Anastrepha Ludens and Anastrepha Serpentina (Diptera: Tephritidae

Total Page:16

File Type:pdf, Size:1020Kb

Anastrepha Ludens and Anastrepha Serpentina (Diptera: Tephritidae ECOLOGY AND BEHAVIOR Anastrepha ludens and Anastrepha serpentina (Diptera: Tephritidae) Do Not Infest Psidium guajava (Myrtaceae), but Anastrepha obliqua Occasionally Shares This Resource With Anastrepha striata in Nature 1,2,3 1 ANDREA BIRKE AND MARTI´N ALUJA J. Econ. Entomol. 104(4): 1204Ð1211 (2011); DOI: 10.1603/EC11042 ABSTRACT This study examined whether economically important fruit ßy species Anastrepha ludens (Loew), Anastrepha serpentina (Wiedemann), and Anastrepha obliqua (Macquart) (Diptera: Tephritidae) may opportunistically exploit guavas, Psidium guajava L. (Myrtaceae), growing near preferred natural hosts. We collected 3,459 kg of guavas and 895 kg of other known host species [sour orange, Citrus aurantium L.; grapefruit, Citrus paradisi Macfadyen; mango, Mangifera indica L.; white sapote, Casimiroa edulis La Llave and Lex.; sapote, Pouteria sapota (Jacq.); sapodilla, Manilkara zapota L.; and wild plum, Spondias purpurea L. and Spondias mombin L.] along an altitudinal gradient over a 4-yr period (2006Ð2009). Plants were growing in sympatry in 23 localities where the guavas are usually infested in the state of Veracruz, Me´xico. The guava samples yielded 20,341 Anastrepha spp. pupae in total (overall mean, 5.88 pupae per kg of fruit). ConÞrming previous reports, Anastrepha fraterculus (Wiedemann) and Anastrepha striata (Schiner) were found heavily infesting guavas in Veracruz. Importantly, although we did not Þnd evidence that A. ludens and A. serpentina are able to attack this valuable commodity, we document for the Þrst time in the agriculturally important state of Veracruz that P. guajava is an alternative natural host plant of A. obliqua. We recovered two fruit in the mango-growing locality of la Võ´bora, Tlalixcoyan, that harbored larvae of A. striata and A. obliqua. This Þnding has important practical implications for management of A. obliqua. Over the entire altitudinal gradient, when individual fruit infestation was examined, a dynamic pattern of species dominance was unveiled with guavas growing below 800 m above sea level mainly attacked by A. striata and a progressive replacement with increasing altitude by A. fraterculus. Interestingly, most individual fruit examined (97%) harbored a single species of fruit ßy, a Þnding that may be taken as evidence of competitive displacement among sympatric species of fruit ßies. Based on this study and previously published work by us on this topic, we conclude that literature reports indicating that A. ludens and A. serpentina infest guavas under Þeld conditions should be questioned. KEY WORDS Anastrepha, Psidium guajava, competitive displacement, infestation patterns, host status The correct status of a fruit as a host of pestiferous fruit ludens (Loew); Anastrepha serpentina (Wiedemann); ßy species is critical in assessing the risk of introduc- and Anastrepha obliqua (Maquart) as species of con- tions into importing countries (Aluja and Mangan cern in guava export protocols from Me´xico to the 2008). Guava, Psidium guajava L. (Myrtaceae), is a United States (http://www.senasica.gob.mx). tropical fruit of commercial value with a long history Guavas in Veracruz are widely distributed and can of local consumption in Me´xico and a signiÞcant ex- be found all the way from sea level to localities at port potential. During the past 4 yr, exports to the altitudes of Ϸ1,600 m above sea level (Sivinski et al. United States have increased by 45% with expected 2000). There are no commercial plantations in Vera- future yearly returns ϾUS$350Ð400 million (http:// cruz, mainly because of heavy damage inßicted by A. sagarpa.gob.mx). In Me´xico, guavas are mainly at- fraterculus and A. striata. Trees grow along rural roads tacked by Anastrepha striata (Schiner) and Anastrepha and highways, in