Supplementary Eye Field Encodes Reward Prediction Error

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Eye Field Encodes Reward Prediction Error 2950 • The Journal of Neuroscience, February 29, 2012 • 32(9):2950–2963 Behavioral/Systems/Cognitive Supplementary Eye Field Encodes Reward Prediction Error NaYoung So1 and Veit Stuphorn1,2 1Department of Neuroscience, The Johns Hopkins University School of Medicine and Zanvyl Krieger Mind/Brain Institute, and 2Department of Psychological and Brain Sciences, The Johns Hopkins University, Baltimore, Maryland 21218 The outcomes of many decisions are uncertain and therefore need to be evaluated. We studied this evaluation process by recording neuronalactivityinthesupplementaryeyefield(SEF)duringanoculomotorgamblingtask.Whilethemonkeysawaitedtheoutcome,SEF neurons represented attributes of the chosen option, namely, its expected value and the uncertainty of this value signal. After the gamble result was revealed, a number of neurons reflected the actual reward outcome. Other neurons evaluated the outcome by encoding the difference between the reward expectation represented during the delay period and the actual reward amount (i.e., the reward prediction error). Thus, SEF encodes not only reward prediction error but also all the components necessary for its computation: the expected and theactualoutcome.ThissuggeststhatSEFmightactivelyevaluatevalue-baseddecisionsintheoculomotordomain,independentofother brain regions. Introduction ent evaluative stages can indicate whether a brain area contains all In most real-life decisions, the outcomes are uncertain or can the neuronal signals sufficient to compute RPE signals. change over time. The values assigned to particular options or We hypothesized that the supplementary eye field (SEF) plays actions are only approximations and need to be continually up- a critical role in the evaluation of value-based decisions. SEF dated. This evaluation process can be conceptualized in terms of encodes the incentive value of saccades (i.e., their action value) two different signals: valence and salience, which describe the (So and Stuphorn, 2010; Stuphorn et al., 2010) and therefore sign and size of the mismatch between expected and actual out- likely plays an important role in value-based decisions in the come, respectively. Valence reflects rewards and punishments in oculomotor domain. It has appropriate anatomical connections an opponent-like manner, while salience reflects their motiva- both to limbic and prefrontal areas that encode value signals and tional importance, independent of value. oculomotor areas that generate eye movements (Huerta and Various neuronal correlates of outcome evaluation signals Kaas, 1990). However, SEF neurons responded also to the antic- have been reported (Stuphorn et al., 2000; Belova et al., 2007; ipation of reward delivery (Amador et al., 2000; Stuphorn et al., Hayden et al., 2008; Matsumoto and Hikosaka, 2009b; Roesch et 2000), as well as to errors and response conflict (Stuphorn et al., al., 2010). Progress in understanding these signals has come from 2000; Nakamura et al., 2005). Thus, the SEF contains in the same reinforcement learning models (Rescorla and Wagner, 1972; cortical area both action value signals and evaluative signals that Pearce and Hall, 1980). A key element in many of these models is could be used to update the action value signals. the “reward prediction error” (RPE) (i.e., the difference between To investigate the role of SEF neurons in value-based decision the expected and the actual reward outcome) (Sutton and Barto, making, we designed an oculomotor gambling task (see Fig. 1). 1998). The RPE reflects both valence and salience of an outcome Our results show that, during the delay period, SEF neurons rep- using its sign and magnitude. Although many studies reported resented the subjective value of the chosen option and the uncer- RPE-related signals in various brain areas, it is still unclear where tainty associated with this outcome prediction. After the gamble these evaluative signals originate. result was revealed, some neurons represented the actual out- The outcomes of many real-life decisions not only are uncer- come, while others encoded the difference between the predicted tain but also manifest themselves only after some delay. To com- and the actual reward amount (i.e., the RPE). These findings pute a RPE signal, it is therefore necessary to represent suggest that SEF is capable of independently evaluating value- information about the choice during this delay period. As a re- based decisions, as all the necessary components for the compu- sult, investigating these two temporally and qualitatively differ- tation of the RPE signals are represented there. Materials and Methods General Received Aug. 29, 2011; revised Dec. 17, 2011; accepted Jan. 9, 2012. Two rhesus monkeys (both male; monkey A, 7.5 kg; monkey B, 8.5 kg) Author contributions: N.Y.S. and V.S. designed research; N.Y.S. performed