SPOT Satellites SPOT 5 Was Successfully Launched on May 3, 2002

Total Page:16

File Type:pdf, Size:1020Kb

SPOT Satellites SPOT 5 Was Successfully Launched on May 3, 2002 1 Remote sensing of the Earth from orbital altitudes was recognized in the mid-1960’s as a potential technique for obtaining information important for the effective use and conservation of natural resources. The studies began when the Tiros satellites (1960) provided man’s first synoptic view of the Earth’s weather systems. The manned Gemini and Apollo Programs (1962-72) led to further consideration of space-age remote sensing for study of Earth. The Earth Resources Technology Satellite, later designated Landsat, provided repetitive multispectral observation of the Earth. Earth rising 2 Skylab, the largest manned space station placed at low Earth orbit at the time, was lunched in May 14, 1973 and carried into space the Earth Resources Experiment Package (EREP). EREP was designed to view the Earth with sensors that recorded data in the visible, infrared, and microwave spectral regions. EREP became another step in space exploration by testing the high spatial resolution camera systems with film return capability, narrow frequency bandwidth scanner systems in the visible through thermal-infrared spectral region, and initial use of active and passive microwave systems in Earth resources surveys. A significant feature of EREP was the use of man to operate the sensors in a laboratory fashion. Landsat represents the world's longest (since 1972) continuously acquired collection of space-based land remote sensing data. The instruments on the Landsat satellites have acquired millions of images. The images, archived in the United States and at Landsat receiving stations around the world, are a unique resource for global change research and applications in agriculture, geology, forestry, regional planning, education and national security. 3 Landsat Missions Landsat 1 (07/12/1972 - 01/06/1978) - RBV, MSS (80m) Landsat 2 (01/22/1975-07/27/1983) - RBV, MSS (80m) Landsat 3 (03/05/1978-09/07/1983) - RBV, MSS (80m) Landsat 4 (07/16/1982 - ) - MSS, TM (30m, 120m TIR) Landsat 5 (03/01/1984 - ) - MSS, TM (30m, 120m TIR) Landsat 6 (10/05/1993): ETM Landsat 7 (04/23/1999 - ) - ETM+ (30m, 60m TIR, 15m Pan) Landsat Data Continuity Mission (LDCM) 2010 ....?????? RBV = Returned Beam Vidicon camera flown on Landsat 1-3 MSS = Multispectral Scanner (flown on Landsat 1-5) TM = Thematic Mapper (flown on Landsat 4-5) ETM+ = Enhanced Thematic Mapper (flown on Landsat 7) August 17, 2007, The Office of Science and Technology Policy (OSTP) released the National Land Imaging Program (NLIP) strategy. This program is designed to meet U.S. civilian moderate resolution land imaging needs to monitor the changes in land surface, Polar Regions, and coastal zones due to the changes in population growth, development and climate changes. It establishes a program office in the DOI to provide focused leadership and management for the nation’s land imaging efforts. NLIP will focus on maintaining a core, operational government commitment and capability to collect moderate-resolution land imagery through the procurement and launch of a series of U.S. owned satellites thereby ensuring the continuity of U.S. collected and managed Landsat-like data, well into future decades. 