Ipsilateral Cortical Connections of Dorsal and Ventral Premotor Areas in New World Owl Monkeys

Total Page:16

File Type:pdf, Size:1020Kb

Ipsilateral Cortical Connections of Dorsal and Ventral Premotor Areas in New World Owl Monkeys THE JOURNAL OF COMPARATIVE NEUROLOGY 495:691–708 (2006) Ipsilateral Cortical Connections of Dorsal and Ventral Premotor Areas in New World Owl Monkeys IWONA STEPNIEWSKA,1 TODD M. PREUSS,2,3 AND JON H. KAAS1* 1Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203 2Division of Neuroscience and Center for Behavioral Neuroscience, Emory University, Atlanta, Georgia 30329 3Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322 ABSTRACT In order to compare connections of premotor cortical areas of New World monkeys with those of Old World macaque monkeys and prosimian galagos, we placed injections of fluo- rescent tracers and wheat germ agglutinin-horseradish peroxidase (WGA-HRP) in dorsal (PMD) and ventral (PMV) premotor areas of owl monkeys. Motor areas and injection sites were defined by patterns of movements electrically evoked from the cortex with microelec- trodes. Labeled neurons and axon terminals were located in brain sections cut either in the coronal plane or parallel to the surface of flattened cortex, and they related to architectoni- cally and electrophysiologically defined cortical areas. Both the PMV and PMD had connec- tions with the primary motor cortex (M1), the supplementary motor area (SMA), cingulate motor areas, somatosensory areas S2 and PV, and the posterior parietal cortex. Only the PMV had connections with somatosensory areas 3a, 1, 2, PR, and PV. The PMD received inputs from more caudal portions of the cortex of the lateral sulcus and more medial portions of the posterior parietal cortex than the PMV. The PMD and PMV were only weakly interconnected. New World owl monkeys, Old World macaque monkeys, and galagos share a number of PMV and PMD connections, suggesting preservation of a common sensorimotor network from early primates. Comparisons of PMD and PMV connectivity with the cortex of the lateral sulcus and posterior parietal cortex of owl monkeys, galagos, and macaques help identify areas that could be homologous. J. Comp. Neurol. 495:691–708, 2006. © 2006 Wiley-Liss, Inc. Indexing terms: motor cortex; posterior parietal cortex; motor system; primates; primate evolution The cortical motor system appears to be exceptionally 1991a–c; Wu et al., 2000; Fang et al., 2006), and humans well developed in primates. In addition to the primary (e.g., Fink et al., 1997; Geyer et al., 2000). Thus, the motor cortex (M1), which is common to all eutherian mam- cortical motor system has a number of matching subdivi- mals (Beck et al., 1996), primates have well-differentiated sions in prosimian (strepsirhine) primates, platyrhine an- dorsal (PMD) and ventral (PMV) premotor areas, a sup- thropoids (New World monkeys), and catarhine anthro- plementary motor area (SMA), a frontal eye field (FEF), and two or more cingulate motor fields (Kaas, 2004a). The organization and connections of these areas have been particularly well studied in macaque monkeys (Godschalk Grant sponsor: National Institutes of Health; Grant number: NS 16446. et al., 1995; Picard and Strick, 1996; Rizzolatti et al., 1998; *Correspondence to: Jon H. Kaas, Department of Psychology, Vanderbilt for review, see Wise et al., 1997; Luppino and Rizzolatti, University, 301 David K Wilson Hall, 111 21st Ave. South, Nashville, TN 2000; Picard and Strick, 2001; Dum and Strick, 2002), but 37203. E-mail: [email protected]. Received 18 July 2005; Revised 11 October 2005; Accepted 10 November there is good evidence for these areas in New World mon- 2005 keys (Stepniewska et al., 1993; Preuss et al., 1996, 1997) DOI 10.1002/cne.20906 and in prosimian galagos (Preuss and Goldman-Rakic, Published online in Wiley InterScience (www.interscience.wiley.com). © 2006 WILEY-LISS, INC. 692 I. STEPNIEWSKA ET AL. TABLE 1. The Cases, Areas, and Tracers Injected Case PMD