Prepared Microscope Slides in Systematic Order 49 PREPARED MICROSCOPE SLIDES in SYSTEMATIC ORDER
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca Volvulus Excretory Secretory Products
pathogens Review The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca volvulus Excretory Secretory Products Luc Vanhamme 1,*, Jacob Souopgui 1 , Stephen Ghogomu 2 and Ferdinand Ngale Njume 1,2 1 Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; [email protected] (J.S.); [email protected] (F.N.N.) 2 Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon; [email protected] * Correspondence: [email protected] Received: 28 October 2020; Accepted: 18 November 2020; Published: 23 November 2020 Abstract: Nematodes constitute a very successful phylum, especially in terms of parasitism. Inside their mammalian hosts, parasitic nematodes mainly dwell in the digestive tract (geohelminths) or in the vascular system (filariae). One of their main characteristics is their long sojourn inside the body where they are accessible to the immune system. Several strategies are used by parasites in order to counteract the immune attacks. One of them is the expression of molecules interfering with the function of the immune system. Excretory-secretory products (ESPs) pertain to this category. This is, however, not their only biological function, as they seem also involved in other mechanisms such as pathogenicity or parasitic cycle (molting, for example). Wewill mainly focus on filariae ESPs with an emphasis on data available regarding Onchocerca volvulus, but we will also refer to a few relevant/illustrative examples related to other worm categories when necessary (geohelminth nematodes, trematodes or cestodes). -
Exposure to Parasitic Protists and Helminths Changes the Intestinal Community Structure Of
bioRxiv preprint doi: https://doi.org/10.1101/717165; this version posted July 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title: Exposure to parasitic protists and helminths changes the intestinal community structure of 2 bacterial microbiota but not of eukaryotes in a cohort of mother-child binomial from a semi-rural 3 setting in Mexico 4 Running title: Parasites affect intestinal microbiome 5 Oswaldo Partida-Rodriguez1,2, Miriam Nieves-Ramirez1,2, Isabelle Laforest-Lapointe3,4, Eric Brown2, 6 Laura Parfrey5,6, Lisa Reynolds2, Alicia Valadez-Salazar1, Lisa Thorson2, Patricia Morán1, Enrique 7 Gonzalez1, Edgar Rascon1, Ulises Magaña1, Eric Hernandez1, Liliana Rojas-V1, Javier Torres7, Marie 8 Claire Arrieta2,3,4*, Cecilia Ximenez1*#, Brett Finlay2,8,9* 9 * Senior authors, contributed equally. 10 1Laboratorio de Inmunología del Departamento de Medicina Experimental, UNAM, Mexico City, Mexico 11 2Michael Smith Laboratories, Department of Microbiology & Immunology, University of British 12 Columbia, Vancouver, British Columbia, Canada 13 3Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada 14 4Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada 15 5Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada 16 6Department of Botany, University -
Combination Anthelmintic Treatment for Persistent Ancylostoma Caninum Ova Shedding in Greyhounds
CASE SERIES Combination Anthelmintic Treatment for Persistent Ancylostoma caninum Ova Shedding in Greyhounds Lindie B. Hess, BS, Laurie M. Millward, DVM, Adam Rudinsky DVM, Emily Vincent, BS, Antoinette Marsh, PhD ABSTRACT Ancylostoma caninum is a nematode of the canine gastrointestinal tract commonly referred to as hookworm. This study involved eight privately owned adult greyhounds presenting with persistent A. caninum ova shedding despite previous deworming treatments. The dogs received a combination treatment protocol comprising topical moxidectin, followed by pyrantel/febantel/praziquantel within 24 hr. At 7–10 days posttreatment, a fecal examination monitored for parasite ova. Dogs remained on the monthly combination treatment protocol until they ceased shedding detectable ova. The dogs then received only the monthly topical moxidectin maintenance treatment. The dogs remained in the study for 5–14 mo with periodical fecal examinations performed. During the study, three dogs reverted to positive