coffee (Coffea spp.) plantations, dis- fraterculus (Wiedemann) (Aluja et al. 1987, 2000, turbed patches of native vegetation, parks, home gar- 2003b,c; Sivinski et al. 2000, 2004); however, quaran- dens, backyards, or abandoned lots in urban areas tine restrictions include Mexican fruit ßy, Anastrepha often interspersed among natural hosts of economi- cally important fruit ßy species such as A. ludens, A. 1 Instituto de Ecologõ´a, A.C. Apartado Postal 63, 91000 Xalapa, serpentina, and A. obliqua. In the lowlands, ßowering Veracruz, Me´xico. begins in March and mature fruit is available between 2 Posgrado Instituto de Neuroetologõ´a, 91190 Xalapa, Veracruz, Me´xico. June and August. The latter time partially coincides 3 Corresponding author, e-mail: [email protected]. with the fruiting period of Spondias purpurea L., a 0022-0493/11/1204Ð1211$04.00/0 ᭧ 2011 Entomological Society of America August 2011 BIRKE AND ALUJA:FRUIT FLIES ASSOCIATED WITH GUAVAS IN CENTRAL ME´ XICO 1205 preferred host plant of A. obliqua, and with mango, hottlei (Standl.) Standl.(Ulmaceae) (Aluja et al. 1987; Mangifera indica L. ÔManilaÕ, an exotic host plant of Aluja et al. 2000, 2003c). both A. obliqua and A. ludens (Aluja and Birke 1993). There are at least 25 primary reports (sensu Aluja From Ϸ900 to 1,000 m above sea level, ßowering be- and Mangan 2008) indicating that A. obliqua is able to gins between late April and early May, and mature infest guava under Þeld conditions (information sum- fruit can be found between mid-August to late Sep- marized by Norrbom, 2004). Most credible reports tember, even though ripening of some fruit can be stem from the Caribbean Islands (Dominican Repub- delayed until December. During this time, another A. lic and Puerto Rico; Jenkins and Goenaga 2008a) and obliqua preferred host plant, Spondias mombin L., is some countries in Central and South America (Costa ripening (Lo´pez et al. 1999, Aluja et al. 2000). Also, Rica, Colombia, Venezuela, Brazil, and Ecuador; (Ma- various species of Citrus and Sapotaceae, preferred lavasi and Morgante 1980, Malavasi et al. 1980, Cara- hosts of A. ludens and A. serpentina, respectively, are ballo 1981, Jiro´n and Hedstro¨m 1988, Ohashi et al. abundant. Above 1,000 m above sea level, ßowering 1997, Katiyar et al. 2000, Zucchi 2000, Uchoˆa-Ferna´n- begins in June, and mature fruit becomes available dez et al. 2002, Araujo et al. 2005, Raga et al. 2006, between mid-August and early October. Despite this Jenkins and Goenaga 2008b, Minza˜o and Uchoˆa- altitudinal seasonality, one can Þnd off-season fruit Ferna´ndez 2008). In Me´xico, P. guajava has only been year-round in single trees, albeit in very small num- recorded as a host of A. obliqua in the southern-most bers. Soconusco region in the state of Chiapas (Aluja et al. A. ludens is one of the most economically important 1987), despite extensive fruit collecting efforts in sev- fruit pests in Me´xico. It is a polyphagous fruit ßy eral areas throughout the country (e.g., Yucata´n, species, whose geographical range spans from Central Herna´ndez-Ortõ´z et al. 2006; Veracruz, Herna´ndez- America to the southern United States (Thomas 2003, Ortõ´z and Pe´rez-Alonso 1993, Lo´pez et al. 1999, Aluja Aluja et al. 2009). Its main natural hosts are in the et al. 2000, Sivinski et al. 2000); northern Chiapas, Rutaceae and include yellow chapote, Casimiroa greg- Montes Azules, Aluja et al. 2003c; and Nayarit, Pe´rez- gii (S. Watson); white sapote, Casimiroa edulis La Staples and Aluja 2004). Llave & Lex.; and the exotic hosts bitter orange, Citrus Our null hypothesis was that in our study region aurantium L.; grapefruit, Citrus paradisi (Macfadyen); guavas would only be naturally infested by A. striata and orange, Citrus sinensis (L.) Osbeck. Other hosts and A. fraterculus, two fruit ßy species with an un- include mango, Mangifera indica L. (Anacardiaceae); equivocally proven association to this host in Me´xico. peach, Prunus persica