M-THEORY and N=2 STRINGS 1. Introduction

Total Page:16

File Type:pdf, Size:1020Kb

M-THEORY and N=2 STRINGS 1. Introduction View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server M-THEORY AND N=2 STRINGS EMIL MARTINEC Enrico Fermi Institute and Dept. of Physics 5640 South El lis Ave., Chicago, IL 60637-1433 Abstract. N=2 heterotic strings may provide a windowinto the physics of M-theory radically di erent than that found via the other sup ersymmetric string theories. In addition to their sup ersymmetric structure, these strings carry a four-dimensional self-dual structure, and app ear to be completely integrable systems with a stringy density of states. These lectures give an overview of N=2 heterotic strings, as well as a brief discussion of p ossible applications of b oth ordinary and heterotic N=2 strings to D-branes and matrix theory. 1. Intro duction A few years ago, if asked to describ e string theory, the average practi- tioner would have classi ed its di erent manifestations according to their various worldsheet gauge principles. On the 1+1 dimensional worldsheet, there can be (p; q ) sup ersymmetries that square to translations along the (left,right)-handed light cone; one says that the worldsheet has (p; q ) gauged sup ersymmetry. The b osonic string has no sup ersymmetry; p = q = 0. The sup ersymmetric string theories have, say, q = 1. Thus typ e I IA/B string theory has (1,1) sup ersymmetry. The typ e I/IA strings are the orbifold of these byworldsheet parity, and the heterotic strings are in the class (0,1). Remarkably, we now understand that all the sup ersymmetric string theo- ries { typ e I IA/B, typ e I, and heterotic { app ear to describ e asymptotic expansions of a single nonp erturbative master theory: M-theory. This the- ory has many miraculous duality prop erties that are now only b eginning to b e unravelled; other lecturers at this scho ol will review the current state of a airs. In these lectures, I will giveanoverview of a relatively unexplored corner of string theory, namely the N=2 strings [1, 2, 3] (more sp eci cally strings with (2,2) or (2,1) gauged worldsheet sup ersymmetry). 2 EMIL MARTINEC The driving force b ehind the recent uni cation has b een the recognition of the fundamental imp ortance of the spacetime (as opp osed to worldsheet) sup ersymmetry algebra. The small (BPS) representations of the sup ersym- metry algebra form a quasi-top ological sector of the theory. By tracking this BPS sp ectrum across mo duli space, one can deduce the interconnec- tions of the various string limits. The issue we wish to address is the role of the heterotic (2,1) string, which is also a stringy realization of spacetime sup ersymmetry and therefore ought to play a role somehow. As we will see [4, 5], many of the basic ob jects of M-theory are realized in the (2,1) string. Self-duality and integrability are further features of the (2,1) string, arising from the chiral sector with N=2 worldsheet sup ersymmetry. We will see that the chiral critical dimensions of the (2,1) string are d = 4 (2 space, 2 time) for the N=2 sector, and d = 12 (10 space, 2 time) for the N=1 sector. To see the relation to M-theory, consider standard heterotic target space geometry. Here this is a 2+2 dimensional base manifold for the dimensions common to b oth chiralities, with the additional left-movers parametrizing an eight-dimensional torus of stringy dimensions b ered over it (see gure 1). T 8 M2,2 Figure 1. (2,1) heterotic geometry. The geometrical elds are the graviton h, antisymmetric tensor eld b, gravitino , and the gauge connection " on the b er. These elds are further restricted by the extra constraints of N=2 lo cal sup ersymmetry on the worldsheet, giving rise to prep otentials h + b ! I @ a a a " ! I @ ' ! I @ : (1) M-Theory and N=2 Strings 3 Here I is an almost complex structure on the base space, which is required by the lo cal N=2 worldsheet sup ersymmetry. Under linearized gauge trans- formations, these restricted elds transform as (h + b)=@ ! a " = @ ! ' = @ ! : (2) In other words, the remnant elds are Nambu-Goldstone elds of sp on- taneously broken symmetries (spacetime antisymmetric tensor eld gauge transformations, translations, sup ersymmetries) on a D-brane. More pre- cisely, one has in a complex co ordinate basis " = i(@ @ )' +(@ +@) = @(+i')+@( i'), where the (real) gauge symmetry is =.However, one can go to a holomorphic basis by complexifying the gauge group G; then ' is a co ordinate on G =G