fecal ova status, with two being associated with client noncompliance. Reinstitution of the combination treatment protocol resulted in no detectable ova. Use of monthly doses of combination pyrantel, febantel and moxidectin appears to be an effective treatment for nonresponsive or persistent A. caninum ova shedding. Follow-up fecal examinations were important for verifying the presence or absence of ova shedding despite the use of anthelmintic treatment. Limitations of the current study include small sample size, inclusion of only privately owned greyhounds, and client compliance with fecal collection and animal care. (JAmAnimHospAssoc2019; 55:---–---. DOI 10.5326/ JAAHA-MS-6904) Introduction include the following: moxidectina,b, milbemycin oximec, fenben- Ancylostoma caninum is a nematode of the canine gastrointestinal dazoled, and/or pyrantel-containing productse,f. -
Entamoeba Histolytica
Journal of Clinical Microbiology and Biochemical Technology Piotr Nowak1*, Katarzyna Mastalska1 Review Article and Jakub Loster2 1Laboratory of Parasitology, Department of Microbiology, University Hospital in Krakow, 19 Entamoeba Histolytica - Pathogenic Kopernika Street, 31-501 Krakow, Poland 2Department of Infectious Diseases, University Protozoan of the Large Intestine in Hospital in Krakow, 5 Sniadeckich Street, 31-531 Krakow, Poland Humans Dates: Received: 01 December, 2015; Accepted: 29 December, 2015; Published: 30 December, 2015 *Corresponding author: Piotr Nowak, Laboratory of Abstract Parasitology, Department of Microbiology, University Entamoeba histolytica is a cosmopolitan, parasitic protozoan of human large intestine, which is Hospital in Krakow, 19 Kopernika Street, 31- 501 a causative agent of amoebiasis. Amoebiasis manifests with persistent diarrhea containing mucus Krakow, Poland, Tel: +4812/4247587; Fax: +4812/ or blood, accompanied by abdominal pain, flatulence, nausea and fever. In some cases amoebas 4247581; E-mail: may travel through the bloodstream from the intestine to the liver or to other organs, causing multiple www.peertechz.com abscesses. Amoebiasis is a dangerous, parasitic disease and after malaria the second cause of deaths related to parasitic infections worldwide. The highest rate of infections is observed among people living Keywords: Entamoeba histolytica; Entamoeba in or traveling through the tropics. Laboratory diagnosis of amoebiasis is quite difficult, comprising dispar; Entamoeba moshkovskii; Entamoeba of microscopy and methods of molecular biology. Pathogenic species Entamoeba histolytica has to histolytica sensu lato; Entamoeba histolytica sensu be differentiated from other nonpathogenic amoebas of the intestine, so called commensals, that stricto; commensals of the large intestine; amoebiasis very often live in the human large intestine and remain harmless. -
Volvox Barberi Flocks, Forming Near-Optimal, Two
bioRxiv preprint doi: https://doi.org/10.1101/279059; this version posted March 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Volvox barberi flocks, forming near-optimal, two-dimensional, polydisperse lattice packings Ravi Nicholas Balasubramanian1 1Harriton High School, 600 North Ithan Avenue, Bryn Mawr, PA 19010, USA Volvox barberi is a multicellular green alga forming spherical colonies of 10000-50000 differentiated somatic and germ cells. Here, I show that these colonies actively self-organize over minutes into “flocks" that can contain more than 100 colonies moving and rotating collectively for hours. The colonies in flocks form two-dimensional, irregular, \active crystals", with lattice angles and colony diameters both following log-normal distributions. Comparison with a dynamical simulation of soft spheres with diameters matched to the Volvox samples, and a weak long-range attractive force, show that the Volvox flocks achieve optimal random close-packing. A dye tracer in the Volvox medium revealed large hydrodynamic vortices generated by colony and flock rotations, providing a likely source of the forces leading to flocking and optimal packing. INTRODUCTION behavior (see, e.g., [8, 9] and references therein) but their interactions are often dominated by viscous forces (e.g. fluid drag) unlike larger organisms which are The remarkable multicellular green alga Volvox barberi dominated by inertial forces. Here, I show that V. [1] forms spherical colonies of 10,000 to 50,000 cells barberi colonies, which are themselves composed of many embedded in a glycol-protein based extra cellular matrix individual cells acting together, show collective behavior (ECM) and connected by cytoplasmic bridges that may at a higher level of organization. -