L. (Rosaceae); and ÔManzanoÕ Alternatively, we hypothesized that A. ludens, A. ser- pepper, Capsicum pubescens L. (Solanaceae) (Aluja et pentina, and A. obliqua may opportunistically exploit al. 2000, Norrbom 2004, Thomas 2004). Guava has guavas when growing in the vicinity(within ßight been reported as a host of A. ludens (Herna´ndez-Ortiz range) of their preferred natural hosts. Hosts were and Aluja 1993, White and Elson Harris 1992), but considered to be in sympatry when found within 250 m such reports are not based on Þeld evidence but rather of each other, which represents the mean daily ßight on questionable literature. distance for Anastrepha adults (Thomas and Loera- A. serpentina is distributed from the southern Gallardo 1998). To test these hypotheses, we con- United States to Brazil and has been reported to ex- ducted a 4-yr study in 23 different Þeld sites along an ploit 22 plant species in seven families, with a marked elevation gradient in the agriculturally important state preference for fruit in the Sapotaceae family of Veracruz, Me´xico. The study was based on fruit (Robacker et al. 2009). EskaÞ and Cunningham (1987) collections in the Þeld and follow-up quantiÞcation of reported P. guajava as a host in Guatemala, but results infestation patterns. of this survey are questionable because they were reported along with erroneous recoveries of A. obliqua Materials and Methods and A. striata from Citrus sinensis (undoubtedly a mistake). Fruit Collection Sites. The study was carried out A. obliqua is distributed from Me´xico to southern during the 2006Ð2007 and 2008Ð2009 fruiting seasons. Brazil and the Caribbean Islands (Aluja 1993, Herna´n- Guavas were systematically collected along an altitu- dez-Ortiz and Aluja 1993). It does not occur in the dinal gradient (9Ð1,137 m above sea level) in central United States and is therefore considered a pest of Veracruz, Me´xico. Nineteen localities were selected quarantine signiÞcance for this country (Steck 2001). among those with the highest fruit ßy infestation rates This species predominantly attacks fruit within the and greatest guava tree abundance (see Tables 1 and Anacardiaceae family; it is considered a major pest of 2 for details; Lo´pez et al.
Recommended publications
  • Daños Y Desarrollo De Anastrepha Fraterculus (Diptera: Tephritidae) En
    42 Agrociencia Uruguay - Volumen 19 2:42-48 - julio/diciembre 2015 Agrociencia Uruguay Damage and Development of Anastrepha fraterculus (Diptera: Tephritidae) in Fruits of Two Pear Cultivars Nunes Marcelo Z1, Boff Mari Inês C1, dos Santos Régis SS2, Franco Cláudio R1, Wille Paulo E1, da Rosa Joatan M1, do Amarante Cassandro VT1 1Departamento de Agronomia do Centro de Ciências Agroveterinárias da Universidade do Estado de Santa Catarina, UDESC.Universidade do Estado de Santa Catarina, Centro de Ciências Agroveterinárias, Av. Luiz de Camões 2090, Conta Dinheiro, 88.520-00, Lages - SC, Brasil. E-mail: [email protected] 2Embrapa Uva e Vinho, Estação Experimental de Fruticultura de Clima Temperado. BR 285, km 115, Caixa Postal 1513, 95.200-000, Vacaria - RS, Brasil Recibido: 13/10/14 Aceptado: 7/7/15 Summary Anastrepha fraterculus is the main horticultural pest for food crops in southern Brazil. This study aimed to identify the damage caused by this species, evaluate its development, and correlate its infestation rate with physical and chemical characteristics of Packhams and Williams pear fruit cultivars at five different stages of development. In the field, cages were installed on branches of the pear plants in which two couples of A. fraterculus were released for a period of 48 hours. The damage resulting from oviposition was evaluated at fifteen-day intervals from the day the insects were released until harvest. The evaluation of damage consisted of visual observation of decayed and deformed fruits and the presence of larvae. In the laboratory, two couples were individualized with one fruit in a 750 mL pot for 48 hours.