whose dynamics is determined by holomorphic C gauge symmetry much as in the 2d WZW mo del [6, 7, 8]. This virtually guarantees us a connection to brane physics, since brane dynamics is almost by de nition given by the nonlinear Lagrangian of the spacetime symme- tries broken by the brane. A picture of this asp ect of (2,1) string theory is shown in gure 2. The (2,1) string worldsheet maps into the worldvolume of a D-brane, which is itself emb edded in spacetime. The quanta of this brane are the (2,1) strings themselves. Since the transverse uctuations of the brane can b e traced to those of the b er connection " @', while the longitudinal directions are those of the base space, we see that spacetime itself is the total space of the heterotic geometry of gure 1. Figure 2. Chain of brane embeddings implied by (2,1) string states. The dimension of the brane is determined by the numb er of indep endent ik x momentum comp onents in string vertex op erators O e . When the (2,1) 2;2 8 string target space is IR T , this kinematics is 1+1 or 2+1 dimensional; 4 EMIL MARTINEC when the spatial dimensions are further compacti ed, the kinematics is more or less 9+1 dimensional { the target is a kind of ninebrane. As mentioned ab ove, an additional geometric structure is self-duality. The almost complex structure I is one of a triplet of such structures pre- served by the target space geometry (these almost complex structures are not integrable, since (@ @ )I = db = torsion). Thus one can bring to b ear the machinery of twistor theory to characterize the classical solution space. One of the characteristic prop erties of self-dual gravity is the symmetry group of area preserving di eomorphisms SDi SU (1), suggesting a 2 connection to matrix theory [9]. There are indeed a number of intriguing analogies among the matrix mo del of M-theory, (2,1) strings, and other matrix mo dels: 1. The (BFSS) matrix mo del of M-theory [9] realizes the membrane as a collective phenomenon of D0-brane sup ergravitons, i.e. as a state in the large N collective eld theory. In a sense, the BFSS matrix mo del gives a map from a single noncommutative torus into `spacetime'. In the graviton limit, the matrices approximately commute; in the membrane limit, the commutators are large. Similarly, the (2,1) string describ es a map from a single brane into spacetime. 2. Other examples where large N collective eld theory generates string theory as an asymptotic expansion around a particular master eld include: (a) The 1+1d noncritical string based on the original matrix mo del of [10]. (b) 2d Yang-Mills [11]. (c) 2+1d SU(k) Chern-Simons theory as k; N !1 [12]. (d) 2+2d self-dual gravity [13],[1]. This connection will be outlined in section 2 b elow. 3. (2,1) string p erturbation theory is an expansion around the in nite 2 tension limit; T g . In other words, it is an expansion in low brane str energy relative to the brane tension. This is similar to 1+1d noncritical string theory, where the e ective expansion parameter is the energy of excitations relative to some scale (in that case the cosmological constant of Liouville theory, or equivalently the fermi energy of the matrix partons). Thus one sees common themes cropping up in diverse settings. The fo cus of these lectures will be the structure of N=2 strings, and their p ossible relation to matrix dynamics. We b egin in section 2 with the somewhat simpler (2,2) string, in order to intro duce the novel features of lo cal N=2 worldsheet sup ersymmetry and its asso ciated self-duality struc- ture. Included are an overview of the relation b etween the self-dual gravity M-Theory and N=2 Strings 5 of the (2,2) string and SDi dynamics; as well as an aside on the D-brane 2 sp ectrum of (2,2) strings, which leads to yet another interesting connection to matrix theory. Section 3 intro duces (2,1) strings { their worldsheet gauge algebra, sp ectrum, and simple compacti cations. The target space e ective action for (2,1) strings is derived in section 4; parallels with matrix theory are explored in section 5. 2. (2,2) Strings The gauged N=2 sup ersymmetry on the string worldsheet consists of cur- rents T (the stress tensor), G (the two sup ercurrents), and J (a U(1) R-symmetry current). Their algebra is schematically 3 G [T; G ] 2 [T; J ] J + [G ;G ] T + J (3) [J;G ] G : In the conformal gauge, the contributions to the Virasoro central charge from the Faddeev-Pop ov ghosts is 26+211 2=6, so that the critical dimension is d =2=3 c = 4.
