…By the Way, Where Is the Fornix???

Total Page:16

File Type:pdf, Size:1020Kb

…By the Way, Where Is the Fornix??? Resources …By the way, – H. Blumenfeld. Neuroanatomy through clinical cases where is the fornix??? (Sinauer 2002). – Digital anatomist: • http://www9.biostr.washington.edu/da.html An introduction to gross neuroanatomy –Sylvius: • http://www.sylvius.com/ Marco L. Loggia, PhD [email protected] Some slides kindly provided by E. Duerden, UMontreal. Brigham and Women’s Hospital (Anesthesiology) Mass General Hospital (Psychiatry) All images and animations included in this presentation are from the Digital Harvard Medical School Anatomist website, unless otherwise specified. Orientation Orientation Humans, however, have an upright posture… VENTRAL = towards the belly (=‘ventrum’ in latin) DORSAL = towards the back (=‘dorsum’in latin) ROSTRAL = towards the snout (‘rostrum’=beak in latin) ABOVE CAUDAL = towards the tail (=‘cauda’ in latin) M-D junction BELOW M-D junction In animals with a linear organization of the CNS, terminology is straightforward: = Watch out! ‘Superior’=‘Dorsal’ above the midbrain; =‘Rostral’ in the midbrain or below Blumenfeld, 2002. © Sinauer (2002) Sylvius.com Blumenfeld (adapted). © Sinauer (2002) 1 Orientation Orientation MEDIAL = close to the midline LATERAL = close to the sides Horizontal (axial/transverse) Coronal Sagittal LATERALMEDIAL LATERAL Horizontal Sagittal Coronal Think about the horizon! Imagine a tiara-like crown! Think about the bow of an archer! VENTRAL Blumenfeld. © Sinauer (2002) Major subdivisions Orientation of the encephalon Telencephalon Horizontal (axial/transverse) Coronal Sagittal -Cereb. Hemispheres (including cortex and subcortical structures) Diencephalon -thalamus -hypothalamus -other associated structures Horizontal Sagittal Coronal Brainstem -Midbrain (mesencephalon) -Pons* Think about the horizon! Imagine a tiara-like crown! Think about the bow of an archer! -Medulla oblongata (myelencephalon) Cerebellum* Sylvius.com * Pons+cerebellum = metencephalon 2 The brainstem The brainstem Cerebral peduncles Midbrain Midbrain Pons Pons Medulla Oblongata Medulla Oblongata Cranial nerves Inferior Olives Pyramids Cerebellum The brainstem The brainstem Sup. colliculus Midbrain Inf. colliculus Pons Cerebellar Medulla Peduncles Oblongata 3 The brainstem The brainstem Tips to find the medulla on axial slices: I can see two ventral ‘bumps’ (PYRAMIDS) Midbrain Pons Lateral to these, two more subtle ‘bumps’ Medulla Oblongata (INF. OLIVES) I am the level of the MEDULLA! Cerebellum The brainstem The brainstem Tips to find the pons on axial slices: Tips to find the midbrain on axial slices: I can see the large ‘belly’ I see MICKEY! (the ears=cerebral peduncles) I am the level of the PONS! I am the level of the MIDBRAIN! 4 The diencephalon The diencephalon The ICECREAM tip: Thalamus is the SCOOP, the hypothalamus the CONE! Hypothalamic sulcus Thalamus Hypothalamus The diencephalon The diencephalon Optic Optic chiasm chiasm Infundibulum of the pituitary gland Infundibulum Hypothalamus lies of the Pituitary dorsal to these structures gland Mammillary bodies Mammillary bodies 5 The diencephalon The diencephalon Thalami The ventricular system The ventricular system Lateral v. Lateral ventricles (inside the hemispheres) Third v. Cerebral aqueduct (tiny canal inside the midbrain) Cerebral aqueduct Third ventricle (between the 2 thalami; Fourth Fourth v. & at the center of the hypothalamus) ventricle (between pons/upper medulla and cerebellum) 6 The ventricular system Cerebral Hemispheres Foramen of Monro Third ventricle • 2 hemispheres, interconnected by: corpus callosum, anterior commissure, posterior commissure and (in some individuals) interthalamic