    [Show full text]
  • Pouteria Sapota
    Pouteria sapota Pouteria sapota, mamey sapote, is a species of tree na- propagated by grafting, which ensures the new plant has tive to Central America, naturally ranging from southern the same characteristics as the parent, especially its fruit. Mexico to southern Costa Rica. Today, the tree is cul- It is also considerably faster than growing trees by seed. tivated not only in Mexico, but also in Central America, The leaves are pointed at both ends, 4 to 12 inches in the Caribbean, and South Florida for its fruit, which is length and grow in clusters at the ends of branches. commonly eaten in many Latin American countries. It has different names depending on the country: mamey The fruit is about 10 to 25 cm (4 to 10 inches) long and (Cuba), zapote colorado (Costa Rica), níspero and zapote 8 to 12 cm (3 to 5 inches) wide and has flesh ranging in rojo (South America), among others. color from pink to orange to red. The brown skin has a texture somewhat between sandpaper and the fuzz on a peach. The fruit’s texture is creamy and soft. A mamey 1 Description sapote is ripe when the flesh is pink when a fleck of the skin is removed. The flesh should give slightly, as with a ripe kiwifruit. The mamey sapote is related to other sapotes such as sapodilla (Manilkara zapota), abiu (P. caimito) and canistel (P. campechiana), but unrelated to the black sapote (Diospyros digyna) and white sapote (Casimiroa edulis).[2] It should not be confused with the mammee ap- ple (Mammea americana).
    [Show full text]
  • DIVERSIDADE DE Anastrepha Schiner, 1868 (DIPTERA: TEPHRITIDAE) NO PARQUE NACIONAL DA SERRA DA BODOQUENA-MS, BRASIL
    Universidade Federal da Grande Dourados - UFGD Faculdade de Ciências Biológicas e Ambientais - FCBA Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade - PPGECB DIVERSIDADE DE Anastrepha Schiner, 1868 (DIPTERA: TEPHRITIDAE) NO PARQUE NACIONAL DA SERRA DA BODOQUENA-MS, BRASIL Mariana Palachini de Oliveira Dourados-MS Abril/2018 Universidade Federal da Grande Dourados Faculdade de Ciências Biológicas e Ambientais Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade Mariana Palachini de Oliveira DIVERSIDADE DE Anastrepha Schiner, 1868 (DIPTERA: TEPHRITIDAE) NO PARQUE NACIONAL DA SERRA DA BODOQUENA-MS, BRASIL Dissertação apresentada à Universidade Federal da Grande Dourados (UFGD), como parte dos requisitos exigidos para obtenção do título de MESTRE EM ENTOMOLOGIA E CONSERVAÇÃO DA BIODIVERSIDADE. Área de Concentração: Biodiversidade e Conservação. Orientador: Prof. Dr. Manoel Araécio Uchoa-Fernandes Dourados-MS Abril/2018 Dados Internacionais de Catalogação na Publicação (CIP). O48d Oliveira, Mariana Palachini De Diversidade de Anastrepha Schiner, 1868 (Diptera: Tephritidae) no Parque Nacional da Serra da Bodoquena-MS, Brasil/ Mariana Palachini De Oliveira -- Dourados: UFGD, 2018. 82f. : il. ; 30 cm. Orientador: Manoel Araécio Uchoa-Fernandes Dissertação (Mestrado em Entomologia e Conservação da Biodiversidade) - Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados. Inclui bibliografia 1. Unidade de Conservação. 2. inventário. 3. Insecta. 4. Trypetinae. I. Título. Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a). ©Direitos reservados. Permitido a reprodução parcial desde que citada a fonte. Biografia da Acadêmica Mariana Palachini de Oliveira nasceu em Guararapes, estado de São Paulo, no dia 23 de setembro de 1994, filha de Donizete de Oliveira e Celma Cristina Palachini de Oliveira.
