studied sheep RBC (1973),1 Eisen et al (1972),2 and Greaves & Brain (1974)3 described specific (SRBC) rosetting.10,11 Wong and Mittal were interested in isolating B-cells for conditions for the use of Nylon Wool Fiber in columns or plastic straws. These serologic typing of HLA-DR antigen. protocols resulted in yields of 50-90% T-cell recovery and 10-100 fold B-cell depletion. Wong and Mittal concluded that “Due to its simplicity and reliability, nylon wool adherence may be preferred over the SRBC rosette method for the routine pheno- These early researchers found it necessary to scrub or wash their Nylon Wool Fiber typing of B-cells.” Their findings are illustrated in Table 1. -
Uncompromising Protection. Unparalleled Comfort
UNCOMPROMISING PROTECTION. UNPARALLELED COMFORT. Discover Our North American Flash Fire Product Portfolio. 1 Our Commitment to FR Worker Safety At Westex by Milliken, worker safety is our priority. We’re leaders in secondary arc rated (AR) and flame resistant (FR) protection, backed by 150 years of Milliken innovation—and we go further than anyone else to ensure workers are protected, comfortable and able to return home safely each night. At the heart of our commitment is engineering: scientific expertise and advanced, custom-made equipment that guarantees flame resistance for the life of the garment. Market proven, with tens of millions of yards out in the field, our fabrics don’t just meet standards—they integrate safety and comfort in ways that were once considered impossible. But we don’t stop there with engineering and innovation. Through extensive educational outreach, we’ve helped millions of workers better understand arc flash, flash fire and other thermal hazards. Because helping workers feel confident in any and every condition comes down to innovation, exceptional engineering and education. For more information, visit westex.com/fabrics Details on Page 7 2 Westex protection delivers on the flash fire standard. The Need The Standard In oil, gas, chemical and petrochemical industries, the The National Fire Protection Association (NFPA) developed threat of flash fire exposures has necessitated the use NFPA® 2112 as the industry standard for flame-resistant of flame resistant clothing. Flame resistant clothing will garments designed to protect against Flash Fire. The official minimize burn injury and provide the worker a few seconds title for NFPA® 2112 was recently updated to “Standard on of escape time. -
Speciality Fibres
Speciality Fibres wool - global outlook what makes safil tick? nature inspires innovation in fabric renaissance for speciality fibre china rediscovers south african mohair who supplies the supplier? yarn & top dyeing sustainable wool production new normal in the year of the sheep BUYERS GUIDE TO WOOL 2015-2016 Welcome to Wool2Yarn Global - we have given our publication a new name! This new name reflects the growing number of yarn manufactures that are now an important facet of this publication. The new name also better reflects our expanding global readership with a wide profile from Acknowledgements & Thanks: wool grower to fabric, carpet and garment manufacturers in over 60 Alpha Tops Italy countries. American Sheep Association Australian Wool Testing Authority Our first publication was published in Russian in1986 when the Soviet British Wool Marketing Board Union was the biggest buyer of wool. After the collapse of the Soviet Campaign for Wool Canadian Wool Co-Operative Union this publication was superseded by a New Zealand / Australian Cape Wools South Africa English language edition that soon expanded to include profiles on China Wool Textile Association exporters in Peru, Uruguay, South Africa, Russia, UK and most of Federacion Lanera Argentina International Wool Textile Organisation Western Europe. Interwoollabs Mohair South Africa In 1999 we further expanded our publication list to include WOOL Nanjing Wool Market EXPORTER CHINA (now Wool2Yarn China) to reflect the growing New Zealand Wool Testing Authority importance of Asia and in particular China. This Chinese language SGS Wool Testing Authority magazine is a communication link between the global wool industry Uruguayan Wool Secretariat Wool Testing Authority Europe and the wool industry in China. -