adhesion (aka massa intermedia). Cerebral aqueduct Fourth ventricle Corpus callosum Thalamus Anterior Hypothalamus Commissure (tip: rostral to the fornix!) Midbrain Pons Posterior commissure (tip: dorsal to the top of the aqueduct!) Medulla Oblongata Cerebellum Cerebral Hemispheres Cortex • 2 hemispheres, interconnected by: corpus callosum, anterior commissure, posterior commissure and (in some individuals) interthalamic adhesion. • Composed of GYRI (the ‘HILLS’) and SULCI (the ‘VALLEYS’) • In each hemisphere: cortex (gyri, sulci), white matter and subcortical structures • If a sulcus is very deep Î FISSURE (E.g. Lateral fissure) (including hippocampus, amygdala and basal ganglia). • Some sulci run LONGITUDINALLY, others in a MEDIAL-LATERAL direction • 4 ‘undisputed’ lobes (frontal, parietal, temporal and occipital) + insula (sometimes referred to as ‘the fifth lobe’). 7 Cortex Cortex Central (Rolandic) fissure Parieto-occipital fissure PARIETAL LOBE FRONTAL LOBE OCCIPITAL LOBE TEMPORAL LOBE Lateral (Sylvian) fissure Preoccipital notch © Beal, LSU (2005). Modified Cortex Cortex Post central gyrus Central sulcus Tips to find the central sulcus: superior parietal lobule precentral gyrus 1) SFS stops at the precentral gyrus; 2) Look for the ‘Omega shape’ (motor hand area) Superior frontal Intraparietal fissure gyrus middle frontal gyrus Inferior parietal lobule inferior frontal gyrus superior temporal gyrus Lateral sulcus middle temporal gyrus From Emma Duerden, Inferior temporal gyrus with permission (modified) Courtesy of Digital Anatomist Project at Univ of Washington 8 Cortex Cortex Tip to find the intraparietal sulcus: The lateral fissure and superior temporal sulcus stop at the Inf par lobule © Cortex Cortex Parieto-occipital Cingulate gyrus fissure cuneus Calcarine fissure uncus Lingual gyrus Parahippocampal From Emma Duerden, Blumenfeld, 2002. © Sinauer (2002) gyrus Courtesy of Digital Anatomist Projectwith at Univ. permission of Washington 9 Cortex Cortex Insula Heschl’s (transverse) gyri From Emma Duerden, From Emma Duerden, Digital Anatomist Project at Univ. of Washington modified, with permission Digital Anatomist Project at Univ. of Washington with permission (modified) Hippocampus Hippocampus Tip to find the hippocampus: Look below the inferior horn of the lateral ventricle! Hippocampus The fornix connects the hippocampus to the mammillary bodies Lateral ventricle Inferior horn of the lateral ventricle Hippocampus Fornix (the axons of the hippocampal neurons) Blumenfeld, 2002. © Sinauer (2002) 10 Hippocampus and Amygdala The basal ganglia Tip to find the amygdala: Look rostral to the hippocampus! Amygdala Caudate nucleus Lentiform nucleus (=putamen+ globus pallidus) Hippocampus Blumenfeld, 2002. © Sinauer (2002) The basal ganglia The basal ganglia Tips to find the basal ganglia: 1) The nucleus bulging into the lateral ventricle is the head of the caudate 2) look for the L shaped white matter (internal capsule)! 3) ‘Pallidus’ means ‘pale’…. Anterior limb of the Internal capsule: separates caudate from lentiform Caudate n. (head) nucleus Lentiform nucleus Posterior limb of the (putamen) Internal capsule: separates thalamus Lentiform nucleus from lentiform (globus pallidus) nucleus Thalamus 11 The basal ganglia Tips to find the basal ganglia: 1) The nucleus bulging into the lateral ventricle is the head of the caudate 2) look for the L shaped white matter (internal capsule)! 3) ‘Pallidus’ means ‘pale’…. Anterior limb of the Internal capsule: separates caudate from lentiform Caudate n. (head) Thanks! nucleus Lentiform nucleus Posterior limb of the (putamen) Internal capsule: separates thalamus Lentiform nucleus from lentiform (globus pallidus) nucleus Thalamus 12.