4 Spectral Cover of Band 1: 0.45-0.52µm (blue). Landsat Sensors Provide increased penetration of water bodies, as well as supporting analysis of land use, soil, and vegetation characteristics. Band 2: 0.52-0.60µm (green). This band spans the region between the blue and red chlorophyll absorption bands and therefore corresponds to the green reflectance of healthy vegetation. Band 3: 0.63-0.69µm (red). This is the red chlorophyll absorption band of healthy green vegetation and represents one of the most important bands for vegetation discrimination. • Band 4: 0.76-0.90µm (reflective infrared). This band is responsive to the Spectral Cover of amount of vegetation biomass present in Landsat Sensors the scene. It is useful for crop identification and emphasizes soil-crop and land-water contrasts. • Band 5: 1.55-1.75µm (mid-infrared) This band is sensitive to the amount of moisture in plants and therefore useful in crop draught and in plant vigor studies. • Band 6: 2.08-2.35µm (thermal infrared) This band measures the amount of infrared radiant flux emitted from surface. • Band 7: 2.08-2.35µm (mid-infrared) This is an important band for the discrimination of geologic rock formation. It is effective in identifying zones of hydrothermal alteration in rocks. 5 Comparison of Landsat Sensors Thematic Mapper Enhanced Thematic Multispectral (TM) Landsat 4 and 5 Mapper Plus (ETM+) Scanner (MSS) Landsat 7 Landsat 1-5 Spectral 1. 0.45-0.52 (B) 1. 0.45-0.52 0.5-0.6 (green) Resolution 2. 0.52-0.60 (G) 2. 0.53-0.61 0.6-0.7 (red) (µm) 3. 0.63-0.69 (R) 3. 0.63-0.69 0.7-0.8 (NIR) 4. 0.76-0.90 (NIR) 4. 0.78-0.90 0.8-1.1 (NIR) 5. 1.55-1.75 (MIR) 5. 1.55-1.75 6. 2.08-2.35 (MIR) 6. 2.09-2.35 7. 10.4-12.5 (TIR) 7. 10.4-12.5 8. 0.52-0.90 (Pan) Spatial 30 x 30 15 x 15 (Pan) 79 x 79 Resolution 120 x 120 (TIR) 30 x 30 (meter) 60 x 60 (TIR) Temporal 16 16 18 Resolution (revisit in days) Spatial 185 x 185 183 x 170 185 x 185 coverage (km) Altitude (km) 705 705 915 (Landsat 1,2,3) Landsat-7 ETM+ Data of Providence Landsat-7 Panchromatic Data (15 m) Landsat-7 ETM+ Data (30 m), Bands 3, 2, 1 in RGB Landsat-7 ETM+ Data (30 m), Bands 4, 3, 2 in RGB Landsat-7 ETM+ Data (30 m), Bands 4, 5, 3 in RGB 6 Rhode Island: Path 12/Row 31 7 Landsat Ground Stations 8 Landsat Images of the World https://zulu.ssc.nasa.gov/mrsid/mrsid.pl 1990/2000 Landsat coverage available. 9 Mangroves in the Niger River Delta: 1990 Landsat Image Over 100 kilometers crisscrossing streams and rivers of the Kibasira Swamp 10 Stiegler’s Gorge section of the Rufiji River Streams and rivers eroding the banks of the Rufiji river 11 12 TERRA (EOS AM) - Launched December 18, 1999 The following instruments fly on TERRA: ASTER: Advanced Spaceborne Thermal Emission and Reflection Radiometer (15m - 3 bands in VNIR; 30m - 6 bands in SWIR; 90m - 5 bands in TIR) MODIS: Moderate Resolution Spectroradiometer (0.4 - 14.4 µm) (250m - 2 bands, 500m - 5 bands, 1000m - 29 bands) CERES: Clouds and the Earth's Radiant Energy System MISR: Multi-angle Imaging Spectroradiometer MOPITT: Measurements of Pollution in the Troposphere. Provisional Land Cover Product June 01 MODIS data from Jul 00– Jan 01 26 13 The MODIS Global Vegetation Phenology product (MOD12Q2) provides estimates of the timing of vegetation phenology at global scales. As such, MOD12Q2 identifies the vegetation growth, maturity, and senescence marking seasonal cycles. EO-1: successfully launched on November 21, 2000 ALI -Advanced Land Imager consists of a 15° Wide Field Telescope (WFT) and partially populated focal