Downloaded from Bioscientifica.Com at 09/23/2021 06:14:38PM Via Free Access Table 1

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded from Bioscientifica.Com at 09/23/2021 06:14:38PM Via Free Access Table 1 Pharmacological characterization in vitro of prostanoid receptors in the myometrium of nonpregnant ewes D. J. Crankshaw and V. Gaspar Department of Obstetrics and Gynecology, McMaster University Health Sciences Centre, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5 Prostanoid receptors regulating the contractility of strips of myometrium obtained from nonpregnant ewes during the breeding season were classified pharmacologically. Natural prostanoids, receptor-type selective synthetic analogues, and selective antagonists were used where available. The natural prostanoids PGD2, PGE2, and PGF2\g=a\were equipotent in causing contractions ( pD2 values of 6.9, 6.7, and 6.9, respectively) but were 100 times less potent than oxytocin ( pD2 = 9.2). The synthetic prostanoids iloprost (pD2 = 8.3), GR63799x ( pD2 = 7.0), cloprostenol ( pD2 = 6.8), and U46619 ( pD2 = 6.2) also caused contractions. The effects of iloprost, but not of GR63799x, were blocked by the selective EP1 antagonist AH6809. This suggests the presence of both EP1 and EP3 receptors. The similar potencies of cloprostenol and PGF2\g=a\suggest the presence of FP receptors. Although the potency of the TP agonist U46619 was relatively low, its effects were blocked by the selective TP antagonist L670596 ( pKB = 8.4), an observation consistent with the presence of TP receptors. Thus, all currently recognized excitatory prostanoid receptors (EP1( EP3, FP and TP) appeared to be present. Contractions induced by cloprostenol and KC1 could be inhibited by the ß-adrenoceptor agonist isoprenaline ( 2 = 8.S against cloprostenol) and the Ca2+-channel blocker, D600 ( pD2 = 6.3 against cloprostenol), but a number of relaxant prostanoids, BW245c, ZK110841, AH13205 and cicaprost, could not produce inhibition. These results suggest that DP, EP2 and IP receptors do not regulate contractility under these conditions. Introduction between 15 September and 15 December over three successive seasons, from crossbred yearling ewes or ewe lambs weighing and that a Novy Liggins (1980) suggest prostanoids play more than 40 kg. The tracts were placed in ice cold physiologi¬ role in the of uterine activity in a cal salt solution physiological regulation (PSS) of the following composition (mmol 1 ~ ): number of species. In ewes, work aimed at delineating this role potassium chloride 4.6, magnesium sulfate 1.16, sodium dihy- has focused, almost exclusively, on alterations in prostanoid drogen phosphate 1.16, calcium chloride 2.5, sodium chloride concentrations in various compartments during different phases 115.5, sodium bicarbonate 21.9 and glucose 11.1 with of the (Olson et al, 1986). Scant attention reproductive cycle indomethacin at 10 pmol \~ , and transported to the labora¬ has been to the actions of these at the paid compounds tory. In the laboratory, the ovaries were inspected for indi¬ putative end-organ. cations of reproductive status. Only uteri from animals with an In humans et the direct (Senior al, 1991, 1992, 1993), effects active corpus luteum, or large fluid-filled follicles accompanied of on uterine are mediated prostanoids contractility through by a recently regressed corpus luteum in at least one ovary, actions at seven different some of which receptors, are excit¬ were included in the study. Results from uteri from 45 animals others In the atory, inhibitory. ewes, however, prostanoid that met these criteria are reported. None of these reproductive status of the is not known. receptor myometrium tracts showed any indication of trophoblastic activation. The In the the status of present study, prostanoid receptor the uteri were washed with oxygenated (95% 02:5% C02) PSS at myometrium of nonpregnant ewes during the breeding season room temperature, cleared of any adhering fat and connective was determined pharmacologically by studying the effects of tissue, and eight longitudinal strips of myometrium approxi¬ prostanoid receptor-selective analogues on the contractility of mately 1.5 cm in length and 0.04 cm2 in cross-sectional area the myometrium in vitro. were cut from the body of the uterus. Materials and Methods Recording of isometric contractions Collection of