Recommended publications
  • MR Imaging of Ventral Thalamic Nuclei
    ORIGINAL RESEARCH MR Imaging of Ventral Thalamic Nuclei K. Yamada BACKGROUND AND PURPOSE: The Vim and VPL are important target regions of the thalamus for DBS. K. Akazawa Our aim was to clarify the anatomic locations of the ventral thalamic nuclei, including the Vim and VPL, on MR imaging. S. Yuen M. Goto MATERIALS AND METHODS: Ten healthy adult volunteers underwent MR imaging by using a 1.5T S. Matsushima whole-body scanner. The subjects included 5 men and 5 women, ranging in age from 23 to 38 years, with a mean age of 28 years. The subjects were imaged with STIR sequences (TR/TE/TI ϭ 3200 ms/15 A. Takahata ms/120 ms) and DTI with a single-shot echo-planar imaging technique (TR/TE ϭ 6000 ms/88 ms, M. Nakagawa b-value ϭ 2000 s/mm2). Tractography of the CTC and spinothalamic pathway was used to identify the K. Mineura thalamic nuclei. Tractography of the PT was used as a reference, and the results were superimposed T. Nishimura on the STIR image, FA map, and color-coded vector map. RESULTS: The Vim, VPL, and PT were all in close contact at the level through the ventral thalamus. The Vim was bounded laterally by the PT and medially by the IML. The VPL was bounded anteriorly by the Vim, laterally by the internal capsule, and medially by the IML. The posterior boundary of the VPL was defined by a band of low FA that divided the VPL from the pulvinar. CONCLUSIONS: The ventral thalamic nuclei can be identified on MR imaging by using reference structures such as the PT and the IML.
    [Show full text]
  • Thalamus and Limbic System
    Prof. Saeed Abuel Makarem 1 Objectives By the end of the lecture, you should be able to: Describe the anatomy and main functions of the thalamus. Name and identify different nuclei of the thalamus. Describe the main connections and functions of thalamic nuclei. Name and identify different parts of the limbic system. Describe main functions of the limbic system. Describe the effects of lesions of the limbic system. It is the largest nuclear mass of Thalamus the whole body. It is the largest part of the THALAMUS diencephalon It is formed of two oval masses Corpus callosum of grey matter. It is the gateway to the Midbrain cortex. Resemble a PONS small hen. Together with the hypothalamus they form the lateral wall of the 3rd ventricle. 3 It sends received Thalamus information to the cerebral cortex from different brain regions. Axons from every sensory system (except olfaction) synapse in the thalamus as the last relay site 'last pit stop' before the information reaches the cerebral cortex. There are some thalamic nuclei that receive input from: 1. Cerebellar nuclei, 2. Basal ganglia- and 3. Limbic-related brain regions. 4 It has 4 surfaces & 2 ends. Relations Surfaces Lateral:(L) Posterior limb of the internal capsule. Medial: (3) The 3rd ventricle. In some people the 2 thalami are connected to ach other by interthalamic adhesion S (connexus,) or Massa intermedia, which crosses L through the 3rd ventricle. 3 Superior: (s) I Lateral ventricle and fornix. Inferior: Hypothalamus, anteriorly & Subthalamus posteriorly. 5 Anterior end: Forms a projection, called the anterior tubercle. It lies just behind the interventricular foramen.
    [Show full text]
  • The Connexions of the Amygdala
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.28.2.137 on 1 April 1965. Downloaded from J. Neurol. Neurosurg. Psychiat., 1965, 28, 137 The connexions of the amygdala W. M. COWAN, G. RAISMAN, AND T. P. S. POWELL From the Department of Human Anatomy, University of Oxford The amygdaloid nuclei have been the subject of con- to what is known of the efferent connexions of the siderable interest in recent years and have been amygdala. studied with a variety of experimental techniques (cf. Gloor, 1960). From the anatomical point of view MATERIAL AND METHODS attention has been paid mainly to the efferent connexions of these nuclei (Adey and Meyer, 1952; The brains of 26 rats in which a variety of stereotactic or Lammers and Lohman, 1957; Hall, 1960; Nauta, surgical lesions had been placed in the diencephalon and and it is now that there basal forebrain areas were used in this study. Following 1961), generally accepted survival periods of five to seven days the animals were are two main efferent pathways from the amygdala, perfused with 10 % formol-saline and after further the well-known stria terminalis and a more diffuse fixation the brains were either embedded in paraffin wax ventral pathway, a component of the longitudinal or sectioned on a freezing microtome. All the brains were association bundle of the amygdala. It has not cut in the coronal plane, and from each a regularly spaced generally been recognized, however, that in studying series was stained, the paraffin sections according to the Protected by copyright. the efferent connexions of the amygdala it is essential original Nauta and Gygax (1951) technique and the frozen first to exclude a contribution to these pathways sections with the conventional Nauta (1957) method.