Recommended publications
  • Cosmic Accelerated Expansion, Dark Matter and Dark Energy from a Heterotic Superstrings Scenario*
    International Journal of Innovation in Science and Mathematics Volume 5, Issue 2, ISSN (Online): 2347–9051 Cosmic Accelerated Expansion, Dark Matter and Dark Energy from a Heterotic Superstrings Scenario* Mohamed S. El Naschie Dept. of Physics, Faculty of Science, University of Alexandria, Egypt. Abstract — Guided by the basic ideas and structure of with a minor twist here and there, we felt it pertinent to heterotic string theory we establish an energy density triality, give here a brief account of the quintessential idea behind which add together to the theoretically expected energy heterotic string theory seen from our “pure dark energy density based on Einstein’s relativity. Thus Einstein’s and dark matter” explanation view point [20-27]. famous formula E = mc2 is found in integer approximation to 1 5 16 2 be the sum of three sectors, namely E mc II. HETEROTIC STRING THEORY FOR DARK 22 ENERGY 2 where E( O ) mc 22 is the ordinary energy density, E( DM ) 5 22 mc2 is the dark matter energy density and We think it is fair to say that what David Gross [18] had 2 in mind when he and his group started work on a new E( PD ) 16 22 mc is the pure dark energy density where heterotic string theory was simply to combine the Green- m is the mass, c is the velocity of light and 16 is the number Schwarz so called Type II, at the time a new ten of heterotic strings extra bosons. We demonstrate further dimensional superstring theory with the relatively older 26 that strictly speaking dark matter is weakly coupled with dimensional bosonic string theory [13-18].
    [Show full text]
  • A Note on Background (In)Dependence
    RU-91-53 A Note on Background (In)dependence Nathan Seiberg and Stephen Shenker Department of Physics and Astronomy Rutgers University, Piscataway, NJ 08855-0849, USA [email protected], [email protected] In general quantum systems there are two kinds of spacetime modes, those that fluctuate and those that do not. Fluctuating modes have normalizable wavefunctions. In the context of 2D gravity and “non-critical” string theory these are called macroscopic states. The theory is independent of the initial Euclidean background values of these modes. Non- fluctuating modes have non-normalizable wavefunctions and correspond to microscopic states. The theory depends on the background value of these non-fluctuating modes, at least to all orders in perturbation theory. They are superselection parameters and should not be minimized over. Such superselection parameters are well known in field theory. Examples in string theory include the couplings tk (including the cosmological constant) arXiv:hep-th/9201017v2 27 Jan 1992 in the matrix models and the mass of the two-dimensional Euclidean black hole. We use our analysis to argue for the finiteness of the string perturbation expansion around these backgrounds. 1/92 Introduction and General Discussion Many of the important questions in string theory circle around the issue of background independence. String theory, as a theory of quantum gravity, should dynamically pick its own spacetime background. We would expect that this choice would be independent of the classical solution around which the theory is initially defined. We may hope that the theory finds a unique ground state which describes our world. We can try to draw lessons that bear on these questions from the exactly solvable matrix models of low dimensional string theory [1][2][3].