Characterisation of Cryptosporidium Growth And
CHARACTERISATION OF CRYPTOSPORIDIUM GROWTH AND PROPAGATION IN CELL FREE ENVIRONMENTS Annika Estcourt BSc (Hons) This thesis is presented for the degree of Doctor of Philosophy at Murdoch University 2011 1 DECLARATION I declare that this thesis is my own account of my research and contains as its main content, work that has not previously been submitted for a degree at any tertiary institution. Annika Estcourt (previously Boxell) 2 ACKNOWLEDGEMENTS Well finally! 8 years, almost to the day, from the very start of commencing on this journey, here it is, the finished product complete with blood, sweat and tears! Many times I have imagined the feeling of finally handing in and the celebrations I would have with family and friends when my PhD came to fruition. If I had a dollar for every time one of my friends, family or work colleagues asked me over the last four years ‘how is your thesis going?’ or ‘have you handed in yet?’ I would be very wealthy! As much as these questions occasionally hit a raw nerve, I would like to thank every one of you who kept on me as this has driven me bit by bit to put the finishing touches on my thesis in amidst concentrating on my new career path and being side tracked with life’s up and downs and my favorite hobby – horses! My sincere gratitude goes to my supervisors who have never given up on me! First and foremost, my heartfelt appreciation to Prof. Una Ryan. Una, you have been the most incredible supervisor anyone could ever have or wish for. -
Introduction to the Cell Cell History Cell Structures and Functions
Introduction to the cell cell history cell structures and functions CK-12 Foundation December 16, 2009 CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and distribution of high quality educational content that will serve both as core text as well as provide an adaptive environment for learning. Copyright ©2009 CK-12 Foundation This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Contents 1 Cell structure and function dec 16 5 1.1 Lesson 3.1: Introduction to Cells .................................. 5 3 www.ck12.org www.ck12.org 4 Chapter 1 Cell structure and function dec 16 1.1 Lesson 3.1: Introduction to Cells Lesson Objectives • Identify the scientists that first observed cells. • Outline the importance of microscopes in the discovery of cells. • Summarize what the cell theory proposes. • Identify the limitations on cell size. • Identify the four parts common to all cells. • Compare prokaryotic and eukaryotic cells. Introduction Knowing the make up of cells and how cells work is necessary to all of the biological sciences. Learning about the similarities and differences between cell types is particularly important to the fields of cell biology and molecular biology. -
Algae of the Genus Volvox (Chlorophyta) in Sub-Extreme Habitats T A.G
Short Communication T REPRO N DU The International Journal of Plant Reproductive Biology 12(2) July, 2020, pp.156-158 LA C P T I F V O E B Y T I DOI 10.14787/ijprb.2020 12.2. O E I L O C G O S I S T E S H Algae of the genus Volvox (Chlorophyta) in sub-extreme habitats T A.G. Desnitskiy Department of Embryology, Saint-Petersburg State University, Saint-Petersburg, 199034, Universitetskaya nab. 7/9, Russia e-mail: [email protected]; [email protected] Received: 18. 05. 2020; Revised: 08. 06. 2020; Accepted and Published online: 15. 06. 