plane occupying 1/5th of the field-of-view, giving a ground swath width of 37 km. Hyperion – Hyper-spectral sensors a grating imaging spectrometer having a 30 meter ground sample distance over a 7.5 kilometer swath and providing 10nm (sampling interval) contiguous bands of the solar reflected spectrum from 400-2500nm. 14 Hyperspectral data Hyperion sensor on board the EO-1 Satellite Spectral profile in a single pixel location from 0.4 to 2.5 µm at 10 nm interval for a continuous coverage over 220 bands EO-1 launched November 21, 2000 EOS AM Constellation / Ground Tracks 15 SPOT satellites SPOT 5 was successfully launched on May 3, 2002 SPOT 4 - March 24, 1998 SPOT-4 VEGETATION SPOT 3 - Sept. 25, 1993 SPOT 2 - Jan. 22, 1990 SPOT 1 - Feb. 21, 1986 The SPOT Sensor The position of each HRV entrance mirror can be commanded by ground control to observe a region of interest not necessarily vertically beneath the satellite. Thus, each HRV offers an oblique viewing capability, the viewing angle being adjustable through +/- 27degrees relative to the vertical. Two spectral modes of acquisition are employed, panchromatic (P) and multispectral (XS). Both HRVs can operate in either mode, either simultaneously or individually. 16 SPOT 4-VEGETATION: This program marks a significant advance to monitor crops and the continental biosphere. The VEGETATION instrument flying on Spot 4 provides global coverage on an almost daily basis at a resolution of 1 kilometer, thus making it an ideal tool for observing long-term environmental changes on a regional and worldwide scale. With a swath width of 2,250 kilometers, the VEGETATION instrument covers almost all of the globe's land masses while orbiting the Earth 14 times a day. Only a few zones near the equator are covered every day. Areas above 35°latitude are seen at least once daily. Launched: September 24, 1999 Ground resolution: 1 meter panchromatic (0.45-0.90 µm), 4 meters multispectral (same as Landsat TM bands 1 - 4) (Band 1: 0.45-0.52 µm Blue) (Band 2: 0.52-0.60 µm Green) (Band 3: 0.63-0.69 µm Red) (Band 4: 0.76-0.90 µm Near IR) 17 18 On October 19, 2001 DigitalGlobe launched the QuickBird satellite. 19 September 3, 2003 QuickBird Satellite Panchromatic Images (0.6-m Spatial Resolution) Concepts of Spatial Resolution September 3, 2003 QuickBird Satellite True-color and Pseudo-color Images 2.5-m Spatial Resolution Concept of Multispectral Or spectral resolution 20 QuickBird-2 Satellite (Launched: Oct. 19, 2001) Spatial Resolutions: 0.61 meter panchromatic; 2.5 meters multispectral EnhancedMultispectral Multispectral Image Panchromatic Image Image2.5 m (0.6 Spatial m Spatial Resolution 0.6 m Spatial Resolution Resolution) Resolution Merge? 21 EnhancedEnhanced MultispectralMultispectral ImageImage (0.6(0.6 mm SpatialSpatial Resolution)Resolution) QuickBird Enhanced Spatial Resolution True Color Orthophoto True Color Satellite Image (0.6 m) (0.5 m Spatial Resolution) (Band 3, 2, 1 in RGB) Comparable Spatial Resolution 22 QuickBird Enhanced Spatial Resolution True Color Orthophoto Pseudo Color Satellite Image (0.6 m) (0.5 m Spatial Resolution) (Band 4, 2, 1 in RGB) More Spectral Coverage Comparison of Enhanced Spatial Resolution QuickBird Multispectral Image and True Color Orthophoto 23 DigitalGlobe WorldView I First Images (Houston and Yokohama) WorldView I, launched September 2007, collects 0.5-meter resolution imagery with an average revisit time of 1.7 days.