injection PMV injection M1 Plane of Cut Survival (in days) 90-55L Caudal: DY crystal FL: 3%FB (0.25 ␮l) Coronal 4 Face. 2% WGA-HRP (0.03 ␮l) 91-72L Rostral: 10% FR (0.25 ␮l) FL: 2%WGA-HRP (0.05 ␮l) Coronal 5 92-42L Caudal: 10% FR (0.2 ␮l) Flattened 7 92-83L Caudal: DY pellet FL: FR pellet FL: FB pellet Flattened 9 93-4L FL rep.: DY pellet Coronal 6 94-26L Caudal: 10% FR (0.1 ␮l) FL: 2% WGA-HRP (0.03 ␮l) Flattened 7 Rostral: 2% DY (0.2 ␮l) Face: 3% FB 0.15 ␮l DY,-diamidino yellow; FB, fast blue; FL, forelimb; FR, Fluoro Ruby; WGA-HRP, wheat germ agglutinin. poids (Old World monkeys, apes, and humans). Such a movement representations of the PMD and in the forelimb distribution indicates that a constellation of motor areas and face representations of the PMV, as determined by emerged early in primate evolution, in the period from 65 microstimulation mapping (Preuss et al., 1996). In two to 85 million years ago (Martin, 2004) and has been re- cases tracers were also placed in the forelimb representa- tained in the major branches. tion of the primary motor cortex (M1). Experimental pro- Whereas the connections of motor and premotor areas cedures were approved by the Vanderbilt Animal Care have been extensively studied in macaque monkeys, and and Use Committee and followed the guidelines of the more recently in galagos, much less is known about such National Institutes of Health. connections in New World monkeys. Major connections of Surgical procedures were described in detail by the M1 have been described in owl monkeys (Stepniewska Stepniewska et al. (1993). All procedures were carried out et al., 1993) and Cebus monkeys (Dum and Strick, 2005), under aseptic conditions. Anesthesia was induced with and the connections of the FEF have been reported for intramuscular injections of ketamine hydrochloride (30 squirrel and owl monkeys (Huerta et al., 1987), but the mg/kg) and xylazine (1 mg/kg), and supplemental injec- connections of PMV and PMD are known only for the tions were given as needed to maintain a surgical level of frontal lobe in Cebus monkeys (Dum and Strick, 2005), anesthesia. Bone covering part of the frontal lobe was and only in part from studies of the connections of the M1 removed and the dura reflected to expose the cortex from in owl monkeys (Stepniewska et al., 1993) and the frontal the central sulcus (CS) to the dimple of the inferior arcu- eye field in owl monkeys and squirrel monkeys (Huerta et ate sulcus (IAS). The cortex was covered with silicone oil al., 1987). In the present study, we directly determined to prevent desiccation and to limit brain pulsation. The the connections of the PMV and PMD of owl monkeys. locations of electrode penetrations and tracer injections Injection sites were defined by intracortical microstimula- were marked on a photograph of the exposed frontal lobe. tion, and motor areas were delineated electrophysiologi- After a short microstimulation session to identify areas for cally and architectonically in the same monkeys (Preuss et placing injections (see below), fluorescent tracers (DY, FB, al., 1996). FR) and WGA-HRP were placed in the forelimb and eye- Our study had two main goals. First, we wanted to movement representations of the PMD and in the forelimb compare the cortical connection patterns in owl monkeys and face representations of the PMV (Table 1). In two with those in galagos and macaques. Similarities across cases, an additional tracer was injected into the M1. Trac- these primates would suggest connectional networks that ers were either injected with 1–2-␮l Hamilton syringes have been retained since early in primate evolution, with a glass micropipette attached to the tip of the syringe whereas differences would suggest specializations within needle (0.03–0.05 ␮l of WGA-HRP and 0.1–0.25 ␮lof the different lines of primate evolution. Second, the con- fluorescent tracers) or deposited in the cortex in the form nections of well-defined cortical areas with cortical regions of a crystal or pellet. that are