research; N.Y.S. analyzed data; N.Y.S. were trained to perform the tasks used in this study. All animal care and and V.S. wrote the paper. experimental procedures were approved by The Johns Hopkins Univer- This work was supported by National Eye Institute Grant R01-EY019039 (V.S.). We are grateful to P. C. Holland and J. D. Schall for comments on this manuscript. sity Animal Care and Use Committee. During the experimental sessions, Correspondence should be addressed to Veit Stuphorn, The Johns Hopkins University, 338 Krieger Hall, 3400 each monkey was seated in a primate chair, with its head restrained, North Charles Street, Baltimore, MD 21218. E-mail: [email protected]. facing a video screen. Eye position was monitored with an infrared cor- DOI:10.1523/JNEUROSCI.4419-11.2012 neal reflection system (Eye Link; SR Research) and recorded with the Copyright © 2012 the authors 0270-6474/12/322950-14$15.00/0 PLEXON system (Plexon) at a sampling rate of 1000 Hz. We used a newly So and Stuphorn • SEF Encodes Reward Prediction Error J. Neurosci., February 29, 2012 • 32(9):2950–2963 • 2951 developed fluid delivery system that was based on two syringe pumps the same reward options as in the aborted trial. In this way, the monkey connected to a fluid container that were controlled by a stepper motor. was forced to sample every reward contingency evenly. The location of This system was highly accurate across the entire range of fluid amounts the targets, however, was randomized, so that the monkey could not used in the experiment. prepare a saccade in advance. The sequence of events in no-choice trials was the same as in choice Behavioral task trials, except that only one target was presented (see Fig. 1A). The loca- In the gambling task, the monkeys had to make saccades to peripheral tion of the target was randomized across the same four quadrants on the targets that were associated with different amounts of water reward (see screen that were used during choice trials. In no-choice trials, we used Fig. 1A). The fixation window around the central fixation point was Ϯ1° individually all seven sure and six gamble options that were presented in of visual angle. The targets were squares of various colors, 2.25 ϫ 2.25° of combination during choice trials. We presented no-choice and choice visual angle in size. They were always presented 10° away from the central trials interleaved in a pseudorandomized schedule in blocks of trials that fixation point at a 45, 135, 225, or 315° angle. The luminance of the consisted of all 24 different choice trials and 13 different no-choice trials. background was 11.87 cd/m 2. The luminance of the targets varied with This procedure ensured that the monkeys were exposed to all the trial color (ranging from 25.81 to 61.29 cd/m 2) but was in all cases highly types equally often. Within a block, the order of appearance was random- salient. The task consisted of two types of trials, choice trials and no- ized and a particular trial was never repeated, so that the monkeys could choice trials. In choice trials, two targets appeared on the screen and the not make a decision before the targets were shown. Randomized loca- monkeys were free to choose between them by making an eye movement tions of the targets in each trial also prevented the monkeys from prepar- to the target that was associated with the desired option. In no-choice ing a movement toward a certain direction before the target appearance. trials, only one target appeared on the screen so that the monkeys were In addition, presenting a target associated with the same option in dif- forced to make a saccade to the given target. No-choice trials were de- ferent locations allowed us to separate the motor decision from the value signed as a control to compare the behavior of the monkeys and the cell decision. activities when no decision was required. Estimation of subjective value of gamble options Two targets in each choice trial were associated with a gamble option In everyday life, a behavioral choice can yield two or more outcomes and a sure option, respectively. The sure option always led to a certain of varying value with different probabilities. A decision maker that is reward amount. The gamble option led with a certain set of probabilities indifferent to risk should base his decision on the sum of values of the to one of two possible reward amounts. We designed a system of color various outcomes weighted by their probabilities (i.e., the expected cues, to explicitly indicate to the monkeys the reward amounts and prob- value of the gamble). However, humans and animals are not indiffer- abilities associated with a particular target (see Fig. 1B). Seven different ent to risk and their actual decisions deviate from this prediction in a colors indicated seven reward amounts (increasing from 1 to 7 units of systematic fashion. Thus, the subjective value of a gamble depends on water, where 1 unit equaled 30 ␮l). Targets indicating a sure option the risk attitude of a decision maker.