myometrium General Tissue strips were tied at each end with tracts were obtained from two abattoirs in the protocol. Reproductive silk thread and mounted longitudinally in individual 10 ml of Hamilton, Ontario (43°15'N). They were collected vicinity jacketed muscle baths containing oxygenated PSS at 37°C. One Received 25 July 1994. end of each strip was anchored in the bath; the other was Downloaded from Bioscientifica.com at 09/23/2021 06:14:38PM via free access Table 1. Composition, concentration and sources of compounds used Compound Stock solution Source 3 17-phenyl trinor PGE2 10 g ml 'in absolute ethanol Cayman Chemical, Ann Arbor, MI 3 ' AH6809 2.5 10 ml" in 1% (w/v) Glaxo Ware " g NaHC03 Group Research, AH13205 10 2 ml in 1% Glaxo Research - (w/v) g - NaHC03 Group BW245C 10 2 mol 1 1 in absolute ethanol Wellcome Research Beckenham ~ ~ Laboratories, BW A868c 10 2 mol 1 in absolute ethanol Wellcome Research Laboratories ~~ ~ Carbachol 10 1 mol 1 ' in 0.9% saline Chemical Co., St Louis, MO " (w/v) " Sigma 10 3 ml l in 0.9% saline ICI Park Cloprostenol ~ g ~ (w/v) Pharmaceuticals, Alderley 5 2 5 10 ml in solution AG, Berlin Cicaprost ~ g ~ aqueous Schering D600 10 3 mol 1 in 0.9% saline Chemical Co. " " (w/v) Sigma GR63799X 10 2 ml ' in absolute ethanol Glaxo Research ~ ~ g Group 10 5 ml ' in solution AG Iloprost ~ g ~ aqueous Schering 3 : Indomethacin 5 10 mol " Na2C03 Sigma 10 2 mol 1 1 in 0.9% saline and Isoprenaline ~ ~ (w/v) Sigma ascorbate L670596 10 3 ml l in DMSO Merck Frosst Centre for " g " Therapeutic Research, Pointe Clare, PQ 10 'gmr1 in absolute ethanol G. D. Searle, Skokie, IL Misoprostol 1 10 mol 1 l in 0.9% saline Tucson, AZ Oxytocin " (w/v) Vega, 10 1 mol 1 in absolute ethanol Chemical PGD2 ~ Cayman 10 1 mol 1 in absolute ethanol Chemical PGE2 ~ Cayman PGF2a tromethamine salt 10" 1 mol 1_ 1 in 0.9% (w/v) saline Cayman Chemical [0 ' ml ' in solution AG Sulprostone g ~ aqueous Schering U46619 10 ml J in acetate Chemical g ~ methyl ' Cayman 3 : ZK110841 1.25 10 g ml in absolute ethanol Schering AG attached to an FT-03 force displacement transducer writing to force developed in response to that concentration of agonist. a 7D polygraph (Grass Instruments, Quincy, MA). An initial Additions were continued until further addition produced no resting force of 40 mN was applied to each tissue. This usually further increase in developed force. Concentration—effect declined rapidly and was readjusted throughout the next hour curves (response versus log molar agonist concentration) were to obtain a steady baseline force of 25 mN. Throughout this then constructed from these data by fitting the equation period, the bath solution was changed regularly. Tissues were E = E + Œ E Vi + e k('08C "logD) " then with chloride mmol 1 - challenged potassium (90 ~ ). Any strip that failed to develop force in response to this challenge where E is the effect of the agonist, C is the molar concen¬ was discarded. Potassium chloride was washed from the bath tration of the agonist and D is the molar concentration of and were allowed for a further hour. The tissues to equilibrate the agonist that produces a half maximal response (£C50). mean force developed by the individual muscle strips during The value of logD is equivalent to the negative logI0 of 10 min was used as a measure of their contractility. This the molar concentration— of the agonist that produces 50% of technique has been used routinely in this laboratory (Dyal and the maximal response, pD2 values. Wainman and others Crankshaw, 1988; el al, 1988) (Cheuk Normally the same agonist was tested on two muscle strips el al, 1993), since it can be used to quantify drug effects in from the same animal and the average of the two pD2 values tissues that develop significant spontaneous activity and obtained was used. Thus values represent the number of respond to stimulation by changes in both tonic and phasic animals on which each drug was tested. activity (Crankshaw, 1990). Mean force was determined exactly as described by Wainman et al (1988). Concentration-effect curves to inhibitory agonists most tissues contractile Concentration-effect curves to excitatory agonists Although developed spontaneous activity during the equilibration period, this activity decayed At the end of the equilibration period, the mean force with a time course that was highly variable, particularly