    [Show full text]
  • ZAPOTE the Popular Name Represents Many Diverse Edible Fruits of Guatemala
    Sacred Animals and Exotic Tropical Plants monzón sofía photo: by Dr. Nicholas M. Hellmuth and Daniela Da’Costa Franco, FLAAR Reports ZAPOTE The popular name represents many diverse edible fruits of Guatemala ne of the tree fruits raised by the Most zapotes have a soft fruit inside and Maya long ago that is still enjoyed a “zapote brown” covering outside (except today is the zapote. Although for a few that have other external colors). It Othere are several fruits of the same name, the is typical for Spanish nomenclature of fruits popular nomenclature is pure chaos. Some of and flowers to be totally confusing. Zapote is the “zapote” fruits belong to the sapotaceae a vestige of the Nahuatl (Aztec) word tzapotl. family and all are native to Mesoamerica. The first plant on our list, Manilkara But other botanically unrelated fruits are also zapote, is commonly named chicozapote. called zapote/sapote; some are barely edible This is one of the most appreciated edible (such as the zapotón). There are probably species because of its commercial value. It even other zapote-named fruits that are not is distributed from the southeast of Mexico, all native to Mesoamerica. especially the Yucatán Peninsula into Belize 60 Dining ❬ ANTIGUA and the Petén area, where it is occasionally now collecting pertinent information related an abundant tree in the forest. The principal to the eating habits of Maya people, and all products of these trees are the fruit; the the plants they used and how they used them latex, which is used as the basis of natural for food.
    [Show full text]
  • Caribbean Fruit Fly, Anastrepha Suspensa (Loew) (Insecta: Diptera: Tephritidae)1 H
    EENY196 Caribbean Fruit Fly, Anastrepha suspensa (Loew) (Insecta: Diptera: Tephritidae)1 H. V. Weems, Jr., J. B. Heppner, T. R. Fasulo and J. L. Nation2 Introduction The Caribbean fruit fly, Anastrepha suspensa (Loew), has also been called the Greater Antilliean fruit fly, the guava fruit fly, and the Caribfly. It is a near relative of theMexican fruit fly, Anastrepha ludens (Loew), and is one of several species of fruit flies that are indigenous to the West Indies and the larvae of which attack several kinds of tropical and subtropical fruits. Synonyms Trypeta suspensa (Loew), (Trypeta) Acrotoxa suspensa (Loew), Anastrepha unipuncta Séin, Anastrepha longimacula Greene. Figure 1. Distribution of the Caribbean fruit fly,Anastrepha suspensa Distribution (Loew), in Florida. Credits: G. J. Steck and B. D. Sutton, Division of Plant Industry This species is found in Cuba, Jamaica, Hispaniola, Puerto Rico, and Florida. Anastrepha suspensa was described originally from specimens collected in Cuba. Its geographic distribution and host range are very similar to two other A strain of A. suspensa, believed to have been established species: A. obliqua and A. striata Schiner. in Florida for many years prior to its discovery there, was first identified as occurring in Florida from adults collected at Key West in 1931. On 6 November 1930, two larvae, 1. This document is EENY-196 (originally published as DPI Entomology Circulars 38 and 260), one of a series of Featured Creatures from the Entomology and Nematology Department, UF/IFAS Extension. Published March 2001. Revised March 2012. Reviewed July 2014. This document is also available on Featured Creatures website at http://entomology.ifas.ufl.edu/creatures.