Recommended publications
  • Eye Fields in Ocular Decision Making Contrasting the Roles of The
    Contrasting the roles of the supplementary and frontal eye fields in ocular decision making Shun-nan Yang and Stephen Heinen J Neurophysiol 111:2644-2655, 2014. First published 26 March 2014; doi:10.1152/jn.00543.2013 You might find this additional info useful... This article cites 42 articles, 19 of which can be accessed free at: /content/111/12/2644.full.html#ref-list-1 Updated information and services including high resolution figures, can be found at: /content/111/12/2644.full.html Additional material and information about Journal of Neurophysiology can be found at: http://www.the-aps.org/publications/jn This information is current as of July 30, 2014. Downloaded from on July 30, 2014 Journal of Neurophysiology publishes original articles on the function of the nervous system. It is published 12 times a year (monthly) by the American Physiological Society, 9650 Rockville Pike, Bethesda MD 20814-3991. Copyright © 2014 by the American Physiological Society. ISSN: 0022-3077, ESSN: 1522-1598. Visit our website at http://www.the-aps.org/. J Neurophysiol 111: 2644–2655, 2014. First published March 26, 2014; doi:10.1152/jn.00543.2013. Contrasting the roles of the supplementary and frontal eye fields in ocular decision making Shun-nan Yang1,2 and Stephen Heinen2 1Vision Performance Institute, College of Optometry, Pacific University, Forest Grove, Oregon; and 2Smith-Kettlewell Eye Research Institute, San Francisco, California Submitted 29 July 2013; accepted in final form 25 March 2014 Yang SN, Heinen S. Contrasting the roles of the supplementary and specified by the motion stimulus (Britten et al.
    [Show full text]
  • Practicerelated Changes in Neural Activation Patterns Investigated Via
    r Human Brain Mapping 000:000–000 (2012) r Practice-Related Changes in Neural Activation Patterns Investigated via Wavelet-Based Clustering Analysis Jinae Lee,1 Cheolwoo Park,1 Kara A. Dyckman,2,3,4 Nicole A. Lazar,1 Benjamin P. Austin,5 Qingyang Li,6 and Jennifer E. McDowell2,3,4* 1Department of Statistics, University of Georgia (UGA), Athens, Georgia 2Department of Psychology, University of Georgia (UGA), Athens, Georgia 3Department of Neuroscience, University of Georgia (UGA), Athens, Georgia 4The Bio-Imaging Research Center, University of Georgia (UGA), Athens, Georgia 5UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health and theDepartment of Veterans Affairs (VA) Geriatric Research, Education and Clinical Center (GRECC), Madison, WI, USA 6Center for the Developing Brain, Child Mind Institute, 445 Park Ave, New York, NY 10022, USA r r Abstract: Objectives: To evaluate brain activation using functional magnetic resonance imaging (fMRI) and specifically, activation changes across time associated with practice-related cognitive control during eye movement tasks. Experimental design: Participants were engaged in antisaccade performance (gener- ating a glance away from a cue) while fMR images were acquired during two separate test sessions: (1) at pre-test before any exposure to the task and (2) at post-test, after 1 week of daily practice on antisac- cades, prosaccades (glancing toward a target), or fixation (maintaining gaze on a target). Principal obser- vations: The three practice groups were compared across the two test sessions, and analyses were conducted via the application of a model-free clustering technique based on wavelet analysis. This se- ries of procedures was developed to avoid analysis problems inherent in fMRI data and was composed of several steps: detrending, data aggregation, wavelet transform and thresholding, no trend test, prin- cipal component analysis (PCA), and K-means clustering.