    [Show full text]
  • Workshop Materials
    Status and Future of Inflationary Theory August 22-24, 2014 KICP workshop, 2014 Chicago, IL http://kicp-workshops.uchicago.edu/inflation2014/ WORKSHOP MATERIALS http://kicp.uchicago.edu/ http://www.uchicago.edu/ The Kavli Institute for Cosmological Physics (KICP) at the University of Chicago is hosting a workshop this summer on inflationary theory. The goal is to gather a small group of researchers working in inflationary cosmology for several days of informal presentations and discussion relating to the status of theories of the inflationary universe. Topics of particular focus are model building, challenges for inflationary theories, connections to fundamental physics, and prospects for refining our understanding with future datasets. This meeting is a satellite conference of COSMO 2014. The meeting will be complementary to the COSMO conference in that it will be small, informal, and relatively narrow in scope. Invited Speakers Raphael Bousso Robert Brandenberger Cora Dvorkin University of California, Berkeley McGill University Institute for Advanced Study Richard Easther Raphael Flauger Daniel Green University of Auckland Institute for Advanced Study CITA Rich Holman Anna Ijjas Justin Khoury Carnegie Mellon Princeton University University of Pennsylvania Will Kinney Matt Kleban Albion Lawrence SUNY, Buffalo New York University Brandeis University Eugene Lim Emil Martinec Liam McAllister King's College London University of Chicago Cornell University Hiranya Peiris Leonardo Senatore Eva Silverstein University College London Stanford University Stanford University Paul Steinhardt Mark Trodden Princeton University University of Pennsylvania Organizing Committee Peter Adshead Wayne Hu Austin Joyce University of Illinois at Urbana University of Chicago University of Chicago Champaign Marilena LoVerde Emil Martinec University of Chicago University of Chicago Status and Future of Inflationary Theory August 22-24, 2014 @ Chicago, IL List of Participants 1.
    [Show full text]
  • Round Table Talk: Conversation with Nathan Seiberg
    Round Table Talk: Conversation with Nathan Seiberg Nathan Seiberg Professor, the School of Natural Sciences, The Institute for Advanced Study Hirosi Ooguri Kavli IPMU Principal Investigator Yuji Tachikawa Kavli IPMU Professor Ooguri: Over the past few decades, there have been remarkable developments in quantum eld theory and string theory, and you have made signicant contributions to them. There are many ideas and techniques that have been named Hirosi Ooguri Nathan Seiberg Yuji Tachikawa after you, such as the Seiberg duality in 4d N=1 theories, the two of you, the Director, the rest of about supersymmetry. You started Seiberg-Witten solutions to 4d N=2 the faculty and postdocs, and the to work on supersymmetry almost theories, the Seiberg-Witten map administrative staff have gone out immediately or maybe a year after of noncommutative gauge theories, of their way to help me and to make you went to the Institute, is that right? the Seiberg bound in the Liouville the visit successful and productive – Seiberg: Almost immediately. I theory, the Moore-Seiberg equations it is quite amazing. I don’t remember remember studying supersymmetry in conformal eld theory, the Afeck- being treated like this, so I’m very during the 1982/83 Christmas break. Dine-Seiberg superpotential, the thankful and embarrassed. Ooguri: So, you changed the direction Intriligator-Seiberg-Shih metastable Ooguri: Thank you for your kind of your research completely after supersymmetry breaking, and many words. arriving the Institute. I understand more. Each one of them has marked You received your Ph.D. at the that, at the Weizmann, you were important steps in our progress.