not well understood can help reveal the organi- Following the injections, the cortex was covered with zation of the latter regions. Although the subdivisions of gelatin film, the skull opening was closed with a dental motor and premotor cortex are now reasonably well char- acrylic cap, and the skin was sutured. After a survival acterized in owl monkeys (Gould et al., 1986; Stepniewska period of 4–9 days to allow tracers to be transported, the et al.,1993; Preuss et al., 1996), the organization of the skull was opened again, and additional locations in the posterior parietal cortex in these and other New World same hemisphere were stimulated with a microelectrode monkeys is not well known. Because the PMD and PMV in order to determine the organization of the motor and have dense interconnections with the posterior parietal premotor cortex more extensively. At the end of the stim- cortex in macaques and galagos, such connections in owl ulation session, electrolytic lesions were placed to mark monkeys would indicate the likely locations of areas in the the M1 and PM boundaries and the borders between dif- posterior parietal cortex that have been defined in other ferent body representations within these two cortical re- primates. gions. Lesions to mark cortical locations were made by passing 10 ␮A of direct current for 10 seconds via the microelectrodes. These lesions and other landmarks sub- MATERIAL AND METHODS sequently allowed the electrophysiological results to be Experiments were performed on six adult owl monkeys related to the architecture. Results of the physiological (Aotus trivirgatus). Fluorescent dyes (diamidino yellow and histological investigations are described elsewhere [DY], fast blue [FB], and Fluoro Ruby [FR]) and wheat (Preuss et al., 1996). At the end of the experiment, each germ agglutinin conjugated to horseradish peroxidase owl monkey was given a lethal dose of barbiturate and (WGA-HRP) were placed in the forelimb and eye- perfused through the heart with buffered physiological PREMOTOR CORTEX CONNECTIONS 693 saline, followed by 2% paraformaldehyde in phosphate flattened cortex, boundaries and labeled neurons were buffer, and then by 2% paraformaldehyde in phosphate superimposed in representative sections, providing a flat- buffer with 10% sucrose.
Recommended publications
  • Eye Fields in Ocular Decision Making Contrasting the Roles of The
    Contrasting the roles of the supplementary and frontal eye fields in ocular decision making Shun-nan Yang and Stephen Heinen J Neurophysiol 111:2644-2655, 2014. First published 26 March 2014; doi:10.1152/jn.00543.2013 You might find this additional info useful... This article cites 42 articles, 19 of which can be accessed free at: /content/111/12/2644.full.html#ref-list-1 Updated information and services including high resolution figures, can be found at: /content/111/12/2644.full.html Additional material and information about Journal of Neurophysiology can be found at: http://www.the-aps.org/publications/jn This information is current as of July 30, 2014. Downloaded from on July 30, 2014 Journal of Neurophysiology publishes original articles on the function of the nervous system. It is published 12 times a year (monthly) by the American Physiological Society, 9650 Rockville Pike, Bethesda MD 20814-3991. Copyright © 2014 by the American Physiological Society. ISSN: 0022-3077, ESSN: 1522-1598. Visit our website at http://www.the-aps.org/. J Neurophysiol 111: 2644–2655, 2014. First published March 26, 2014; doi:10.1152/jn.00543.2013. Contrasting the roles of the supplementary and frontal eye fields in ocular decision making Shun-nan Yang1,2 and Stephen Heinen2 1Vision Performance Institute, College of Optometry, Pacific University, Forest Grove, Oregon; and 2Smith-Kettlewell Eye Research Institute, San Francisco, California Submitted 29 July 2013; accepted in final form 25 March 2014 Yang SN, Heinen S. Contrasting the roles of the supplementary and specified by the motion stimulus (Britten et al.