    [Show full text]
  • Eye Fields in the Frontal Lobes of Primates
    Brain Research Reviews 32Ž. 2000 413±448 www.elsevier.comrlocaterbres Full-length review Eye fields in the frontal lobes of primates Edward J. Tehovnik ), Marc A. Sommer, I-Han Chou, Warren M. Slocum, Peter H. Schiller Department of Brain and CognitiÕe Sciences, Massachusetts Institute of Technology, E25-634, Cambridge, MA 02139, USA Accepted 19 October 1999 Abstract Two eye fields have been identified in the frontal lobes of primates: one is situated dorsomedially within the frontal cortex and will be referred to as the eye field within the dorsomedial frontal cortexŽ. DMFC ; the other resides dorsolaterally within the frontal cortex and is commonly referred to as the frontal eye fieldŽ. FEF . This review documents the similarities and differences between these eye fields. Although the DMFC and FEF are both active during the execution of saccadic and smooth pursuit eye movements, the FEF is more dedicated to these functions. Lesions of DMFC minimally affect the production of most types of saccadic eye movements and have no effect on the execution of smooth pursuit eye movements. In contrast, lesions of the FEF produce deficits in generating saccades to briefly presented targets, in the production of saccades to two or more sequentially presented targets, in the selection of simultaneously presented targets, and in the execution of smooth pursuit eye movements. For the most part, these deficits are prevalent in both monkeys and humans. Single-unit recording experiments have shown that the DMFC contains neurons that mediate both limb and eye movements, whereas the FEF seems to be involved in the execution of eye movements only.
    [Show full text]
  • Traveling Cortical Netwaves Compose a Mindstream
    bioRxiv preprint doi: https://doi.org/10.1101/705947; this version posted April 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Traveling cortical netwaves compose a mindstream Ernst Rudolf M. Hülsmann 26 Rue de Bonn. CH-3186 Guin. Switzerland. [email protected] ABSTRACT The brain creates a physical response out of signals in a cascade of streaming transformations. These transfor- mations occur over networks, which have been described in anatomical, cyto-, myeloarchitectonic and functional research. The totality of these networks has been modelled and synthesised in phases across a continuous time- space-function axis, through ascending and descending hierarchical levels of association1-3 via changing coalitions of traveling netwaves4-6, where localised disorders might spread locally throughout the neighbouring tissues. This study quantified the model empirically with time-resolving functional magnetic resonance imaging of an imperative, visually-triggered, self-delayed, therefor double-event related response task. The resulting time series unfold in the range of slow cortical potentials the spatio-temporal integrity of a cortical pathway from the source of perception to the mouth of reaction in and out of known functional, anatomical and cytoarchitectonic networks. These pathways are consolidated in phase images described by a small vector matrix, which leads to massive simplification of cortical field theory and even to simple technical applications. INTRODUCTION On a first sight it seems to be self-evident that a local perturbation within the cortical sheet should spread locally.
    [Show full text]
  • Topography of Supplementary Eye Field Afferents to Frontal Eye Field in Macaque: Implications for Mapping Between Saccade Coordinate Systems
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 1993 Topography of supplementary eye field afferents to frontal eye field in macaque: Implications for mapping between saccade coordinate systems Schall, Jeffrey D ; Morel, Anne ; Kaas, JonH Abstract: Two discrete areas in frontal cortex are involved in generating saccadic eye movements—the frontal eye field (FEF) and the supplementary eye field (SEF). Whereas FEF represents saccades ina topographic retinotopic map, recent evidence indicates that saccades may be represented craniotopically in SEF. To further investigate the relationship between these areas, the topographic organization of affer- ents to FEF from SEF in<jats:italic>Macaco mulatto</jats:italic>was examined by placing injections of distinct retrograde tracers into different parts of FEF that represented saccades of different amplitudes. Central FEF (lateral area 8A), which represents saccades of intermediate amplitudes, received afferents from a larger portion of SEF than did lateral FEF (area 45), which represents shorter saccades, or medial FEF (medial area 8A), which represents the longest saccades in addition to pinna movements. Moreover, in every case the zone in SEF that innervated lateral FEF (area 45) also projected to medial FEF (area 8A). In one case, a zone in rostral SEF projected to both lateral area 8A from which eye movements were evoked by microstimulation as well as medial area 8A from which pinna movements were elicited by microstimulation. This pattern of afferent convergence and divergence from SEF onto the retinotopic saccade map in FEF is indicative of some sort of map transformation between SEF and FEF.