Recommended publications
  • Positional Accuracy in Orbital Images of High and Medium Resolution: Case Study with Image Sensors of the Spot, Rapideye and Resourcesat Satellites
    POSITIONAL ACCURACY IN ORBITAL IMAGES OF HIGH AND MEDIUM RESOLUTION: CASE STUDY WITH IMAGE SENSORS OF THE SPOT, RAPIDEYE AND RESOURCESAT SATELLITES Moreira, N. A. P1, Felgueiras, C. A.2 e Dutra, L. V.3 1,2,3 National Institute for Space Research – INPE Mailbox 515 - 12227-010- São José dos Campos-SP, Brazil [email protected], [email protected], [email protected] Abstract The objective of this work is to evaluate and to analyze positional accuracies, through specific sample points and tracks, of remote sensing registered images acquired by sensors on board the Spot-6, RapidEye and ResourceSat-1 satellites and having, respectively, 1.5, 5 and 24 meters of resolutions. A case study is developed in areas of the Santarém and Belterra municipalities of the Brazilian Pará state. In addition of generating reports with positional accuracy information, this paper investigates the relationship between the spatial resolutions and the positional accuracies of the different digital remote sensing image sensors. High precision reference points and tracks, continuous lines, were collected in field works in order to be compared to adjust points and tracks obtained directly by manual digitalization over each considered image. Samples of points and tracks were analyzed for different positional regions of the images and a C language program was used to perform the calculations of point and track accuracies considering metrics of Euclidean distances and error areas. Accuracy reports present statistics and deterministic error measurements, such as averages, variances, standard deviations, absolute values, areas, root mean square values, etc. Such errors were evaluated from the reference and adjust data, for points and tracks, in regions of interest of the analyzed images.
    [Show full text]
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • Summary Report on the 2008 Image Acquisition Campaign for Cwrs
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by JRC Publications Repository Summary Report on the 2008 Image Acquisition Campaign for CwRS Maria Erlandsson Mihaela Fotin Cherith Aspinall Yannian Zhu Pär Johan Åstrand EUR 23827 EN - 2009 The mission of the JRC-IPSC is to provide research results and to support EU policy-makers in their effort towards global security and towards protection of European citizens from accidents, deliberate attacks, fraud and illegal actions against EU policies. European Commission Joint Research Centre Institute for the Protection and Security of the Citizen Contact information Address: Pär-Johan Åstrand E-mail: [email protected] Tel.: +39-0332-786215 Fax: +39-0332-786369 http://ipsc.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC 50045 EUR 23827 EN ISSN 1018-5593 Luxembourg: Office for Official Publications of the European Communities © European Communities, 2009 Reproduction is authorised provided the source is acknowledged Printed in Italy EUROPEAN COMMISSION JOINT RESEARCH CENTRE Institute for the Protection and Security of the Citizen Agriculture Unit JRC IPSC/G03/C/PAR/mer D(2008)(9914) / Report Summary Report on the 2008 Image Acquisition Campaign for CwRS Author: Maria Erlandsson Status: v1.1 Co-author: Mihaela Fotin, Cherith Circulation: Aspinall, Yannian Zhu Approved: Pär Johan Åstrand Date: 22/12/2008 V1.0, Int.
    [Show full text]
  • The Space-Based Global Observing System in 2010 (GOS-2010)
    WMO Space Programme SP-7 The Space-based Global Observing For more information, please contact: System in 2010 (GOS-2010) World Meteorological Organization 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland www.wmo.int WMO Space Programme Office Tel.: +41 (0) 22 730 85 19 – Fax: +41 (0) 22 730 84 74 E-mail: [email protected] Website: www.wmo.int/pages/prog/sat/ WMO-TD No. 1513 WMO Space Programme SP-7 The Space-based Global Observing System in 2010 (GOS-2010) WMO/TD-No. 1513 2010 © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0)22 730 84 03 P.O. Box No. 2300 Fax: +41 (0)22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] FOREWORD The launching of the world's first artificial satellite on 4 October 1957 ushered a new era of unprecedented scientific and technological achievements. And it was indeed a fortunate coincidence that the ninth session of the WMO Executive Committee – known today as the WMO Executive Council (EC) – was in progress precisely at this moment, for the EC members were very quick to realize that satellite technology held the promise to expand the volume of meteorological data and to fill the notable gaps where land-based observations were not readily available.