Natural Fibers and Fiber-Based Materials in Biorefineries
Natural Fibers and Fiber-based Materials in Biorefineries Status Report 2018 This report was issued on behalf of IEA Bioenergy Task 42. It provides an overview of various fiber sources, their properties and their relevance in biorefineries. Their status in the scientific literature and market aspects are discussed. The report provides information for a broader audience about opportunities to sustainably add value to biorefineries by considerin g fiber applications as possible alternatives to other usage paths. IEA Bioenergy Task 42: December 2018 Natural Fibers and Fiber-based Materials in Biorefineries Status Report 2018 Report prepared by Julia Wenger, Tobias Stern, Josef-Peter Schöggl (University of Graz), René van Ree (Wageningen Food and Bio-based Research), Ugo De Corato, Isabella De Bari (ENEA), Geoff Bell (Microbiogen Australia Pty Ltd.), Heinz Stichnothe (Thünen Institute) With input from Jan van Dam, Martien van den Oever (Wageningen Food and Bio-based Research), Julia Graf (University of Graz), Henning Jørgensen (University of Copenhagen), Karin Fackler (Lenzing AG), Nicoletta Ravasio (CNR-ISTM), Michael Mandl (tbw research GesmbH), Borislava Kostova (formerly: U.S. Department of Energy) and many NTLs of IEA Bioenergy Task 42 in various discussions Disclaimer Whilst the information in this publication is derived from reliable sources, and reasonable care has been taken in its compilation, IEA Bioenergy, its Task42 Biorefinery and the authors of the publication cannot make any representation of warranty, expressed or implied, regarding the verity, accuracy, adequacy, or completeness of the information contained herein. IEA Bioenergy, its Task42 Biorefinery and the authors do not accept any liability towards the readers and users of the publication for any inaccuracy, error, or omission, regardless of the cause, or any damages resulting therefrom. -
Fibers and Fabrics; TX335 .A1 U6 NO
KitlQRr Bureau of Standards Reference book' no' to ygjgtv |Oi Admin. Bldg. taken from the library, gmp STATES Ite.WMENT OF COMMERCE PUBLICATION A11ID3 Db3SbD All103063560 Blandford, Josephlne/FIbers and fabrics; TX335 .A1 U6 NO. 1, 1970 C.1 NBS-PUB-R 1 ^TES ‘‘•‘‘'/I'ti'i'.1'1' 1: BBB8 MB A Consumer’s Guide from the Mational Bureau of Standards NBS CIS 1 IIIIShSs Fibers and Fabrics by Josephine M. Blandford and Lois M. Gurel INFORMATION ABOUT NATURAL AND MAN-MADE FIBERS AND FABRICS TO MEET YOUR PARTICULAR NEEDS. NBS CONSUMER INFORMATION SERIES 1 Editor: James E. Payne Issued November 1970 U.S. DEPARTMENT OF COMMERCE Maurice H. Stans, Secretary Rocco C. Siciliano, Under Secretary Myron Tribus, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS A Consumer’s Lewis M. Branscomb, Director GUIDE FROM THE) NATIONAL BUREAU OF STANDARDS For sale by the Superintendent of Documents, U.S. Government Printing Office, U.S. DEPARTMENT Washington, D.C. 20402. OF COMMERCE Price 65 cents. NATIONAL BUREAU OF STANDARDS APR 1 0 1971 FOREWORD Technology is changing not only the products you buy, but the marketplace as well. Unfortunately, this is not an unmixed blessing. Products are constantly being improved, but designs are complicated, quality is vari¬ able, and good advice is hard to get. Modern stores and merchandising bring you a wide variety of products; but the large number of choices and the lack of dependable infor¬ mation often make shopping a confusing and frustrating experience. A generation ago the merchant was likely to be a friend of the family. -
Colour and Textile Chemistry—A Lucky Career Choice