    [Show full text]
  • Brain Fibers and Basal Ganglia
    Neuroanatomy Dr. Maha ELBeltagy Assistant Professor of Anatomy Faculty of Medicine The University of Jordan 2018 Prof Yousry 10/15/17 Types of brain fibers THE WHITE MATTER OF THE BRAIN The white matter of the brain consists of: 1) Association fibers: Connect different areas in the same hemisphere. 2) Commissural fibers: Connect similar areas in the 2 hemispheres. 3) Projection fibers: Fibers from & to the cereblbral cortex. Association fibers There are short & long association fibers. A) Short association fibers: Connect adjacent gyri, forming U‐shaped arcuate fibers in all parts of the hemisphere. B) Long association fibers: 1) Superior longitudinal bundle: Connects frontal, occipital & temporal regions. 2) Inferior longitudinal bundle: Runs from temporal to occipital poles. 3) Cingulum: Forms incomplete circle around corpus callosum. It begins near rostrum of corpus callosum & ends in the uncus connects it with hippocampus and cingulate gyrus. 4) Uncinate Fasiculus: Runs from frontal to temporal poles. Commissural fibers 1) Anterior commissure ccossesrosses tethe middle line within laaamina terminalis (connect both piriform fossae) Anterior Habenular temporal lobes. acute pain and smell. commissure commissure 2) Posterior commissure lower pineal stalk (pupillary light reflex)(connect superior Pineal colliculi and pretectal nuclei) body 3) Habenular commissure: superior to pineal stalk connects right and left habenular nuclei (connected to Amygdaloid nucleus) Posterior center of integration of olfactory, visceral Mammillary commissure pathways. body 4) Fornix commissure (efferent of hippocampus) connectes crura and body of the fornix across both hippocampi. 5) Corpus Callosum. 5‐ Corpus Callosum: It is the great (10 cm) transverse commissure that connects the cerebral hemispheres & roofs the lateral ventricle (except ant part of Body temporal lobes which are connected by the anterior commissure).
    [Show full text]
  • Apparent Atypical Callosal Dysgenesis: Analysis of MR Findings in Six Cases and Their Relationship to Holoprosencephaly
    333 Apparent Atypical Callosal Dysgenesis: Analysis of MR Findings in Six Cases and Their Relationship to Holoprosencephaly A. James Barkovich 1 The MR scans of six pediatric patients with apparent atypical callosal dysgenesis (presence of the dorsal corpus callosum in the absence of a rostral corpus callosum) were critically analyzed and correlated with developmental information in order to assess the anatomic, embryologic, and developmental implications of this unusual anomaly. Four patients had semilobar holoprosencephaly; the dorsal interhemispheric commis­ sure in these four infants resembled a true callosal splenium. All patients in this group had severe developmental delay. The other two patients had complete callosal agenesis with an enlarged hippocampal commissure mimicking a callosal splenium; both were developmentally and neurologically normal. The embryologic implications of the pres­ ence of these atypical interhemispheric connections are discussed. Differentiation between semilobar holoprosencephaly and agenesis of the corpus callosum with enlarged hippocampal commissure-two types of apparent atypical callosal dysgenesis-can be made by obtaining coronal, short TR/TE MR images through the frontal lobes. Such differentiation has critical prognostic implications. AJNR 11:333-339, March{Apri11990 Abnormalities of the corpus callosum are frequently seen in patients with con­ genital brain malformations [1-5); a recent publication [5) reports an incidence of 47%. The corpus callosum normally develops in an anterior to posterior direction. The genu forms first, followed by the body, splenium, and rostrum. Dysgenesis of the corpus callosum is manifested by the presence of the earlier-formed segments (genu , body) and absence of the later-formed segments (splenium, rostrum) [4-6]. We have recently encountered six patients with findings suggestive of atypical callosal dysgenesis in whom there was apparent formation of the callosal splenium in the absence of the genu and body.