    [Show full text]
  • Practicerelated Changes in Neural Activation Patterns Investigated Via
    r Human Brain Mapping 000:000–000 (2012) r Practice-Related Changes in Neural Activation Patterns Investigated via Wavelet-Based Clustering Analysis Jinae Lee,1 Cheolwoo Park,1 Kara A. Dyckman,2,3,4 Nicole A. Lazar,1 Benjamin P. Austin,5 Qingyang Li,6 and Jennifer E. McDowell2,3,4* 1Department of Statistics, University of Georgia (UGA), Athens, Georgia 2Department of Psychology, University of Georgia (UGA), Athens, Georgia 3Department of Neuroscience, University of Georgia (UGA), Athens, Georgia 4The Bio-Imaging Research Center, University of Georgia (UGA), Athens, Georgia 5UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health and theDepartment of Veterans Affairs (VA) Geriatric Research, Education and Clinical Center (GRECC), Madison, WI, USA 6Center for the Developing Brain, Child Mind Institute, 445 Park Ave, New York, NY 10022, USA r r Abstract: Objectives: To evaluate brain activation using functional magnetic resonance imaging (fMRI) and specifically, activation changes across time associated with practice-related cognitive control during eye movement tasks. Experimental design: Participants were engaged in antisaccade performance (gener- ating a glance away from a cue) while fMR images were acquired during two separate test sessions: (1) at pre-test before any exposure to the task and (2) at post-test, after 1 week of daily practice on antisac- cades, prosaccades (glancing toward a target), or fixation (maintaining gaze on a target). Principal obser- vations: The three practice groups were compared across the two test sessions, and analyses were conducted via the application of a model-free clustering technique based on wavelet analysis. This se- ries of procedures was developed to avoid analysis problems inherent in fMRI data and was composed of several steps: detrending, data aggregation, wavelet transform and thresholding, no trend test, prin- cipal component analysis (PCA), and K-means clustering.
    [Show full text]
  • Supplementary Eye Field Encodes Reward Prediction Error
    2950 • The Journal of Neuroscience, February 29, 2012 • 32(9):2950–2963 Behavioral/Systems/Cognitive Supplementary Eye Field Encodes Reward Prediction Error NaYoung So1 and Veit Stuphorn1,2 1Department of Neuroscience, The Johns Hopkins University School of Medicine and Zanvyl Krieger Mind/Brain Institute, and 2Department of Psychological and Brain Sciences, The Johns Hopkins University, Baltimore, Maryland 21218 The outcomes of many decisions are uncertain and therefore need to be evaluated. We studied this evaluation process by recording neuronalactivityinthesupplementaryeyefield(SEF)duringanoculomotorgamblingtask.Whilethemonkeysawaitedtheoutcome,SEF neurons represented attributes of the chosen option, namely, its expected value and the uncertainty of this value signal. After the gamble result was revealed, a number of neurons reflected the actual reward outcome. Other neurons evaluated the outcome by encoding the difference between the reward expectation represented during the delay period and the actual reward amount (i.e., the reward prediction error). Thus, SEF encodes not only reward prediction error but also all the components necessary for its computation: the expected and theactualoutcome.ThissuggeststhatSEFmightactivelyevaluatevalue-baseddecisionsintheoculomotordomain,independentofother brain regions. Introduction ent evaluative stages can indicate whether a brain area contains all In most real-life decisions, the outcomes are uncertain or can the neuronal signals sufficient to compute RPE signals. change over time. The values
    [Show full text]