developed during a 10 min control period was determined. between animals, but also between strips from the same animal. Drugs were then added to the baths, in a cumulative fashion, This made it difficult to obtain concentration-effect data for by increments that would produce approximately one half log inhibitors. To remedy this problem, strips were stimulated in unit changes in the concentration in the bath. After each two different ways, and the effect of drugs on this stimulated addition, the mean contractile force was determined for 10 min. activity was examined. At the end of the equilibration period, The mean force recorded in 10 min immediately after agonist the PSS was changed to a solution that contained either 1 addition minus the mean control force was considered to be the 40 mmol potassium chloride 1~ or 2 pmol cloprostenol I-1. Downloaded from Bioscientifica.com at 09/23/2021 06:14:38PM via free access Effects of antagonists 50 mN In attempts to delineate the site of action of a number of excitatory agonists, experiments were performed to investigate the effects of selective receptor antagonists on their action. The as described above was used, that four —10 min general protocol except tissue strips from each animal were used.
Recommended publications
  • Download Product Insert (PDF)
    Product Information U-46619 Item No. 16450 CAS Registry No.: 56985-40-1 Formal Name: 9,11-dideoxy-9α,11α-methanoepoxy-prosta- 5Z,13E-dien-1-oic acid Synonym: 9,11-dideoxy-9α,11α-methanoepoxy COOH Prostaglandin F2α MF: C21H34O4 O FW: 350.5 Purity: ≥98% OH Stability: ≥2 years at -20°C Supplied as: A solution in methyl acetate Laboratory Procedures For long term storage, we suggest that U-46619 be stored as supplied at -20°C. It will be stable for at least two years. U-46619 is supplied as a solution in methyl acetate. To change the solvent, simply evaporate the methyl acetate under a gentle stream of nitrogen and immediately add the solvent of choice. Solvents such as DMSO, ethanol, and dimethyl formamide purged with an inert gas can be used. The solubility of U-46619 in these solvents is aproximately 100 mg/ml. Further dilutions of the stock solution into aqueous buffers or isotonic saline should be made prior to performing biological experiments. Ensure that the residual amount of organic solvent is insignificant since organic solvents may have physiological effects at low concentrations. If an organic solvent-free solution of U-46619 is needed, it can be prepared by evaporating the methyl acetate and directly dissolving the neat oil in aqueous buffers. The solubility of U-46619 in PBS (pH 7.2) is approximately 2 mg/ml. We do not recommend storing the aqueous solution for more than one day. 1 U-46619 is a stable analog of the endoperoxide prostaglandin H2, and a TP receptor agonist.
    [Show full text]
  • 16171145.Pdf
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Radboud Repository PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/86683 Please be advised that this information was generated on 2017-12-06 and may be subject to change. OBSTETR GYNEC European Journal of Obstetrics & Gynecology ELSEV and Reproductive Biology 61 (1995) 171-173 Case report Critical limb ischemia after accidental subcutaneous infusion of sulprostone Yvonne W.C.M. de Koninga, Peter W. Plaisierb, I. Leng Tanc, Fred K. Lotgering*a aDepartment o f Obstetrics and Gynaecology, Erasmus University, School o f Medicine and Health Sciences, EUR EE 2283, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands bDepartment o f General Surgery, Erasmus University, School o f Medicine and Health Sciences, EUR EE 2283, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands cDepartment o f Radiology, Erasmus University, School o f Medicine and Health Sciences, EUR EE 2283, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands Received 23 September 1994; accepted 20 January 1995 Abstract A 34-year-old patient was treated with constant intravenous infusion of sulprostone because of postpartum hemorrhage from a hypotonic uterus. The arm in which sulprostone had been infused was painful 23 h after infusion. A day later, the arm was found to be blueish, edematous and extremely painful as a result of arterial spasm. The vasospasm was probably caused by accidental subcutaneous infusion of sulprostone as a result of a displaced intravenous catheter.