    [Show full text]
  • Advanced Sectioned Images of a Cadaver Head with Voxel Size Of
    J Korean Med Sci. 2019 Sep 2;34(34):e218 https://doi.org/10.3346/jkms.2019.34.e218 eISSN 1598-6357·pISSN 1011-8934 Original Article Advanced Sectioned Images of a Cadaver Basic Medical Sciences Head with Voxel Size of 0.04 mm Beom Sun Chung ,1 Miran Han ,2 Donghwan Har ,3 and Jin Seo Park 4 1Department of Anatomy, Ajou University School of Medicine, Suwon, Korea 2Department of Radiology, Ajou University School of Medicine, Suwon, Korea 3College of ICT Engineering, Chung Ang University, Seoul, Korea 4Department of Anatomy, Dongguk University School of Medicine, Gyeongju, Korea Received: Jun 14, 2019 Accepted: Jul 22, 2019 ABSTRACT Address for Correspondence: Background: The sectioned images of a cadaver head made from the Visible Korean project Jin Seo Park, PhD have been used for research and educational purposes. However, the image resolution Department of Anatomy, Dongguk University is insufficient to observe detailed structures suitable for experts. In this study, advanced School of Medicine, 87 Dongdae-ro, Gyeongju sectioned images with higher resolution were produced for the identification of more 38067, Republic of Korea. E-mail: [email protected] detailed structures. Methods: The head of a donated female cadaver was scanned for 3 Tesla magnetic resonance © 2019 The Korean Academy of Medical images and diffusion tensor images (DTIs). After the head was frozen, the head was Sciences. sectioned serially at 0.04-mm intervals and photographed repeatedly using a digital camera. This is an Open Access article distributed Results: On the resulting 4,000 sectioned images (intervals and pixel size, 0.04 mm3; color under the terms of the Creative Commons Attribution Non-Commercial License (https:// depth, 48 bits color; a file size, 288 Mbytes), minute brain structures, which can be observed creativecommons.org/licenses/by-nc/4.0/) not on previous sectioned images but on microscopic slides, were observed.
    [Show full text]
  • Dissecting the Fornix in Basic Memory Processes and 12 13 Neuropsychiatric Disease: a Review 14 Susan L
    Manuscript 1 2 3 4 5 6 7 8 9 10 11 Dissecting the fornix in basic memory processes and 12 13 neuropsychiatric disease: A review 14 Susan L. Benear, Chi T. Ngo & Ingrid R. Olson 15 Temple University, Philadelphia, PA 19122 16 17 18 19 20 21 Address correspondence to: 22 23 Ingrid R. Olson E-mail: [email protected] 24 Department of Psychology T: (215) 204-7318 25 Temple University F: (215) 204- 5539 26 th 27 1701 N. 13 Street 28 Philadelphia, PA 19122 29 30 31 32 Number of words in abstract: 169 33 Number of tables, figures: 3 tables and 4 figures 34 35 36 Keywords: fornix, white matter, episodic memory, hippocampus, diffusion tensor imaging, 37 Alzheimer’s Disease, epilepsy, acetylcholine, theta, obesity, nucleus accumbens, deep brain 38 stimulation, schizophrenia, stress, bipolar disorder, mood 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 1 2 3 4 Abstract 5 6 The fornix is the primary axonal tract of the hippocampus, connecting it to modulatory 7 subcortical structures. This review reveals that fornix damage causes cognitive deficits that 8 closely mirror those resulting from hippocampal lesions. In rodents and non-human primates, 9 this is demonstrated by deficits in conditioning, reversal learning, and navigation. In humans, 10 this manifests as anterograde amnesia. The fornix is essential for memory formation because it 11 12 serves as the conduit for theta rhythms and acetylcholine, as well as providing mnemonic 13 representations to deep brain structures that guide motivated behavior, such as when and where 14 to eat.