  • Functional Role of the Supplementary and Pre-Supplementary Motor Areas
    REVIEWS Functional role of the supplementary and pre-supplementary motor areas Parashkev Nachev*‡, Christopher Kennard‡ and Masud Husain* Abstract | The supplementary motor complex consists of the supplementary motor area, the supplementary eye field and the pre-supplementary motor area. In recent years, these areas have come under increasing scrutiny from cognitive neuroscientists, motor physiologists and clinicians because they seem to be crucial for linking cognition to action. However, theories regarding their function vary widely. This Review brings together the data regarding the supplementary motor regions, highlighting outstanding issues and providing new perspectives for understanding their functions. Ever since they were first identified, the regions that which we hope will stimulate the development of comprise the supplementary motor complex (SMC) have conceptual frameworks for a better understanding remained, in large part, a mystery. Most investigators now of this region. appreciate that these brain regions are far from ‘supple- mentary’ to requirements1–7. Without them, there are Anatomy and connections profound alterations in behaviour. For example, lesions to The supplementary motor area (SMA) and pre- these areas in humans can lead to alien-limb syndrome, supplementary motor area (pre-SMA) are, in humans, with patients demonstrating involuntary actions such as located on the medial aspect of the brain: in the dorso- grasping nearby objects — even other people — without medial frontal cortex3,14, anterior to the leg representa- ever intending to do so8,9. Some individuals demonstrate tion of the primary motor cortex (FIG. 1). Both areas lie utilization behaviour: unable to resist the impulse to use in the superior frontal gyrus and constitute the medial an object that has been placed within their reach, even part of Brodmann’s area 6c (later divided into two areas: when the object is not needed10.
    [Show full text]
  • Eye Fields in the Frontal Lobes of Primates
    Brain Research Reviews 32Ž. 2000 413±448 www.elsevier.comrlocaterbres Full-length review Eye fields in the frontal lobes of primates Edward J. Tehovnik ), Marc A. Sommer, I-Han Chou, Warren M. Slocum, Peter H. Schiller Department of Brain and CognitiÕe Sciences, Massachusetts Institute of Technology, E25-634, Cambridge, MA 02139, USA Accepted 19 October 1999 Abstract Two eye fields have been identified in the frontal lobes of primates: one is situated dorsomedially within the frontal cortex and will be referred to as the eye field within the dorsomedial frontal cortexŽ. DMFC ; the other resides dorsolaterally within the frontal cortex and is commonly referred to as the frontal eye fieldŽ. FEF . This review documents the similarities and differences between these eye fields. Although the DMFC and FEF are both active during the execution of saccadic and smooth pursuit eye movements, the FEF is more dedicated to these functions. Lesions of DMFC minimally affect the production of most types of saccadic eye movements and have no effect on the execution of smooth pursuit eye movements. In contrast, lesions of the FEF produce deficits in generating saccades to briefly presented targets, in the production of saccades to two or more sequentially presented targets, in the selection of simultaneously presented targets, and in the execution of smooth pursuit eye movements. For the most part, these deficits are prevalent in both monkeys and humans. Single-unit recording experiments have shown that the DMFC contains neurons that mediate both limb and eye movements, whereas the FEF seems to be involved in the execution of eye movements only.