    [Show full text]
  • Fruit Fly (Diptera: Tephritidae)
    Fruit Fly (Diptera: Tephritidae) Community in Guava Orchards and Adjacent Fragments of Native Vegetation in Brazil Author(s): Ranyse Barbosa Querino, Jader Braga Maia, Gleidyane Novais Lopes, Clarice Diniz Alvarenga and Roberto Antonio Zucchi Source: Florida Entomologist, 97(2):778-786. 2014. Published By: Florida Entomological Society DOI: http://dx.doi.org/10.1653/024.097.0260 URL: http://www.bioone.org/doi/full/10.1653/024.097.0260 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. 778 Florida Entomologist 97(2) June 2014 FRUIT FLY (DIPTERA: TEPHRITIDAE) COMMUNITY IN GUAVA ORCHARDS AND ADJACENT FRAGMENTS OF NATIVE VEGETATION IN BRAZIL RANYSE BARBOSA
    [Show full text]
  • First Record of Anastrepha Obliqua(Diptera
    ACTA AMAZONICA http://dx.doi.org/10.1590/1809-4392202002961 SHORT COMMUNICATION First record of Anastrepha obliqua (Diptera: Tephritidae) and a tritrophic relation with parasitoids in a citrus orchard in Pará state, Brazil Marlon Gonçalves RODRIGUES1, Maria Gisely CAMARGOS²* , Clarice Diniz ALVARENGA², Rosana Cardoso Rodrigues da SILVA1, Álvaro Remígio AYRES1 1 Instituto Federal do Pará, BR 316, Km 61, Saudade II, PA, Brazil 2 Universidade Estadual de Montes Claros, Department of Agricultural Sciences, Rua Reinaldo Viana 2630, 39440-000 Janaúba, MG, Brazil *Corresponding author: [email protected]; https://orcid.org/0000-0002-8897-0604 ABSTRACT Citriculture is a growing industry in Pará state, Brazil, but information regarding fruit flies and their associated parasitoids in this region is lacking. To address this gap in knowledge, we collected oranges (Citrus sinensis), lime oranges (C. sinensis), common sweet limes (C. limettioides), citrons (C. medica) and mandarins (C. reticulata). We recorded field infestation by Anastrepha obliqua in C. sinensis under natural conditions for the first time in the study region, and a tritrophic relationship between C. sinensis, A. obliqua, and the parasitoids Opius bellus and Asobara anastrephae was identified. KEYWORDS: Citrus sinensis, Braconidae, eastern Amazon Primeiro registro de Anastrepha obliqua (Diptera: Tephritidae) e de uma relação tritrófica com parasitoides em um pomar de citros no estado do Pará, Brasil RESUMO A citricultura está crescendo no Estado do Pará, Brasil, mas faltam informações sobre as pragas conhecidas como moscas-das- frutas e os parasitoides associados na região. Visando abordar esta lacuna no conhecimento, foram coletados frutos de laranja (Citrus sinensis), laranja var. lima (C. sinensis), lima-da-pérsia (C.
    [Show full text]
  • Tropical Insect Chemical Ecology - Edi A
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol.VII - Tropical Insect Chemical Ecology - Edi A. Malo TROPICAL INSECT CHEMICAL ECOLOGY Edi A. Malo Departamento de Entomología Tropical, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, C.P. 30700. México. Keywords: Insects, Semiochemicals, Pheromones, Kairomones, Monitoring, Mass Trapping, Mating Disrupting. Contents 1. Introduction 2. Semiochemicals 2.1. Use of Semiochemicals 3. Pheromones 3.1. Lepidoptera Pheromones 3.2. Coleoptera Pheromones 3.3. Diptera Pheromones 3.4. Pheromones of Insects of Medical Importance 4. Kairomones 4.1. Coleoptera Kairomones 4.2. Diptera Kairomones 5. Synthesis 6. Concluding Remarks Acknowledgments Glossary Bibliography Biographical Sketch Summary In this chapter we describe the current state of tropical insect chemical ecology in Latin America with the aim of stimulating the use of this important tool for future generations of technicians and professionals workers in insect pest management. Sex pheromones of tropical insectsUNESCO that have been identified to– date EOLSS are mainly used for detection and population monitoring. Another strategy termed mating disruption, has been used in the control of the tomato pinworm, Keiferia lycopersicella, and the Guatemalan potato moth, Tecia solanivora. Research into other semiochemicals such as kairomones in tropical insects SAMPLErevealed evidence of their presence CHAPTERS in coleopterans. However, additional studies are necessary in order to confirm these laboratory results. In fruit flies, the isolation of potential attractants (kairomone) from Spondias mombin for Anastrepha obliqua was reported recently. The use of semiochemicals to control insect pests is advantageous in that it is safe for humans and the environment. The extensive use of these kinds of technologies could be very important in reducing the use of pesticides with the consequent reduction in the level of contamination caused by these products around the world.