    [Show full text]
  • Role of Proaggregatory and Antiaggregatory Prostaglandins in Hemostasis
    Role of proaggregatory and antiaggregatory prostaglandins in hemostasis. Studies with combined thromboxane synthase inhibition and thromboxane receptor antagonism. P Gresele, … , G Pieters, J Vermylen J Clin Invest. 1987;80(5):1435-1445. https://doi.org/10.1172/JCI113223. Research Article Thromboxane synthase inhibition can lead to two opposing effects: accumulation of proaggregatory cyclic endoperoxides and increased formation of antiaggregatory PGI2 and PGD2. The elimination of the effects of the cyclic endoperoxides by an endoperoxide-thromboxane A2 receptor antagonist should enhance the inhibition of hemostasis by thromboxane synthase blockers. We have carried out a series of double-blind, placebo-controlled, crossover studies in healthy volunteers to check if this hypothesis may be operative in vivo in man. In a first study, in 10 healthy male volunteers, the combined administration of the thromboxane receptor antagonist BM 13.177 and the thromboxane synthase inhibitor dazoxiben gave stronger inhibition of platelet aggregation and prolonged the bleeding time more than either drug alone. In a second study, in 10 different healthy male volunteers, complete inhibition of cyclooxygenase with indomethacin reduced the prolongation of the bleeding time by the combination BM 13.177 plus dazoxiben. In a third study, in five volunteers, selective cumulative inhibition of platelet TXA2 synthesis by low-dose aspirin inhibited platelet aggregation and prolonged the bleeding time less than the combination BM 13.177 plus dazoxiben. In vitro, in
    [Show full text]
  • Vasoactive Responses of U46619, PGF2 , Latanoprost, and Travoprost
    Vasoactive Responses of U46619, PGF2␣, Latanoprost, and Travoprost in Isolated Porcine Ciliary Arteries Ineta Vysniauskiene, Reto Allemann, Josef Flammer, and Ivan O. Haefliger PURPOSE. To compare the vasoactive properties of the prosta- these responses can be modulated by SQ 29548 (TP-receptor noids U46619 (thromboxane A2 analogue), prostaglandin F2␣ antagonist) or AL-8810 (FP-receptor antagonist). (PGF2␣), latanoprost free acid, and travoprost free acid in isolated porcine ciliary arteries. METHODS. In a myograph system (isometric force measure- MATERIAL AND METHODS ment), quiescent vessels were exposed (cumulatively) to U46619, PGF , latanoprost, or travoprost (0.1 nM–0.1 mM). 2␣ Vessels Preparation Experiments were also conducted in the presence of SQ 29548 (TP-receptor antagonist; 3–10 ␮M) or AL-8810 (FP-receptor Porcine eyes were obtained from an abattoir immediately after death. antagonist; 3–30 ␮M). Contractions were expressed as the In cold modified Krebs-Ringer solution (NaCl 118 mM, KCl 4.7 mM, percentage of 100 mM potassium chloride-induced contrac- CaCl2 2.5 mM, K2PO4 1.2 mM, MgSO4 1.2 mM, NaHCO3 25 mM, tions. glucose 11.1 mM, and EDTA 0.026 mM), ciliary arteries were dissected 5 ␮ RESULTS. In quiescent vessels, contractions (concentration–re- and cut into 2-mm segments. In an organ chamber, two 45- m Ϯ tungsten wires were passed through the vessel’s lumen and attached to sponse curves) induced by (0.1 mM) PGF2␣ (87.9% 3.5%), U46619 (66.7% Ϯ 4.1%), and latanoprost (62.9% Ϯ 3.6%) were a force transducer for isometric force measurements (Myo-Interface; JP more pronounced (P Յ 0.001) than those induced by tra- Trading, Aarhus, Denmark).