    [Show full text]
  • Short- and Long-Term Deficits After Unilateral Ablation Andthe Effects of Subsequent Callosal Section’
    0270.6474/84/0404-0918$02.00/0 The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 4, No. 4, pp. 918-929 Printed in U.S.A. April 1984 SUPPLEMENTARY MOTOR AREA OF THE MONKEY’S CEREBRAL CORTEX: SHORT- AND LONG-TERM DEFICITS AFTER UNILATERAL ABLATION ANDTHE EFFECTS OF SUBSEQUENT CALLOSAL SECTION’ COBIE BRINKMAN Experimental Neurology Unit, The John Curtin School of Medical Research, Australian National University, Canberra, Australia 2601 Received March 7, 1983; Revised November 11, 1983; Accepted November 15, 1983 Abstract The short-term and long-term behavioral effects of unilateral lesions of the supplementary motor area (SMA) were studied in five monkeys (Mczcaca fascicularis ssp). A monkey with a unilateral lesion of the premotor area (PM) served as a control. In all animals, general behavior was unaffected by the lesions. For a few weeks postoperatively, all monkeys showed a clumsiness of forelimb movements, bilaterally, which involved both the distal and proximal muscles. Two SMA-lesioned monkeys (but not the PM-lesioned one), studied for up to 1 year postoperatively, showed a characteristic deficit of bimanual coordination where the two hands tended to behave in a similar manner instead of sharing the task between them. This deficit was more pronounced after a lesion contralateral to the nonpreferred hand. The deficit was interpreted as indicating that the intact SMA now influenced the motor outflow of both the ipsilateral hemisphere and the contralateral one through the corpus callosum. Callosal section immediately abolished the bimanual deficit, although the clumsiness returned transiently. The results imply that SMA may give rise normally to discharges informing the contralateral hemisphere of intended and/or ongoing movements via the corpus callosum.
    [Show full text]
  • Down but Not out in Posterior Cingulate Cortex: Deactivation Yet Functional Coupling with Prefrontal Cortex During Demanding Semantic Cognition
    NeuroImage 141 (2016) 366–377 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Down but not out in posterior cingulate cortex: Deactivation yet functional coupling with prefrontal cortex during demanding semantic cognition Katya Krieger-Redwood ⁎, Elizabeth Jefferies, Theodoros Karapanagiotidis, Robert Seymour, Adonany Nunes, Jit Wei Aaron Ang, Vierra Majernikova, Giovanna Mollo, Jonathan Smallwood Department of Psychology/York Neuroimaging Centre, University of York, Heslington, York, United Kingdom article info abstract Article history: The posterior cingulate cortex (pCC) often deactivates during complex tasks, and at rest is often only weakly cor- Received 30 March 2016 related with regions that play a general role in the control of cognition. These observations led to the hypothesis Accepted 29 July 2016 that pCC contributes to automatic aspects of memory retrieval and cognition. Recent work, however, has sug- Available online 30 July 2016 gested that the pCC may support both automatic and controlled forms of memory processing and may do so by changing its communication with regions that are important in the control of cognition across multiple do- Keywords: mains. The current study examined these alternative views by characterising the functional coupling of the Posterior cingulate cortex Dorsolateral prefrontal cortex pCC in easy semantic decisions (based on strong global associations) and in harder semantic tasks (matching Semantic control words on the basis of specific non-dominant features). Increasingly difficult semantic decisions led to the expect- Executive ed pattern of deactivation in the pCC; however, psychophysiological interaction analysis revealed that, under Rest these conditions, the pCC exhibited greater connectivity with dorsolateral prefrontal cortex (PFC), relative to Connectivity both easier semantic decisions and to a period of rest.
    [Show full text]
  • A Practical Review of Functional MRI Anatomy of the Language and Motor Systems
    REVIEW ARTICLE FUNCTIONAL A Practical Review of Functional MRI Anatomy of the Language and Motor Systems X V.B. Hill, X C.Z. Cankurtaran, X B.P. Liu, X T.A. Hijaz, X M. Naidich, X A.J. Nemeth, X J. Gastala, X C. Krumpelman, X E.N. McComb, and X A.W. Korutz ABSTRACT SUMMARY: Functional MR imaging is being performed with increasing frequency in the typical neuroradiology practice; however, many readers of these studies have only a limited knowledge of the functional anatomy of the brain. This text will delineate the locations, anatomic boundaries, and functions of the cortical regions of the brain most commonly encountered in clinical practice—specifically, the regions involved in movement and language. ABBREVIATIONS: FFA ϭ fusiform face area; IPL ϭ inferior parietal lobule; PPC ϭ posterior parietal cortex; SMA ϭ supplementary motor area; VOTC ϭ ventral occipitotemporal cortex his article serves as a review of the functional areas of the brain serving to analyze spatial position and the ventral stream working Tmost commonly mapped during presurgical fMRI studies, to identify what an object is. Influenced by the dorsal and ventral specifically targeting movement and language. We have compiled stream model of vision, Hickok and Poeppel2 hypothesized a sim- what we hope is a useful, easily portable, and concise resource that ilar framework for language. In this model, the ventral stream, or can be accessible to radiologists everywhere. We begin with a re- lexical-semantic system, is involved in sound-to-meaning map- view of the language-processing system. Then we describe the pings associated with language comprehension and semantic ac- gross anatomic boundaries, organization, and function of each cess.