    [Show full text]
  • Mass-Production of Anastrepha Obliqua at the Moscafrut Fruit Fly Facility, Mexico
    Proceedings of 6th International Fruit Fly Symposium 6–10 May 2002, Stellenbosch, South Africa pp. 389–392 Mass-production of Anastrepha obliqua at the Moscafrut Fruit Fly Facility, Mexico T. Artiaga-López1*, E. Hernández1, J. Domínguez-Gordillo1, D.S. Moreno2 & D. Orozco-Dávila3 1Mexican National Campaign Against the Fruit Fly SAGARPA-IICA, Central Poniente No. 14. CP 30700, Tapachula, Chiapas, Mexico 2Subtropical Agricultural Research Center – USDA-ARS, Weslaco, TX 78596, U.S.A. 3Program MOSCAMED-SAGARPA The West Indian fruit fly, Anastrepha obliqua, is a serious pest which can be controlled using the sterile insect technique. From 1993 to 1995 several studies were conducted to optimize a mass- rearing system for A. obliqua. This article describes the rearing procedure and quality control parameters at the production facility. INTRODUCTION a bubbling system, which was achieved by inject- The West Indian fruit fly, Anastrepha obliqua ing air through the egg solution with an (Macquart), is a serious economic and quarantine aquarium pump (Schwarz et al. 1985). After three pest of mango, Mangifera indica L. and guava, days of incubation,2 ml of eggs and newly-eclosed Psidium guajava L. It is the second most impor- larvae were placed on the surface of 6 kg of larval tant species of economic significance in Mexico diet in a tray. The larval diet used was a modified (Aluja et al. 1987). This species is a target pest formulation of Zucoloto et al. (1979) and Moreno that can be controlled through the utilization of et al. (1997), which consisted of (by weight): 15% the sterile insect technique (SIT) (Rull Gabayet corn cob fractions, 5.83% Torula yeast, 8% corn et al.
    [Show full text]
  • White Sapote Growing in the Home Landscape1 Jonathan H
    HS1054 White Sapote Growing in the Home Landscape1 Jonathan H. Crane and Carlos F. Balerdi2 Scientific Name: Casimiroa edulis and C. tetrameria and hybrids Common Names: white sapote and casimiroa (English), zapote blanco (Spanish), sapote blanc (French) Family: Rutaceae Relatives: Wooly leaf white sapote (C. tetrameria) Origin: Highlands of central Mexico and Central America. Distribution: Throughout tropical highland and subtropi- cal areas of Latin America, the Caribbean, the Mediter- ranean region, India, Southeast Asia, New Zealand, South Africa, Australia, and New Zealand. Figure 1. ‘Densler’ white sapote. Credits: J. H. Crane, UF/IFAS History: White sapote was introduced into the US circa 1810. Description Tree Importance: White sapote is generally harvested from seedling trees and sold in local markets. However, white Medium to large trees; 15 ft to 60 ft (4.6–18.3 m). Trees may sapote is grown on a small commercial scale in the US, have an upright to spreading growth habit. Australia, and Mexico. Leaves Leaves are palmately compound with 3 to 7 leaflets (usually 5). Leaflets are lanceolate, 3 to 5 inches long (7.6–12.7 cm) and 1 to 2 inches wide (2.54–5.0 cm). 1. This document is HS1054, one of a series of the Horticultural Sciences Department, UF/IFAS Extension. Original publication date November 2005. Revised November 2016. Reviewed December 2019. Visit the EDIS website at https://edis.ifas.ufl.edu for the currently supported version of this publication. 2. Jonathan H. Crane, professor and tropical fruit crop specialist, Tropical Research and Education Center; and Carlos F. Balerdi, professor and multi- county tropical fruit crop Extension agent IV (retired), UF/IFAS Extension Miami-Dade County; UF/IFAS Extension, Gainesville, FL 32611.