    [Show full text]
  • Cortical Regions Involved in Eye Movements, Shifts of Attention, and Gaze Perception
    ᭜ Human Brain Mapping 25:140–154(2005) ᭜ Cortical Regions Involved in Eye Movements, Shifts of Attention, and Gaze Perception Marie-He´le`ne Grosbras,1* Angela R. Laird,2 and Toma´s Paus1,3 1Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada 2Research Imaging Center, University of Texas Health Science Center, San Antonio, Texas 3Brain and Body Center, University of Nottingham, Nottingham, United Kingdom ᭜ ᭜ Abstract: Human vision is an active process that involves shifting attention across the visual scene, with or without moving the eyes. Such shifts of attention can be generated at will (endogenously) or be triggered automatically, i.e., generated in response to exogenous stimuli including socially relevant cues such as someone else’s gaze. What are the common and distinct brain mechanisms involved in these processes? To address this question, we carried out a quantitative effect-location meta-analysis of 59 brain-imaging experiments whose results were published using standardized coordinates. For each condition of interest, namely voluntary and visually triggered eye movements, voluntary and visually triggered (covert) shifts of attention, and perception of someone else’s gaze, we computed activation likelihood estimation (ALE) maps. Those maps represent at each voxel of the brain the probability of reporting a signal change related to the condition of interest. For eye movements, this analysis confirmed the spatial location of the frontal eye fields, supplementary eye fields, and parietal saccade-related regions. The map of covert shifts of attention demonstrated highest similarity with the map of saccadic eye movements. Gaze perception showed common activation likelihood with the other conditions in the right intraparietal sulcus and in the lateral precentral gyrus.
    [Show full text]
  • A Review on Ultrasonic Neuromodulation of the Peripheral Nervous System: Enhanced Or Suppressed Activities?
    applied sciences Review A Review on Ultrasonic Neuromodulation of the Peripheral Nervous System: Enhanced or Suppressed Activities? Bin Feng * , Longtu Chen and Sheikh J. Ilham Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; [email protected] (L.C.); [email protected] (S.J.I.) * Correspondence: [email protected]; Tel.: +1-860-486-6435 Received: 14 March 2019; Accepted: 9 April 2019; Published: 19 April 2019 Featured Application: The current review summarizes our recent knowledge of ultrasonic neuromodulation of peripheral nerve endings, axons, and somata in the dorsal root ganglion. This review indicates that focused ultrasound application at intermediate intensity can be a non-thermal and reversible neuromodulatory means for targeting the peripheral nervous system to manage neurological disorders. Abstract: Ultrasonic (US) neuromodulation has emerged as a promising therapeutic means by delivering focused energy deep into the nervous tissue. Low-intensity ultrasound (US) directly activates and/or inhibits neurons in the central nervous system (CNS). US neuromodulation of the peripheral nervous system (PNS) is less developed and rarely used clinically. The literature on the neuromodulatory effects of US on the PNS is controversial, with some studies documenting enhanced neural activities, some showing suppressed activities, and others reporting mixed effects. US, with different ranges of intensity and strength, is likely to generate distinct physical effects in the stimulated neuronal tissues, which underlies different experimental outcomes in the literature. In this review, we summarize all the major reports that document the effects of US on peripheral nerve endings, axons, and/or somata in the dorsal root ganglion. In particular, we thoroughly discuss the potential impacts of the following key parameters on the study outcomes of PNS neuromodulation by US: frequency, pulse repetition frequency, duty cycle, intensity, metrics for peripheral neural activities, and type of biological preparations used in the studies.