    [Show full text]
  • Cortical Parcellation Protocol
    CORTICAL PARCELLATION PROTOCOL APRIL 5, 2010 © 2010 NEUROMORPHOMETRICS, INC. ALL RIGHTS RESERVED. PRINCIPAL AUTHORS: Jason Tourville, Ph.D. Research Assistant Professor Department of Cognitive and Neural Systems Boston University Ruth Carper, Ph.D. Assistant Research Scientist Center for Human Development University of California, San Diego Georges Salamon, M.D. Research Dept., Radiology David Geffen School of Medicine at UCLA WITH CONTRIBUTIONS FROM MANY OTHERS Neuromorphometrics, Inc. 22 Westminster Street Somerville MA, 02144-1630 Phone/Fax (617) 776-7844 neuromorphometrics.com OVERVIEW The cerebral cortex is divided into 49 macro-anatomically defined regions in each hemisphere that are of broad interest to the neuroimaging community. Region of interest (ROI) boundary definitions were derived from a number of cortical labeling methods currently in use. Protocols from the Laboratory of Neuroimaging at UCLA (LONI; Shattuck et al., 2008), the University of Iowa Mental Health Clinical Research Center (IOWA; Crespo-Facorro et al., 2000; Kim et al., 2000), the Center for Morphometric Analysis at Massachusetts General Hospital (MGH-CMA; Caviness et al., 1996), a collaboration between the Freesurfer group at MGH and Boston University School of Medicine (MGH-Desikan; Desikan et al., 2006), and UC San Diego (Carper & Courchesne, 2000; Carper & Courchesne, 2005; Carper et al., 2002) are specifically referenced in the protocol below. Methods developed at Boston University (Tourville & Guenther, 2003), Brigham and Women’s Hospital (McCarley & Shenton, 2008), Stanford (Allan Reiss lab), the University of Maryland (Buchanan et al., 2004), and the University of Toyoma (Zhou et al., 2007) were also consulted. The development of the protocol was also guided by the Ono, Kubik, and Abernathy (1990), Duvernoy (1999), and Mai, Paxinos, and Voss (Mai et al., 2008) neuroanatomical atlases.
    [Show full text]
  • Cortical and Subcortical Anatomy: Basics and Applied
    43rd Congress of the Canadian Neurological Sciences Federation Basic mechanisms of epileptogenesis and principles of electroencephalography Cortical and subcortical anatomy: basics and applied J. A. Kiernan MB, ChB, PhD, DSc Department of Anatomy & Cell Biology, The University of Western Ontario London, Canada LEARNING OBJECTIVES Know and understand: ! Two types of principal cell and five types of interneuron in the cerebral cortex. ! The layers of the cerebral cortex as seen in sections stained to show either nucleic acids or myelin. ! The types of corrtex: allocortex and isocortex. ! Major differences between extreme types of isocortex. As seen in primary motor and primary sensory areas. ! Principal cells in different layers give rise to association, commissural, projection and corticothalamic fibres. ! Cortical neurons are arranged in columns of neurons that share the same function. ! Intracortical circuitry provides for neurons in one column to excite one another and to inhibit neurons in adjacent columns. ! The general plan of neuronal connections within nuclei of the thalamus. ! The location of motor areas of the cerebral cortex and their parallel and hierarchical projections to the brain stem and spinal cord. ! The primary visual area and its connected association areas, which have different functions. ! Somatotopic representation in the primary somatosensory and motor areas. ! Cortical areas concerned with perception and expression of language, and the anatomy of their interconnections. DISCLOSURE FORM This disclosure form must be included as the third page of your Course Notes and the third slide of your presentation. It is the policy of the Canadian Neurological Sciences Federation to insure balance, independence, objectivity and scientific rigor in all of its education programs.