    [Show full text]
  • Diptera: Tephritidae) Research in Latin America: Myths, Realities and Dreams
    Dezembro, 1999 An. Soc. Entomol. Brasil 28(4) 565 FORUM Fruit Fly (Diptera: Tephritidae) Research in Latin America: Myths, Realities and Dreams MARTÍN ALUJA Instituto de Ecología, A.C., Apartado Postal 63, C.P. 91000, Xalapa, Veracruz, Mexico This article is dedicated to J.S. Morgante, R.A. Zucchi, A. Malavasi, F.S. Zucoloto, A.S. Nascimento, S. Bressan, L.A.B. Salles, and A. Kovaleski who have greatly contributed to our knowledge on fruit flies and their parasitoids in Latin America An. Soc. Entomol. Brasil 28(4): 565-594 (1999) A Pesquisa com Moscas-das-Frutas (Diptera: Tephritidae) na América Latina: Mitos, Realidade e Perspectivas RESUMO – Apresento uma avaliação crítica da pesquisa com moscas-das-frutas na América Latina baseada na noção de que muitos mitos e mal-entendidos são transmitidos a estudantes, jovens pesquisadores ou administrações oficiais. Pondero que depois de um esclarecedor início de século, durante o qual muitas descobertas significativas foram feitas sobre a história natural desses insetos, pouco progresso tem sido observado em muitas áreas de pesquisas e manejo de moscas-das-frutas na América Latina durante os últimos 50 anos. Isso tem sido causado em parte pela escassez de estudos sob condições naturais, bem com pela abordagem reducionista utilizada no estudo desses insetos maravilhosos, considerando as espécies individualmente, ou apenas as espécies-praga. Para interromper esse círculo vicioso, proponho que demos mais atenção à história natural das espécies, independente de sua importância econômica, ampliemos o escopo e o período de tempo de nossos estudos, fortaleçamos os fundamentos teóricos e ecológicos das pesquisas com moscas-das-frutas na América Latina e enfatizemos o enfoque comparativo sempre que possível.
    [Show full text]
  • Establishment of a Colony of Anastrepha Ludens (Diptera: Tephritidae) Under Relaxed Mass-Rearing Conditions in Mexico
    Fruit Flies of Economic Importance: From Basic to Applied Knowledge Proceedings of the 7th International Symposium on Fruit Flies of Economic Importance 10-15 September 2006, Salvador, Brazil pp. 335-339 Establishment of a Colony of Anastrepha ludens (Diptera: Tephritidae) Under Relaxed Mass-Rearing Conditions in Mexico 1Dina Orozco-Davila, Refugio Hernández, Eduardo Solís, J. Luis Quintero, and Julio Domínguez. 1United States Department of Agriculture, Agricultural Research Service*, Center for Medical, Agricultural, and Veterinary Entomology, 1700 SW 23rd Dr, Gainesville, FL 32608 USA 2Sigma Space Corp., 4801 Forbes Boulevard, Lanham, Maryland 20706 1Programa Moscamed Moscafrut-Desarrollo de Métodos. Central Poniente No. 14 altos-Esquina 2ª. Avenida Sur. CP 30700. Tapachula, Chiapas, México. E-mail: [email protected] ABSTRACT Several studies have suggested that maintaining a line of insects under laboratory conditions reduces their biological attributes. With this principle in mind, the mass production of Anastrepha ludens originating from a colony raised under relaxed rearing conditions was evaluated over a period of three years. The results of the evaluation indicated that insects kept under these conditions reached their larval maturity in 10 days, and attained a greater weight, which has a direct influence on pupal quality. In adult cages having a fly density of 70,000 individuals, there was a lower level of stress which favored fecundity. Fertility was apparently not affected by the cage density. These results suggest that keeping a production line under relaxed conditions optimizes insect production and promotes higher quality. Key Words: Anastrepha ludens, Thephritidae, Sterile Insect Technique, mass rearing, colony management. RESUMEN INTRODUCTION Varios estudios han sugerido que el man- The mass rearing of insects as applied to tener una línea de insectos bajo condiciones the Sterile Insect Technique (SIT) signifies a de laboratorio reduce varios de sus atributos great advance in the struggle for control over biológicos.
    [Show full text]