2020 ABSTRACT Literature data on the life of green colonial algae of the genus Volvox (Chlorophyta) in sub-extreme habitats (polar, sub-polar and mountain regions) are critically considered. Very few species (primarily homothallic Volvox aureus) are able to thrive in such conditions. Keywords : Geographical distribution, reproduction, sub-extreme habitats, Volvox. The genus Volvox Linnaeus (Volvocaceae, Chlorophyta) Peru (South America) at the elevation of more than five includes more than 20 species of freshwater flagellate algae thousand meters above sea level seems to be doubtful. The (Nozaki et al. 2015), providing an opportunity to study the illustration from this article (which focuses mainly on developmental mechanisms in a relatively simple system diatoms) shows a spherical colony with a diameter of about 14 consisting of two cellular types (somatic and reproductive). μm, consisting of several hundred very small cells (Fritz et al. Volvox carteri f. nagariensis Iyengar is a valuable model of 2015, p. -
The Intestinal Protozoa
The Intestinal Protozoa A. Introduction 1. The Phylum Protozoa is classified into four major subdivisions according to the methods of locomotion and reproduction. a. The amoebae (Superclass Sarcodina, Class Rhizopodea move by means of pseudopodia and reproduce exclusively by asexual binary division. b. The flagellates (Superclass Mastigophora, Class Zoomasitgophorea) typically move by long, whiplike flagella and reproduce by binary fission. c. The ciliates (Subphylum Ciliophora, Class Ciliata) are propelled by rows of cilia that beat with a synchronized wavelike motion. d. The sporozoans (Subphylum Sporozoa) lack specialized organelles of motility but have a unique type of life cycle, alternating between sexual and asexual reproductive cycles (alternation of generations). e. Number of species - there are about 45,000 protozoan species; around 8000 are parasitic, and around 25 species are important to humans. 2. Diagnosis - must learn to differentiate between the harmless and the medically important. This is most often based upon the morphology of respective organisms. 3. Transmission - mostly person-to-person, via fecal-oral route; fecally contaminated food or water important (organisms remain viable for around 30 days in cool moist environment with few bacteria; other means of transmission include sexual, insects, animals (zoonoses). B. Structures 1. trophozoite - the motile vegetative stage; multiplies via binary fission; colonizes host. 2. cyst - the inactive, non-motile, infective stage; survives the environment due to the presence of a cyst wall. 3. nuclear structure - important in the identification of organisms and species differentiation. 4. diagnostic features a. size - helpful in identifying organisms; must have calibrated objectives on the microscope in order to measure accurately. -
Lecture 5: Emerging Parasitic Helminths Part 2: Tissue Nematodes
Readings-Nematodes • Ch. 11 (pp. 290, 291-93, 295 [box 11.1], 304 [box 11.2]) • Lecture 5: Emerging Parasitic Ch.14 (p. 375, 367 [table 14.1]) Helminths part 2: Tissue Nematodes Matt Tucker, M.S., MSPH [email protected] HSC4933 Emerging Infectious Diseases HSC4933. Emerging Infectious Diseases 2 Monsters Inside Me Learning Objectives • Toxocariasis, larva migrans (Toxocara canis, dog hookworm): • Understand how visceral larval migrans, cutaneous larval migrans, and ocular larval migrans can occur Background: • Know basic attributes of tissue nematodes and be able to distinguish http://animal.discovery.com/invertebrates/monsters-inside- these nematodes from each other and also from other types of me/toxocariasis-toxocara-roundworm/ nematodes • Understand life cycles of tissue nematodes, noting similarities and Videos: http://animal.discovery.com/videos/monsters-inside- significant difference me-toxocariasis.html • Know infective stages, various hosts involved in a particular cycle • Be familiar with diagnostic criteria, epidemiology, pathogenicity, http://animal.discovery.com/videos/monsters-inside-me- &treatment toxocara-parasite.html • Identify locations in world where certain parasites exist • Note drugs (always available) that are used to treat parasites • Describe factors of tissue nematodes that can make them emerging infectious diseases • Be familiar with Dracunculiasis and status of eradication HSC4933. Emerging Infectious Diseases 3 HSC4933. Emerging Infectious Diseases 4 Lecture 5: On the Menu Problems with other hookworms • Cutaneous larva migrans or Visceral Tissue Nematodes larva migrans • Hookworms of other animals • Cutaneous Larva Migrans frequently fail to penetrate the human dermis (and beyond). • Visceral Larva Migrans – Ancylostoma braziliense (most common- in Gulf Coast and tropics), • Gnathostoma spp. Ancylostoma caninum, Ancylostoma “creeping eruption” ceylanicum, • Trichinella spiralis • They migrate through the epidermis leaving typical tracks • Dracunculus medinensis • Eosinophilic enteritis-emerging problem in Australia HSC4933. -