    [Show full text]
  • Quantum Gravity and Quantum Chaos
    Quantum gravity and quantum chaos Stephen Shenker Stanford University Walter Kohn Symposium Stephen Shenker (Stanford University) Quantum gravity and quantum chaos Walter Kohn Symposium 1 / 26 Quantum chaos and quantum gravity Quantum chaos $ Quantum gravity Stephen Shenker (Stanford University) Quantum gravity and quantum chaos Walter Kohn Symposium 2 / 26 Black holes are thermal Strong chaos underlies thermal behavior in ordinary systems Quantum black holes are thermal They have entropy [Bekenstein] They have temperature [Hawking] Suggests a connection between quantum black holes and chaos Stephen Shenker (Stanford University) Quantum gravity and quantum chaos Walter Kohn Symposium 3 / 26 AdS/CFT Gauge/gravity duality: AdS/CFT Thermal state of field theory on boundary Black hole in bulk Chaos in thermal field theory $ [Maldacena, Sci. Am.] what phenomenon in black holes? 2 + 1 dim boundary 3 + 1 dim bulk Stephen Shenker (Stanford University) Quantum gravity and quantum chaos Walter Kohn Symposium 4 / 26 Butterfly effect Strong chaos { sensitive dependence on initial conditions, the “butterfly effect" Classical mechanics v(0); v(0) + δv(0) two nearby points in phase space jδv(t)j ∼ eλLt jδv(0)j λL a Lyapunov exponent What is the \quantum butterfly effect”? Stephen Shenker (Stanford University) Quantum gravity and quantum chaos Walter Kohn Symposium 5 / 26 Quantum diagnostics Basic idea [Larkin-Ovchinnikov] General picture [Almheiri-Marolf-Polchinsk-Stanford-Sully] W (t) = eiHt W (0)e−iHt Forward time evolution, perturbation, then backward time
    [Show full text]
  • Black Holes and Thermodynamics of Non-Gravitational Theories
    EFI-99-26 hep-th/9906044 Black Holes and Thermodynamics of Non-Gravitational Theories Vatche Sahakian1 2 Enrico Fermi Inst. and Dept. of Physics University of Chicago 5640 S. Ellis Ave., Chicago, IL 60637, USA Abstract arXiv:hep-th/9906044v1 4 Jun 1999 This is a thesis/review article that combines some of the results of [1, 2, 3] with a short discussion of introductory background material; an attempt has been made to present the work in a self-contained manner. The first chapter mostly targets readers who are vaguely familiar with traditional and contemporary string theory. Chapter two discusses in detail the thermodynamics of the 0 + 1 dimensional Super Yang-Mills (SYM) theory as an illustrative example of the main ideas of the work. The third chapter outlines the phase structures of p + 1 dimensional SYM theories on tori for 1 p 5, and that of the D1D5 system; we avoid presenting the technical details of the construction of these phase≤ diagrams,≤ focusing instead on the physics of the final results. The last chapter discusses the dynamics of the formation of boosted black holes in strongly coupled SYM theory. [email protected] 2Address after August 1, 1999: Laboratory of Nuclear Studies, Cornell University, Ithaca, NY 14853 2 Acknowledgments The work presented in this thesis is a compilation of the papers [1, 2, 3]; it was submitted to the division of Physical Sciences at the University of Chicago as a PhD thesis. I thank my collaborators Emil Martinec and Miao Li for many fruitful discussions and a pleasant atmosphere of collaboration.
    [Show full text]
  • Introduction Co String and Superstrtog Theory II SLAC-PUB--4251 DE87
    "" ' SLAC-PUB-425I Much, 1987 (T) Introduction Co String and Superstrtog Theory II MICHAEL E. PESKIN* Stanford Linear Accelerator Center Staiford University, Stanford, California, 94$05 SLAC-PUB--4251 DE87 010542 L<j«u:es pn-si>nLed at the 1966 Theoretical Advanced Study Institute in Particie Physics, University of California* Santa Cru2, June 23 - July 10,1986 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the Unhed States Government. Neither ibe United Stales Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assames any legal liability or responsi­ bility for the accuracy, completeness, or usefulness or any information, apparatus, product, or process disclosed, or represents that its us« would not infringe privately owned rights. Refer- etice herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise docs not necessarily constitute or imply its endorsement, recom­ mendation, or favoring by the United States Government nr any agency thereof. The views und opinions of authors expressed herein do not necessarily stale or reflect those of the United States Government or any agency thereof. • Work supported by the Department *f Entfty. tenlracl DE-ACOJ-76SF©0S16\> 0£ C*3f-$ ^$ ^ CONTENTS .--- -w ..^ / _/ -|^ 1. Introduction 2. Conformal Field Theory 2.1. Conform*! Coordinates 2.2. Conformat Transformations 2.3. The Conformat Algebra 3. Critical Dimension* 3.1. Conformal Transformations and Conforms! Ghosts 3.2. Spinon and Ghosts of the Supentring 4- Vertex Operators and Tree Amplitudes 4.1. The BRST Charge 4.2.