    [Show full text]
  • Anatomy and White Matter Connections of the Superior Frontal Gyrus
    Anatomy and White Matter Connections of the Superior Frontal Gyrus Robert G. Briggs, BS1; A. Basit Khan, MD5; Arpan R. Chakraborty, BS2; Carol J Abraham, BS2; Christopher D. Anderson, BA2; Patrick J. Karas, MD5; Phillip A. Bonney, MD1; Ali H. Palejwala, MD2; Andrew K. Conner, MD2; Daniel L. O’Donoghue, PhD3; and Michael E. Sughrue, MD4 1Department of Neurosurgery, University of Southern California, Los Angeles, California 2Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 3Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 4Center for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia 5Department of Neurosurgery, Baylor College of Medicine, Houston, Texas Running Title: SFG Subcortical Anatomy Keywords: neurology, neurosurgery, white matter, imaging, connectome Corresponding Author: Michael E. Sughrue, MD Suite 3, Level 7 Prince of Wales Private Hospital Barker Street, Randwick New South Wales, 2031 Australia Tel: 02 9650 4940 Fax: 02 9650 4902 Email: [email protected] This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/ca.23523 This article is protected by copyright. All rights reserved. Funding: None. Declaration of Interests: None. Anatomy and White Matter Connections of the Superior Frontal Gyrus ABSTRACT Introduction. The superior frontal gyrus (SFG) is an important region implicated in a variety of tasks including motor movement, working memory, resting-state and cognitive control. A detailed understanding of the subcortical white matter of the SFG could improve post-operative morbidity related to surgery around this gyrus.
    [Show full text]
  • Neuromodulation: Harnessing Neuroplasticity with Brain Stimulation and Rehabilitation
    Neuromodulation: Harnessing Neuroplasticity with Brain Stimulation and Rehabilitation Presenters: Cecília N. Prudente, PT, MS, PhD1 Bernadette T. Gillick, PT, MS, PhD1 Colum MacKinnon, PhD2 Teresa J.Kimberley, PT, PhD1 1Dept. of Rehabilitation Medicine 2Dept. of Neurology Conflicts of interest TJK: consulting income from MicroTransponder Others: Nothing to declare Learning objectives 1. Be familiar with forms of brain stimulation 2. Be able to identify safety and feasibility of each technique 3. Understand the purposes of using the parameters of brain stimulation 4. Translate brain stimulation research into clinical implications Harnessing neuroplasticity to improve motor function 1. Neuromodulation tools 2. Down-regulation 3. Up-regulation 4. Hijacking neural firing patterns 5. Where are we now, where are we going, and how do we get there? 6. Discussion Harnessing neuroplasticity to improve motor function 1. Neuromodulation tools 2. Down-regulation 3. Up-regulation 4. Hijacking neural firing patterns 5. Where are we now, where are we going, and how do we get there? 6. Discussion What is neuromodulation? http://blog.cambridgeconsultants.com/medical-technology/wp- content/uploads/2014/05/Neuromodulation.jpg Publications per year 1200 1000 800 Neuromodulation 600 Neuromodulation & rehabilitation 400 200 0 2016 1978 1988 1998 2008 Source: Pubmed How to neuromodulate? Healthy state Neuroplasticity Injury Medications Neuromodulation Rehabilitation Neuromodulation tools Why neuromodulate? E I Healthy state : greater excitability : greater inhibition
    [Show full text]