Parasites and Wildlife 10 (2019) 87–92
IJP: Parasites and Wildlife 10 (2019) 87–92 Contents lists available at ScienceDirect IJP: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Molecular survey on the occurrence of avian haemosporidia, Coxiella burnetii and Francisella tularensis in waterfowl from central Italy T Valentina Virginia Ebania,*, Simona Nardonia, Marinella Giania, Guido Rocchigiania, Talieh Archinb, Iolanda Altomontea, Alessandro Polia, Francesca Manciantia a Department of Veterinary Science, University of Pisa, viale delle Piagge 2, 56124, Pisa, Italy b Department of Microbiology, College of Veterinary Medicine, Urmia University, Urmia, Iran ARTICLE INFO ABSTRACT Keywords: The aim of the present study was to evaluate the occurrence of some avian Haemosporidia, Coxiella burnetii and Waterfowl Francisella tularensis in waterfowl from Tuscany wetlands. One-hundred and thirty-three samples of spleen were Leucocytozoon spp. collected from regularly hunted wild birds belonging to 13 different waterfowl species. DNA extracted from each Plasmodium spp sample was submitted to PCR assays and sequencing to detect the pathogens. Thirty-three samples (24.81%) Haemoproteus spp were positive with PCR for at least one pathogen: 23 (17.29%) for Leucocytozoon spp., 6 (4.51%) for Plasmodium Coxiella burnetii spp., 4 (3%) for C. burnetii, 2 (1.5%) for Haemoproteus spp. No specific F. tularensis amplifications (0%) were Francisella tularensis detected. To the best of our knowledge, this study firstly reports data about haemosporidian and C. burnetii infections in waterfowl from Italy. 1. Introduction waterfowl by microscopy in Italy yielded no positive results. Coxiella burnetii is the etiologic agent of Q fever, a worldwide zoo- Avian haemosporidia are a group of protozoan parasites, among notic bacterial disease. -
Visceral and Cutaneous Larva Migrans PAUL C
Visceral and Cutaneous Larva Migrans PAUL C. BEAVER, Ph.D. AMONG ANIMALS in general there is a In the development of our concepts of larva II. wide variety of parasitic infections in migrans there have been four major steps. The which larval stages migrate through and some¬ first, of course, was the discovery by Kirby- times later reside in the tissues of the host with¬ Smith and his associates some 30 years ago of out developing into fully mature adults. When nematode larvae in the skin of patients with such parasites are found in human hosts, the creeping eruption in Jacksonville, Fla. (6). infection may be referred to as larva migrans This was followed immediately by experi¬ although definition of this term is becoming mental proof by numerous workers that the increasingly difficult. The organisms impli¬ larvae of A. braziliense readily penetrate the cated in infections of this type include certain human skin and produce severe, typical creep¬ species of arthropods, flatworms, and nema¬ ing eruption. todes, but more especially the nematodes. From a practical point of view these demon¬ As generally used, the term larva migrans strations were perhaps too conclusive in that refers particularly to the migration of dog and they encouraged the impression that A. brazil¬ cat hookworm larvae in the human skin (cu¬ iense was the only cause of creeping eruption, taneous larva migrans or creeping eruption) and detracted from equally conclusive demon¬ and the migration of dog and cat ascarids in strations that other species of nematode larvae the viscera (visceral larva migrans). In a still have the ability to produce similarly the pro¬ more restricted sense, the terms cutaneous larva gressive linear lesions characteristic of creep¬ migrans and visceral larva migrans are some¬ ing eruption.