    [Show full text]
  • Effects of Deep Brain Stimulation on Eye Movements and Vestibular Function
    REVIEW published: 12 June 2018 doi: 10.3389/fneur.2018.00444 Effects of Deep Brain Stimulation on Eye Movements and Vestibular Function Aasef G. Shaikh 1,2*, Chrystalina Antoniades 3, James Fitzgerald 3,4 and Fatema F. Ghasia 2,5 1 Department of Neurology, University Hospitals, Case Western Reserve University, Cleveland, OH, United States, 2 Daroff-Dell’Osso Ocular Motility Laboratory, Cleveland VA Medical Center, Cleveland, OH, United States, 3 NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom, 4 Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom, 5 Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States Discovery of inter-latching circuits in the basal ganglia and invention of deep brain stimulation (DBS) for their modulation is a breakthrough in basic and clinical neuroscience. The DBS not only changes the quality of life of hundreds of thousands of people with intractable movement disorders, but it also offers a unique opportunity to understand how the basal ganglia interacts with other neural structures. An attractive yet less explored area is the study of DBS on eye movements and vestibular function. From Edited by: the clinical perspective such studies provide valuable guidance in efficient programming Caroline Tilikete, of stimulation profile leading to optimal motor outcome. From the scientific standpoint Institut National de la Santé et de la Recherche Médicale (INSERM), such studies offer the ability to assess the outcomes of basal ganglia stimulation on France eye movement behavior in cognitive as well as in motor domains. Understanding the Reviewed by: influence of DBS on ocular motor function also leads to analogies to interpret its effects Christopher Charles Glisson, Michigan State University, on complex appendicular and axial motor function.
    [Show full text]
  • Schall Curriculum Vita Page 3
    Curriculum Vita Jeffrey D. Schall October 17, 2017 Address Department of Psychology Phone (615) 322-0868 voice Wilson Hall (615) 343-8449 FAX Vanderbilt University Nashville, TN 37240 Email [email protected] ORCID orcid.org/0000-0002-5248-943X Education 1986 Ph.D., Anatomy, University of Utah, Salt Lake City, Utah. 1982 B.S.Chem., Chemistry, University of Denver, Denver, Colorado. Scholastic and Professional Distinction 2014 Fellow, American Association for the Advancement of Science 2009 Chancellor’s Research Award, Vanderbilt University 2004 Fellow, Association of Psychological Science 2002 Elected, International Neuropsychology Symposium 2001 Ellen Gregg Ingalls Award for Excellence in Classroom Teaching 1998 Troland Research Award, National Academy of Sciences 1997-2000 Investigator Award, McKnight Endowment Fund for Neuroscience 1990-1992 Alfred P. Sloan Research Fellow 1987 Association of Anatomy Chairmen Outstanding Dissertation Award Finalist, American Association of Anatomists. 1986 James W. Prahl Memorial Award for the Outstanding Graduate Student, University of Utah School of Medicine. 1986 Phi Kappa Phi, University of Utah. 1984 Graduate Research Fellow, University of Utah. 1982 Phi Beta Kappa, University of Denver. 1980 University Scholar, University of Denver. Professional Experience 2003 - E. Bronson Ingram Professor of Neuroscience, Vanderbilt University 2000- Director, Center for Integrative & Cognitive Neuroscience 1999- Professor, Department of Psychology, Vanderbilt University 1998-2015 Director, Vanderbilt Vision Research Center 1998-2019 Director, Vision Training Program 1995-1999 Associate Professor, Department of Psychology, Vanderbilt University 1990- Kennedy Center Investigator 1989-1995 Assistant Professor, Department of Psychology, Vanderbilt University 1986-1989 Postdoctoral Fellow, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, P.H.