    [Show full text]
  • Signatures of Short Distance Physics in the Cosmic Microwave Background
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE hep-th/0201158provided by CERN Document Server SU-ITP-02/02 SLAC-PUB-9112 Signatures of Short Distance Physics in the Cosmic Microwave Background Nemanja Kaloper1, Matthew Kleban1, Albion Lawrence1;2 and Stephen Shenker1 1Department of Physics, Stanford University, Stanford, CA 94305 2SLAC Theory Group, MS 81, 2575 Sand Hill Road, Menlo Park, CA 94025 We systematically investigate the effect of short distance physics on the spectrum of temperature anistropies in the Cosmic Microwave Background produced during inflation. We present a general argument–assuming only low energy locality–that the size of such effects are of order H2/M 2, where H is the Hubble parameter during inflation, and M is the scale of the high energy physics. We evaluate the strength of such effects in a number of specific string and M theory models. In weakly coupled field theory and string theory models, the effects are far too small to be observed. In phenomenologically attractive Hoˇrava-Witten compactifications, the effects are much larger but still unobservable. In certain M theory models, for which the fundamental Planck scale is several orders of magnitude below the conventional scale of grand unification, the effects may be on the threshold of detectability. However, observations of both the scalar and tensor fluctuation con- tributions to the Cosmic Microwave Background power spectrum–with a precision near the cosmic variance limit–are necessary in order to unambigu- ously demonstrate the existence of these signatures of high energy physics. This is a formidable experimental challenge.
    [Show full text]
  • Arxiv:Hep-Th/0306170V3 4 Nov 2003 T,Ocr Nascnayseto H Nltclycontinu Analytically the of Accessible
    hep-th/0306170 SU-ITP-03-16 The Black Hole Singularity in AdS/CFT Lukasz Fidkowski, Veronika Hubeny, Matthew Kleban, and Stephen Shenker Department of Physics, Stanford University, Stanford, CA, 94305, USA We explore physics behind the horizon in eternal AdS Schwarzschild black holes. In dimension d > 3 , where the curvature grows large near the singularity, we find distinct but subtle signals of this singularity in the boundary CFT correlators. Building on previous work, we study correlation functions of operators on the two disjoint asymptotic boundaries of the spacetime by investigating the spacelike geodesics that join the boundaries. These dominate the correlators for large mass bulk fields. We show that the Penrose diagram for d > 3 is not square. As a result, the real geodesic connecting the two boundary points becomes almost null and bounces off the singularity at a finite boundary time t = 0. c 6 If this geodesic were to dominate the correlator there would be a “light cone” singu- larity at tc. However, general properties of the boundary theory rule this out. In fact, we argue that the correlator is actually dominated by a complexified geodesic, whose proper- ties yield the large mass quasinormal mode frequencies previously found for this black hole. arXiv:hep-th/0306170v3 4 Nov 2003 We find a branch cut in the correlator at small time (in the limit of large mass), arising from coincidence of three geodesics. The tc singularity, a signal of the black hole singular- ity, occurs on a secondary sheet of the analytically continued correlator. Its properties are computationally accessible.
    [Show full text]
  • Black Holes, Wormholes, Long Times and Ensembles
    Black holes, wormholes, long times and ensembles Stephen Shenker Stanford University Strings 2021 – June 22, 2021 Motivation Black hole horizons appear to display irreversible, dissipative behavior. In tension with unitary quantum time evolution of the boundary theory in gauge/gravity duality. A simple example: long time behavior of two-point functions O(t)O(0) . h i [Maldacena: Dyson-Kleban-Lindesay-Susskind, Barbon-Rabinovici] Bulk semiclassical calculation: O(t)O(0) decays indefinitely – h i quasinormal modes. [Horowitz-Hubeny] Boundary calculation: βE 2 i(E E )t O(t)O(0) = e− m m O n e m− n /Z h i |h | | i| m,n We expect that black hole energyX levels are discrete (finite entropy) and nondegenerate (chaos). Then at long times O(t)O(0) stops decreasing. It oscillates in an erratic way and is exponentiallyh i small (in S). What is the bulk explanation for this? An aspect of the black hole information problem... Spectral form factor The oscillating phases are the main actors here. Use a simpler, related diagnostic, the “spectral form factor” (SFF) [Papadodimas-Raju]: β(Em+En) i(Em En)t SFF(t)= e− e − = ZL(β + it)ZR (β it) − m,n X Study in SYK model [Sachdev-Ye, Kitaev]: HSYK = Jabcd a b c d Xabcd Jabcd are independent, random, Gaussian distributed. An ensemble of boundary QM systems, h·i Do computer “experiments” ... [You-Ludwig-Xu,Garcia-Garcia-Verbaaschot, Cotler-Gur-Ari-Hanada-Polchinski-Saad-SS-Stanford-Streicher-Tezuka ...] Random matrix statistics 2 100 SYK, N = 34, 90 samples, β=5, g(t ) log(|Z(+i T)| ) m JT 10-1 Slope 10-2 ) t ( g 10-3 Plateau 10-4 10-5 Ramp 10-1 100 101 102 103 104 105 106 107 Time tJ log(T) SFF = Z (β + it)Z (β it) – ensemble averaged result.