    [Show full text]
  • High Altitude Nuclear Detonations (HAND) Against Low Earth Orbit Satellites ("HALEOS")
    High Altitude Nuclear Detonations (HAND) Against Low Earth Orbit Satellites ("HALEOS") DTRA Advanced Systems and Concepts Office April 2001 1 3/23/01 SPONSOR: Defense Threat Reduction Agency - Dr. Jay Davis, Director Advanced Systems and Concepts Office - Dr. Randall S. Murch, Director BACKGROUND: The Defense Threat Reduction Agency (DTRA) was founded in 1998 to integrate and focus the capabilities of the Department of Defense (DoD) that address the weapons of mass destruction (WMD) threat. To assist the Agency in its primary mission, the Advanced Systems and Concepts Office (ASCO) develops and maintains and evolving analytical vision of necessary and sufficient capabilities to protect United States and Allied forces and citizens from WMD attack. ASCO is also charged by DoD and by the U.S. Government generally to identify gaps in these capabilities and initiate programs to fill them. It also provides support to the Threat Reduction Advisory Committee (TRAC), and its Panels, with timely, high quality research. SUPERVISING PROJECT OFFICER: Dr. John Parmentola, Chief, Advanced Operations and Systems Division, ASCO, DTRA, (703)-767-5705. The publication of this document does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official position of the sponsoring agency. 1 Study Participants • DTRA/AS • RAND – John Parmentola – Peter Wilson – Thomas Killion – Roger Molander – William Durch – David Mussington – Terry Heuring – Richard Mesic – James Bonomo • DTRA/TD – Lewis Cohn • Logicon RDA – Les Palkuti – Glenn Kweder – Thomas Kennedy – Rob Mahoney – Kenneth Schwartz – Al Costantine – Balram Prasad • Mission Research Corp. – William White 2 3/23/01 2 Focus of This Briefing • Vulnerability of commercial and government-owned, unclassified satellite constellations in low earth orbit (LEO) to the effects of a high-altitude nuclear explosion.
    [Show full text]
  • STS-108/ISS-UF1 Quick-Look Data Spaceflight Now
    STS-108/ISS-UF1 Quick-Look Data Spaceflight Now Rank/Seats STS-108 ISS-UF1 Family/TIS DOB STS-108 Hardware and Flight Data Commander Navy Capt. Dominic L. Gorie M/2 05/02/57 STS Mission STS-108/ISS-UF1 Up 44; STS-91,99 25.8 * Orbiter Endeavour (17th flight) Pilot/IV Navy Lt. Cmdr. Mark Kelly M/2 02/21/64 Payload Crew transfer; ISS resupply Up 37; Rookie 4.75 Launch 05:19:28 PM 12.05.01 MS1/EV1 Linda Godwin, Ph.D. M/2 07/02/52 Pad/MLP 39B/MLP1 Up/Down-5 49; STS-37,59,76 31.15 Prime TAL Zaragoza MS2/EV2/FE Daniel Tani M/0 02/01/61 Landing 01:03:00 PM 12.17.01 Up 40; Rookie 4.75 Landing Site Kennedy Space Center Duration 11/19:44 ISS-4 Air Force Col. Carl Walz M/2 09/06/55 Down-5 46; STS-51,65,79 39.25 Endeavour 167/13:26:34 ISS-4 CIS AF Col. Yuri Onufrienko M/3 02/06/61 STS Program 943/13:26:34 Down-6 40; Mir-21 197.75 ISS-4 Navy Capt. Daniel Bursch M/4 07/25/57 MECO Ha/Hp 169 X 40 nm Down-7 44; STS-51,68,77 35.85 OMS Ha/Hp 175 X 105 nm ISS Ha/Hp 235 X 229 (varies) ISS-3 Frank Culbertson M/5 05/15/49 Period 91.6 minutes Down-6 52; STS-38, 51,ISS-3 136.89 Inclination 51.6 degrees ISS-3 Mikhail Tyurin M/1 03/02/60 Velocity 17,212 mph Down-7 40; ISS-3 122.59 EOM Miles 4,467,219 miles ISS-3 CIS Lt.