    [Show full text]
  • An Afferent Hippocampal Fiber System in the Fornix of the Monkey
    An Afferent Hippocampal Fiber System in the Fornix of the Monkey CHARLES L. VOTAW AND EDWARD W. LAUER Department of Anatmy, The University of Michigan, Ann ATboT, Michigan In a previous investigation (Votaw, ’60b) and weighed from 2.2 to 5.3 kgs. Seven it was noted that, in spite of massive bilat- were used only for this investigation and eral removal of the hippocampal formation seven others were used as well in another (Ammon’s horn and dentate gyms), there investigation on the function of the hippo- was a considerable percentage of the fi- campus and are included in this study bers in the fornix, anterior to the hippo- because the lesions placed were ideally carnpal commissure, that did not degener- suited for comparison with the former ate. This would imply, since the lesions seven cases. to all intents and purposes eliminated all All animals were subjected to aseptic possible fibers going into the fornix from surgical procedures. The only surgical pro- the region of the temporal lobe, the pres- cedure on seven was the production of the ence of fibers in the fornix which are a€- lesions to be reported here; lesions were ferent with respect to the hippocampus, placed in the remaining seven after other and further, that these fibers are not com- studies had been carried out. General missural in nature. In another study anesthesia was used and consisted of (Votaw, ’60a), it was shown that lesions ether, sodium pentobarbital (20-25 mg/kg in the septa1 area would produce a de- of body weight given intravenously) or a generation which could be followed from combination of the two anesthetics, ether the area of the lesion in a caudal direction, being used to supplement a somewhat coursing through the body of the fornix, lower dose of sodium pentobarbital.
    [Show full text]
  • Dorsal “Thalamus”
    Dorsal “Thalamus” Medical Neuroscience Dr. Wiegand The Diencephalon The Diencephalon InterthalamicInterthalamic adhesionadhesion ThalamusThalamus EpithalamusEpithalamus HypothalamusHypothalamus (Pineal(Pineal && Habenula)Habenula) PituitaryPituitary SubthalamusSubthalamus 1 The “Dorsal” Thalamus | Sensory integration nucleus – gateway to the cerebral cortex | Afferents from both rostral and caudal central nervous system structures | Efferents primarily to cerebral cortex via four principal “radiations” | Associated with motor, sensory, limbic and vegetative functions External medullary lamina Anterior n. 3rd Internal capsule Ventricle Medial n. Medial Lateral n. Internal capsule * Reticular n. Internal * Interthalamic adhesion medullary lamina 2 General Organization medialmedial nucleinuclei anterioranterior nuclei nuclei internalinternal medullarymedullary laminalamina laterallateral nuclei nuclei dorsaldorsal tiertier pulvinarpulvinar geniculategeniculate ventralventral tiertier bodiesbodies Frontal Section intralaminarintralaminar nucleinuclei reticularreticular nuclei nuclei 3rd Ventricle externalexternalexternalexternal medullarymedullary laminalamina internalinternal laminalamina medullarymedullary laminalamina 3 Thalamic Nuclei | Anterior | Lateral z Dorsal Tier • lateral dorsal • lateral posterior • pulvinar z Ventral Tier • ventral anterior • ventral lateral • ventral posterior (VLP & VPM) • posterior nucleus Thalamic Nuclei | Medial z medial/medial dorsal z midline nuclei | Pulvinar | Geniculate bodies | Reticular | Intralaminar
    [Show full text]
  • Graduate Neuroanatomy GSBS GS141181
    Page 1 Graduate Neuroanatomy GSBS GS141181 Laboratory Guide Offered and Coordinated by the Department of Neurobiology and Anatomy The University of Texas Health Science Center at Houston. This course guide was adatped from the Medical Neuroscience Laboratory Guide. Nachum Dafny, Ph.D., Course Director; Michael Beierlein, Ph.D., Laboratory Coordinator. Online teaching materials are available at https://oac22.hsc.uth.tmc.edu/courses/neuroanatomy/ Other course information available at http://openwetware.org/wiki/Beauchamp:GraduateNeuroanatomy Contents © 2000-Present University of Texas Health Science Center at Houston. All Rights Reserved. Unauthorized use of contents subject to civil and/or criminal prosecution. Graduate Neuroanatomy : Laboratory Guide Page 2 Table of Contents Overview of the Nervous System ................................................................................................................ 3 Laboratory Exercise #1: External Anatomy of the Brain ......................................................................... 19 Laboratory Exercise #2: Internal Organization of the Brain ..................................................................... 35 Graduate Neuroanatomy : Laboratory Guide Page 3 Overview of the Nervous System Nachum Dafny, Ph.D. The human nervous system is divided into the central nervous system (CNS) and the peripheral nervous system (PNS). The CNS, in turn, is divided into the brain and the spinal cord, which lie in the cranial cavity of the skull and the vertebral canal, respectively. The CNS and the PNS, acting in concert, integrate sensory information and control motor and cognitive functions. The Central Nervous System (CNS) The adult human brain weighs between 1200 to 1500g and contains about one trillion cells. It occupies a volume of about 1400cc - approximately 2% of the total body weight, and receives 20% of the blood, oxygen, and calories supplied to the body. The adult spinal cord is approximately 40 to 50cm long and occupies about 150cc.