    [Show full text]
  • Stephen Shenker
    K A V L I I N S T I T U T E F O R T H E O R E T I C A L P H Y S I C S Presents The Seventy-First KITP Public Lecture Sponsored by Friends of KITP Stephen Shenker Chaos, Black Holes and Quantum Mechanics C haos is a ubiquitous property of physical systems — it makes their future behavior extremely difficult to predict. The weather is a familiar example. Chaos underlies Admission is Free thermal behavior — substances at high temperature feel RSVP for Reserved Seating “hot” because of the rapid chaotic motion of their constituent by molecules. Hawking discovered that quantum black holes October 19, 2018 have a temperature so it is natural to suspect that they display at: some kind of chaotic behavior. In this talk, we will discuss http://www.kitp.ucsb.edu/ recent insights into how chaos appears in the physics of public-lecture-rsvp quantum black holes, and the implications of these insights or call for many-body physics, and for quantum gravity. (805) 893-6350 Reserved seats are held until 6:50 PM About the Speaker To make special arrangements to accommodate a disability, call the Stephen Shenker was a postdoc at KITP in 1980-81, was KITP at the number above. subsequently on the faculty of the University of Chicago and LOT 10 PARKING Rutgers University, and is currently the Richard Herschel Weiland From the roundabout at Hwy 217, turn Professor at Stanford University. He is a theoretical physicist who right onto Mesa Rd, merge into the left has worked on problems ranging from the theory of phase lane, and turn left at the first light into transitions to the non-perturbative formulation of quantum gravity.
    [Show full text]
  • IAS Letter Spring 2004
    THE I NSTITUTE L E T T E R INSTITUTE FOR ADVANCED STUDY PRINCETON, NEW JERSEY · SPRING 2004 J. ROBERT OPPENHEIMER CENTENNIAL (1904–1967) uch has been written about J. Robert Oppen- tions. His younger brother, Frank, would also become a Hans Bethe, who would Mheimer. The substance of his life, his intellect, his physicist. later work with Oppen- patrician manner, his leadership of the Los Alamos In 1921, Oppenheimer graduated from the Ethical heimer at Los Alamos: National Laboratory, his political affiliations and post- Culture School of New York at the top of his class. At “In addition to a superb war military/security entanglements, and his early death Harvard, Oppenheimer studied mathematics and sci- literary style, he brought from cancer, are all components of his compelling story. ence, philosophy and Eastern religion, French and Eng- to them a degree of lish literature. He graduated summa cum laude in 1925 sophistication in physics and afterwards went to Cambridge University’s previously unknown in Cavendish Laboratory as research assistant to J. J. the United States. Here Thomson. Bored with routine laboratory work, he went was a man who obviously to the University of Göttingen, in Germany. understood all the deep Göttingen was the place for quantum physics. Oppen- secrets of quantum heimer met and studied with some of the day’s most mechanics, and yet made prominent figures, Max Born and Niels Bohr among it clear that the most them. In 1927, Oppenheimer received his doctorate. In important questions were the same year, he worked with Born on the structure of unanswered.
    [Show full text]