    [Show full text]
  • Effect of Prostanoids on Human Platelet Function: an Overview
    International Journal of Molecular Sciences Review Effect of Prostanoids on Human Platelet Function: An Overview Steffen Braune, Jan-Heiner Küpper and Friedrich Jung * Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology, 01968 Senftenberg, Germany; steff[email protected] (S.B.); [email protected] (J.-H.K.) * Correspondence: [email protected] Received: 23 October 2020; Accepted: 23 November 2020; Published: 27 November 2020 Abstract: Prostanoids are bioactive lipid mediators and take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. In this review, we focus on their influence on platelets, which are key elements in thrombosis and hemostasis. The function of platelets is influenced by mediators in the blood and the vascular wall. Activated platelets aggregate and release bioactive substances, thereby activating further neighbored platelets, which finally can lead to the formation of thrombi. Prostanoids regulate the function of blood platelets by both activating or inhibiting and so are involved in hemostasis. Each prostanoid has a unique activity profile and, thus, a specific profile of action. This article reviews the effects of the following prostanoids: prostaglandin-D2 (PGD2), prostaglandin-E1, -E2 and E3 (PGE1, PGE2, PGE3), prostaglandin F2α (PGF2α), prostacyclin (PGI2) and thromboxane-A2 (TXA2) on platelet activation and aggregation via their respective receptors. Keywords: prostacyclin; thromboxane; prostaglandin; platelets 1. Introduction Hemostasis is a complex process that requires the interplay of multiple physiological pathways. Cellular and molecular mechanisms interact to stop bleedings of injured blood vessels or to seal denuded sub-endothelium with localized clot formation (Figure1).
    [Show full text]
  • Activation of the Murine EP3 Receptor for PGE2 Inhibits Camp Production and Promotes Platelet Aggregation
    Activation of the murine EP3 receptor for PGE2 inhibits cAMP production and promotes platelet aggregation Jean-Etienne Fabre, … , Thomas M. Coffman, Beverly H. Koller J Clin Invest. 2001;107(5):603-610. https://doi.org/10.1172/JCI10881. Article The importance of arachidonic acid metabolites (termed eicosanoids), particularly those derived from the COX-1 and COX-2 pathways (termed prostanoids), in platelet homeostasis has long been recognized. Thromboxane is a potent agonist, whereas prostacyclin is an inhibitor of platelet aggregation. In contrast, the effect of prostaglandin E2 (PGE2) on platelet aggregation varies significantly depending on its concentration. Low concentrations of PGE2 enhance platelet aggregation, whereas high PGE2 levels inhibit aggregation. The mechanism for this dual action of PGE2 is not clear. This study shows that among the four PGE2 receptors (EP1–EP4), activation of EP3 is sufficient to mediate the proaggregatory actions of low PGE2 concentration. In contrast, the prostacyclin receptor (IP) mediates the inhibitory effect of higher PGE2 concentrations. Furthermore, the relative activation of these two receptors, EP3 and IP, regulates the intracellular level of cAMP and in this way conditions the response of the platelet to aggregating agents. Consistent with these findings, loss of the EP3 receptor in a model of venous inflammation protects against formation of intravascular clots. Our results suggest that local production of PGE2 during an inflammatory process can modulate ensuing platelet responses. Find the latest version: https://jci.me/10881/pdf Activation of the murine EP3 receptor for PGE2 inhibits cAMP production and promotes platelet aggregation Jean-Etienne Fabre,1 MyTrang Nguyen,1 Krairek Athirakul,2 Kenneth Coggins,1 John D.
    [Show full text]
  • Prostaglandins and Other Lipid Mediators
    Prostaglandins & other Lipid Mediators 122 (2016) 18–27 Contents lists available at ScienceDirect Prostaglandins and Other Lipid Mediators Original research article In silico modelling of prostacyclin and other lipid mediators to nuclear receptors reveal novel thyroid hormone receptor antagonist properties ∗ Noelia Perez Diaz, Mire Zloh, Pryank Patel, Louise S. Mackenzie Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK a r t i c l e i n f o a b s t r a c t Article history: Prostacyclin (PGI2) is a key mediator involved in cardiovascular homeostasis, acting predominantly on Received 10 August 2015 two receptor types; cell surface IP receptor and cytosolic peroxisome proliferator activated receptor Received in revised form (PPAR) ␤/␦. Having a very short half-life, direct methods to determine its long term effects on cells 19 November 2015 is difficult, and little is known of its interactions with nuclear receptors. Here we used computational Accepted 7 December 2015 chemistry methods to investigate the potential for PGI2, beraprost (IP receptor agonist), and GW0742 Available online 11 December 2015 ␤ ␦ (PPAR / agonist), to bind to nuclear receptors, confirmed with pharmacological methods. In silico screening predicted that PGI , beraprost, and GW0742 have the potential to bind to different Abbreviations: 2 nuclear receptors, in particular thyroid hormone ␤ receptor (TR␤) and thyroid hormone ␣ receptor (TR␣). MLS, MLS000389544 Docking analysis predicts a binding profile to residues thought to have allosteric control on the TR ligand NSAID, non-steroidal anti-inflammatory drug binding site. Luciferase reporter assays confirmed that beraprost and GW0742 display TR␤ and TR␣ −5 −6 × × PPAR␤/␦, peroxisome proliferator activated antagonistic properties; beraprost IC50 6.3 10 mol/L and GW0742 IC50 4.9 10 mol/L.