    [Show full text]
  • Ipsilateral Cortical Connections of Dorsal and Ventral Premotor Areas in New World Owl Monkeys
    THE JOURNAL OF COMPARATIVE NEUROLOGY 495:691–708 (2006) Ipsilateral Cortical Connections of Dorsal and Ventral Premotor Areas in New World Owl Monkeys IWONA STEPNIEWSKA,1 TODD M. PREUSS,2,3 AND JON H. KAAS1* 1Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203 2Division of Neuroscience and Center for Behavioral Neuroscience, Emory University, Atlanta, Georgia 30329 3Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322 ABSTRACT In order to compare connections of premotor cortical areas of New World monkeys with those of Old World macaque monkeys and prosimian galagos, we placed injections of fluo- rescent tracers and wheat germ agglutinin-horseradish peroxidase (WGA-HRP) in dorsal (PMD) and ventral (PMV) premotor areas of owl monkeys. Motor areas and injection sites were defined by patterns of movements electrically evoked from the cortex with microelec- trodes. Labeled neurons and axon terminals were located in brain sections cut either in the coronal plane or parallel to the surface of flattened cortex, and they related to architectoni- cally and electrophysiologically defined cortical areas. Both the PMV and PMD had connec- tions with the primary motor cortex (M1), the supplementary motor area (SMA), cingulate motor areas, somatosensory areas S2 and PV, and the posterior parietal cortex. Only the PMV had connections with somatosensory areas 3a, 1, 2, PR, and PV. The PMD received inputs from more caudal portions of the cortex of the lateral sulcus and more medial portions of the posterior parietal cortex than the PMV. The PMD and PMV were only weakly interconnected. New World owl monkeys, Old World macaque monkeys, and galagos share a number of PMV and PMD connections, suggesting preservation of a common sensorimotor network from early primates.
    [Show full text]
  • A New Neural Framework for Visuospatial Processing
    REVIEWS A new neural framework for visuospatial processing Dwight J. Kravitz*, Kadharbatcha S. Saleem‡, Chris I. Baker*and Mortimer Mishkin‡ Abstract | The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a ‘What’ pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. Originally proposed as mediating spatial perception (‘Where’), more recent accounts suggest it primarily serves non-conscious visually guided action (‘How’). Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively. The dorsal and ventral processing streams were origi- of patient D.F. to reach accurately for an object to which nally identified in monkeys as two anatomically and she could not consciously orient led to the hypothesis functionally distinct pathways that originate in the that the dorsal stream was concerned with automatic, striate cortex. The ventral stream was described as non-conscious, visually guided action rather than with coursing through the occipitotemporal cortex to its spatial perception; according to this view, only the ven- anterior temporal target (area TE), and the dorsal tral stream produces representations accessible to con- stream as coursing through the occipitoparietal cortex sciousness8,9. Notably, however, patient D.F.
    [Show full text]
  • Flexible and Stable Value Coding Areas in Caudate Head and Tail Receive Anatomically Distinct Cortical and Subcortical Inputs
    ORIGINAL RESEARCH published: 24 November 2017 doi: 10.3389/fnana.2017.00106 Flexible and Stable Value Coding Areas in Caudate Head and Tail Receive Anatomically Distinct Cortical and Subcortical Inputs Whitney S. Griggs 1*†, Hyoung F. Kim 2,3†, Ali Ghazizadeh 1, M. Gabriela Costello 1, Kathryn M. Wall 1 and Okihide Hikosaka 1,4 1Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, United States, 2Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, South Korea, 3Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea, 4National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States Anatomically distinct areas within the basal ganglia encode flexible- and stable-value memories for visual objects (Hikosaka et al., 2014), but an important question remains: do they receive inputs from the same or different brain areas or neurons? To answer this question, we first located flexible and stable value-coding areas in the caudate head (CDh) and caudate tail (CDt) of two rhesus macaque monkeys, and then injected different retrograde tracers into these areas of each monkey. We found that CDh and CDt received different inputs from several cortical and subcortical areas including temporal cortex, prefrontal cortex, cingulate cortex, amygdala, claustrum and thalamus. Edited by: Superior temporal cortex and inferior temporal cortex projected to both CDh and CDt, Paul J. May, University of Mississippi Medical with more CDt-projecting than CDh-projecting neurons. In superior temporal cortex and Center, United States dorsal inferior temporal cortex, layers 3 and 5 projected to CDh while layers 3 and Reviewed by: 6 projected to CDt.
    [Show full text]