    [Show full text]
  • Probing Forebrain to Hindbrain Circuit Functions in Xenopus
    Received: 15 November 2016 | Accepted: 16 November 2016 DOI 10.1002/dvg.22999 REVIEW Probing forebrain to hindbrain circuit functions in Xenopus Darcy B. Kelley1 | Taffeta M. Elliott2 | Ben J. Evans3 | Ian C. Hall4 | Elizabeth C. Leininger5 | Heather J. Rhodes6 | Ayako Yamaguchi7 | Erik Zornik8 1Department of Biological Sciences, Columbia University, New York, New York Abstract 10027 The vertebrate hindbrain includes neural circuits that govern essential functions including breath- 2Department of Psychology, New Mexico ing, blood pressure and heart rate. Hindbrain circuits also participate in generating rhythmic motor Tech, Socorro, New Mexico 87801 patterns for vocalization. In most tetrapods, sound production is powered by expiration and the 3 Department of Biology, McMaster circuitry underlying vocalization and respiration must be linked. Perception and arousal are also University, Hamilton, Ontario, Ontario linked; acoustic features of social communication sounds—for example, a baby’scry—can drive L8S4K1, Canada autonomic responses. The close links between autonomic functions that are essential for life and 4Department of Biology, Benedictine University, Lisle, Illinois vocal expression have been a major in vivo experimental challenge. Xenopus provides an opportu- 5Department of Biology, St. Mary’s College, nity to address this challenge using an ex vivo preparation: an isolated brain that generates vocal St. Mary’s City, Maryland 29686 and breathing patterns. The isolated brain allows identification and manipulation of hindbrain vocal 6Department of Biology, Denison University, circuits as well as their activation by forebrain circuits that receive sensory input, initiate motor Granville, Ohio 43023 patterns and control arousal. Advances in imaging technologies, coupled to the production of Xen- 7 Department of Biology, University of Utah, opus lines expressing genetically encoded calcium sensors, provide powerful tools for imaging Salt Lake City, Utah 84112 neuronal patterns in the entire fictively behaving brain, a goal of the BRAIN Initiative.
    [Show full text]
  • Diencephalic–Mesencephalic Junction Dysplasia: a Novel Recessive Brain Malformation
    doi:10.1093/brain/aws162 Brain 2012: 135; 2416–2427 | 2416 BRAIN A JOURNAL OF NEUROLOGY Diencephalic–mesencephalic junction dysplasia: a novel recessive brain malformation Maha S. Zaki,1 Sahar N. Saleem,2 William B. Dobyns,3 A. James Barkovich,4 Hauke Bartsch,5 Anders M. Dale,5 Manzar Ashtari,6,7 Naiara Akizu,8 Joseph G. Gleeson8 and Ana Maria Grijalvo-Perez8 1 Department of Clinical Genetics, Division of Human Genetics and Genome Research, National Research Centre, Cairo 12311, Egypt 2 Department of Radiology, Cairo University, Cairo, Egypt 3 Department of Paediatrics, Seattle Children’s Research Institute, Seattle, WA 98195-6320, USA 4 Department of Radiology and Biomedical Imaging, University of California, San Francisco, 94143, USA 5 Multimodal Imaging Laboratory (MMIL), Departments of Radiology and Neurosciences, University of California, San Diego, 92093 USA 6 Diffusion Tensor Image Analyses and Brain Morphometry Centre, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA 7 Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA 8 Neurogenetics Laboratory, Howard Hughes Medical Institute, Department of Neurosciences and Paediatrics, Rady Children’s Hospital, University of California, San Diego, 92093 USA Correspondence to: Dr Maha S. Zaki, Department of Clinical Genetics, Division of Human Genetics and Genome Research, National Research Centre, El-Tahrir Street, Dokki, Cairo 12311, Egypt E-mail: [email protected] or [email protected] We describe six cases from three unrelated consanguineous Egyptian families with a novel characteristic brain malformation at the level of the diencephalic–mesencephalic junction. Brain magnetic resonance imaging demonstrated a dysplasia of the diencephalic–mesencephalic junction with a characteristic ‘butterfly’-like contour of the midbrain on axial sections.
    [Show full text]