    [Show full text]
  • Role of Curcumin on Tumor Angiogenesis in Hepatocellular Carcinoma
    Naresuan University Journal 2008; 16(3): 239-254 239 Role of Curcumin on Tumor Angiogenesis in Hepatocellular Carcinoma Pornphrom Chintana Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand. Corresponding author. E-mail address: [email protected] (P. Chintana) Received 14 July 2008; accepted 24 December 2008 Summary Hepatocellular carcinoma (HCC) is a malignant tumor characterized by active neovascularization. Vascular endothelial growth factor (VEGF) is the most important angiogenic factor that regulates the HCC development. Overexpression of VEGF enhances the HCC tumor growth associated with increase of angiogenesis in the tumor, whereas suppression of VEGF attenuates the tumor growth. Similarly, the cyclooxygenase-2 (COX-2) expression stepwisely increases during hepatocarcinogenesis. Curcurmin has been shown to inhibit several angiogenic biomarkers including, VEGF and COX-2 expression. Therefore, curcumin could be used as a candidate for the combined drug treatment for HCC in the future. Keywords: Curcumin; Angiogenesis; Hepatocellular carcinoma; VEGF; COX-2 INTRODUCTION greater practical significance than non-selective cytotoxic therapies to control the tumor growth Hepatocellular carcinoma (HCC) is one of the and metastasis by targeting angiogenesis. Since, five most common cancers worldwide, with a many dietary and non-dietary phytochemicals do particularly high prevalence in Asian countries due not affect survival of normal cells and also possess to endemic hepatitis B virus infection (Parkin et al., anti-angiogenic as well as anti-tumorigenic 2001). In Thailand, it is the most common cause of activities, it could be a rationale approach to examine death in men (Vatanasapt et al., 2002). Surgery, their inhibitory effect on tumor angiogenesis.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8.470,805 B2 Chen (45) Date of Patent: Jun
    USOO8470805B2 (12) United States Patent (10) Patent No.: US 8.470,805 B2 Chen (45) Date of Patent: Jun. 25, 2013 (54) PROCESSES FOR PREPARING OTHER PUBLICATIONS PPERAZINUM SALTS OF KMUP AND USE THEREOF Arayne et al. Med Chem Res. (2010) 19:717-731.* Chung et al., “The xanthine derivative KMUP-1 inhibits models of pulmonary artery hypertension via increased NO and coMP-depen (75) Inventor: Ing-Jun Chen, Kaohsiung (TW) dent inhibition of RhoA, Rho kinase.' British Journal of Pharmacol (73) Assignee: Kaohsiung Medical University, ogy, (Jun. 2010) 160(4):971-986. Evans et al., Effects of HMG-CoA Reductase Inhibitors on Skeletal Kaohsiung (TW) Muscle: Are all Statins the Same?, Drug Safety (2002) 25(9):649 663. (*) Notice: Subject to any disclaimer, the term of this Hiro et al., Effects of Intensive Statin Therapy of Regression of patent is extended or adjusted under 35 coronary Atherosclerosis in Patients with Acute Coronary Syndrome: U.S.C. 154(b) by 193 days. A Multicenter Randomized Trial Evaluated by Volumetric Intravascular Ultrasound Using Pitavastatin Versus Atorvastatin (21) Appl. No.: 12/878,451 (Japan-ACSJapan Assessment of Pitavastatin and Atorvastatin in Acute Coronary Syndrome Study), J. Am. Coll. Cardiol. (2009) (22) Filed: Sep. 9, 2010 54:293-302. Jacobson TA, “Myopathy with statin-fibrate combination therapy: (65) Prior Publication Data clinical considerations.” Nat. Rev. endocrinol. (Sep. 2009) 5(9):507 US 2011 FO136767 A1 Jun. 9, 2011 518. Lin et al., “KMUP-1 relaxes rabbit corpus cavernosum smooth muscle in vitro and in vivo: involvement of cyclic GMP and K" Related U.S.