COLOUR AND TEXTILE CHEMISTRY—A LUCKY CAREER CHOICE By David M. Lewis, The University of Leeds, AATCC 2008 Olney Award Winner Introduction In presenting this Olney lecture, I am conscious that it should cover not only scientific detail, but also illustrate, from a personal perspective, the excitement and opportunities offered through a scientific career in the fields of colour and textile chemistry. The author began this career in 1959 by enrolling at Leeds University, Department of Colour Chemistry and Dyeing; the BSc course was followed by research, leading to a PhD in 1966. The subject of the thesis was "the reaction of ω-chloroacetyl-amino dyes with wool"; this study was responsible for instilling a great enthusiasm for reactive dye chemistry, wool dyeing mechanisms, and wool protein chemistry. It was a natural progression to work as a wool research scientist at the International Wool Secretariat (IWS) and at the Australian Commonwealth Scientific Industrial Research Organisation (CSIRO) on such projects as wool coloration at room temperature, polymers for wool shrink-proofing, transfer printing of wool, dyeing wool with disperse dyes, and moth-proofing. Moving into academia in 1987 led to wider horizons bringing many new research challenges. Some examples include dyeing cellulosic fibres with specially synthesised reactive dyes or reactive systems with the objective of achieving much higher dye-fibre covalent bonding efficiencies than those produced using currently available systems; neutral dyeing of cellulosic fibres with reactive dyes; new formaldehyde-free crosslinking agents to produce easy-care cotton fabrics; application of leuco vat dyes to polyester and nylon substrates; cosmetic chemistry, especially in terms of hair dyeing and bleaching; security printing; 3-D printing from ink-jet systems; and durable flame proofing cotton with formaldehyde-free systems. -
Handle and Comfort Characteristics of Cotton Core Spun Lycra and Polyester/ Lycra Fabrics for Application As Blouse Nirmala Varghese and G
Volume 8, Issue 4, Spring2014 Handle and Comfort Characteristics of Cotton Core Spun Lycra and Polyester/ Lycra Fabrics for Application as Blouse Nirmala Varghese and G. Thilagavathi Department of Apparel & Fashion Technology PSG College of Technology Tamil Nadu, India ABSTRACT Stretchable plain woven fabrics are developed with 60s cotton core spun Lycra and polyester Lycra twisted yarn (91D) in weft with cotton, silk and polyester in warp. The influence of fabric specifications on thermal comfort, low stress mechanical properties, primary and total hand value is analyzed. The results indicated that cotton core spun Lycra woven with polyester warp provided higher value of thermal conductivity, air permeability and water vapor permeability. The woven stretch fabrics produced with polyester warp, cotton core spun Lycra and polyester Lycra in weft has excellent aesthetic and drape properties. These fabrics have higher tensile resilience, tensile strain, lower shear rigidity, superior primary hand and a higher total hand value of 4.08 and 3.93 respectively and are best suitable for women’s blouse. Keywords: Cotton core spun Lycra, polyester/Lycra, woven stretch, fabric handle, sari blouse Introduction Lycra and polyester/lycra twisted yarn. Several studies have been carried out Stretch is often the most important investigating the physical properties of core property of textiles that contribute to wearer spun yarn, cotton/lycra and properties of the comfort. The stretch yarn and fabrics are fabrics containing different rates of spandex widely used and preferred by the people in yarns. Core spun cotton/spandex shows high the last few years all over the world because resiliency property than 100% cotton yarns, of their stretch ability and shape retention due to its soft and rubbery isocyanate properties. -
Interfacial Adhesion in Rayon/Nylon Sheath/Core Composite Fibers. Weiying Tao Louisiana State University and Agricultural & Mechanical College
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1991 Interfacial Adhesion in Rayon/Nylon Sheath/Core Composite Fibers. Weiying Tao Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Tao, Weiying, "Interfacial Adhesion in Rayon/Nylon Sheath/Core Composite Fibers." (1991). LSU Historical Dissertations and Theses. 5213. https://digitalcommons.lsu.edu/gradschool_disstheses/5213 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.