    [Show full text]
  • The EP2 Receptor Is the Predominant Prostanoid Receptor in the Human
    110 BritishJournalofOphthalmology 1993; 77: 110-114 The EP2 receptor is the predominant prostanoid receptor in the human ciliary muscle Br J Ophthalmol: first published as 10.1136/bjo.77.2.110 on 1 February 1993. Downloaded from Toshihiko Matsuo, Max S Cynader Abstract IP prostanoid receptors, respectively. The EP Prostaglandins canreduce intraocularpressure receptor can be further classified into three by increasing uveoscleral outflow. We have subtypes, called EPI, EP2, and EP3 previously demonstrated that the human receptors.'89 The framework of the receptor ciliary muscle was a zone of concentration for classification has been supported in part, by binding sites (receptors) for prostaglandin F2a cloning and expression of cDNA for a human and for prostaglandin E2. Here, we try to thromboxane A2 receptor.20 elucidate the types of prostanoid receptors in It is important to know the types ofprostanoid the ciliary muscle using competitive ligand receptors located on the human ciliary muscle in binding studies in human eye sections and order to understand its role in uveoscleral out- computer assisted autoradiographic densito- flow, and to design new drugs with more potency metry. Saturation binding curves showed that and fewer adverse effects. In this study we tried the human ciliary muscle had a large number of to elucidate the type(s) of prostanoid receptors binding sites with a high affinity for prosta- located on the human ciliary muscle by glandin E2 compared with prostaglandin D2 combining receptor autoradiography with and F2,. The binding oftritiated prostaglandin competitive binding studies with various ligands E2 and F2a in the ciliary muscle was displaced on human eye sections.
    [Show full text]
  • The Roles of Prostaglandin F2 in Regulating the Expression of Matrix Metalloproteinase-12 Via an Insulin Growth Factor-2-Dependent Mechanism in Sheared Chondrocytes
    Signal Transduction and Targeted Therapy www.nature.com/sigtrans ARTICLE OPEN The roles of prostaglandin F2 in regulating the expression of matrix metalloproteinase-12 via an insulin growth factor-2-dependent mechanism in sheared chondrocytes Pei-Pei Guan1, Wei-Yan Ding1 and Pu Wang 1 Osteoarthritis (OA) was recently identified as being regulated by the induction of cyclooxygenase-2 (COX-2) in response to high 12,14 fluid shear stress. Although the metabolic products of COX-2, including prostaglandin (PG)E2, 15-deoxy-Δ -PGJ2 (15d-PGJ2), and PGF2α, have been reported to be effective in regulating the occurrence and development of OA by activating matrix metalloproteinases (MMPs), the roles of PGF2α in OA are largely overlooked. Thus, we showed that high fluid shear stress induced the mRNA expression of MMP-12 via cyclic (c)AMP- and PGF2α-dependent signaling pathways. Specifically, we found that high fluid shear stress (20 dyn/cm2) significantly increased the expression of MMP-12 at 6 h ( > fivefold), which then slightly decreased until 48 h ( > threefold). In addition, shear stress enhanced the rapid synthesis of PGE2 and PGF2α, which generated synergistic effects on the expression of MMP-12 via EP2/EP3-, PGF2α receptor (FPR)-, cAMP- and insulin growth factor-2 (IGF-2)-dependent phosphatidylinositide 3-kinase (PI3-K)/protein kinase B (AKT), c-Jun N-terminal kinase (JNK)/c-Jun, and nuclear factor kappa-light- chain-enhancer of activated B cells (NF-κB)-activating pathways. Prolonged shear stress induced the synthesis of 15d-PGJ2, which is responsible for suppressing the high levels of MMP-12 at 48 h.
    [Show full text]