    [Show full text]
  • USGS Earth Resources Observation and Science (EROS) Center
    USGS Earth Resources Observation and Science (EROS) Center National Satellite Land Remote Sensing Data Archive Report June 2019 U.S. Department of the Interior U.S. Geological Survey NATIONAL SATELLITE LAND REMOTE SENSING DATA ARCHIVE REPORT June 2019 Questions or comments concerning data holdings referenced in this report may be directed to: John Faundeen Archivist U.S. Geological Survey EROS Center 47914 252nd Street Sioux Falls, SD 57198 USA Tel: (605) 594-6092 E-mail: [email protected] NATIONAL SATELLITE LAND REMOTE SENSING DATA ARCHIVE REPORT June 2019 FILM SOURCE Date Range Frames Declassification I CORONA (KH-1, KH-2, KH-3, KH-4, KH-4A, KH-4B) Jul-60 May-72 907,788 ARGON (KH-5) May-62 Aug-64 36,887 LANYARD (KH-6) Jul-60 Aug-63 908 Total Declass I 945,583 Declassification II KH-7 Jul-63 Jun-67 17,814 KH-9 Mar-73 Oct-80 29,140 Total Declass II 46,954 Declassification III HEXAGON (KH-9) Jun-71 Oct-84 40,638 Total Declass III 40,638 Large Format Camera Large Format Camera Oct-84 Oct-84 2,139 Total Large Format Camera 2,139 Landsat MSS Landsat MSS 70-mm Jul-72 Sep-78 1,342,187 Landsat MSS 9-inch Mar-78 Oct-92 1,338,195 Total Landsat MSS 2,680,382 Landsat TM Landsat TM 9-inch Aug-82 May-88 175,665 Total Landsat TM 175,665 Landsat RBV Landsat RBV 70-mm Jul-72 Mar-83 138,168 Total Landsat RBV 138,168 Gemini Gemini Jun-65 Nov-66 2,447 Total Gemini 2,447 Skylab Skylab May-73 Feb-74 50,486 Total Skylab 50,486 TOTAL FILM SOURCE 4,082,462 NATIONAL SATELLITE LAND REMOTE SENSING DATA ARCHIVE REPORT June 2019 DIGITAL SOURCE Scenes Total Size (bytes)
    [Show full text]
  • US National Security and Economic Interests in Remote Sensing
    NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY 7500 GEOINT Drive Springfield. Virginia 22150 Steven Aftergood Sent via U.S. mail Federation of American Scientists November 28,2012 1725 Desales Street NW, Suite 600 Re: FOIA Case Number: 20100025F Washington, DC 20036 Dear Mr. Aftergood: This letter responds to your October 29, 2009 Freedom oflnformation Act (FOIA) request, which we received on October 29, 2009. You requested access to documents pertaining to "U.S. National Security and Economic Interests in Remote Sensing: The Evolution of Civil and Commercial Policy by James A. Vedda, Aerospace Corp., February 20, 2009, preparedfor NGA Sensor Assimilation Division." , A search ofNGA's system of records located one document (37 pages) that is responsive to your request. We reviewed the responsive documents and determined they are releasable in full. If you have any questions about the way we handled your request, or about our FOIA regulations or procedures, please contact Elliott Bellinger, Deputy FOIA Program Manager, at 571-557-2994 or by email at [email protected] or via postal mail at: National Geospatial-Intelligence Agency FOIA Requester Service Center 7500 GEOINT Drive, MS S71-0GCA Springfield, VA 22150-7500 Sincerely, ~ Elliott Belinger Deputy FOIA Program Manager UNCLASSIFIED AEROSPACE REPORT NO. TOR-2009(3601 )-8539 U.S. National Security and Economic Interests in Remote Sensing: The Evolution of Civil and Commercial Policy 20 February 2009 James A. Yedda NSS Programs Policy and Oversight National Space Systems Engineering Prepared for: National Geospatial-Intelligence Agency Sensor Assimilation Division Sunrise Valley Drive Reston, VA 20191-3449 Contract No. FA8802-09-C-OOO 1 Authorized by: National Systems Group Distribution Statement: Distribution authorized to U.S.
    [Show full text]
  • 10. Satellite Weather and Climate Monitoring
    II. INTENSITY: ACTIVITIES AND OUTPUTS IN THE SPACE ECONOMY 10. Satellite weather and climate monitoring Meteorology was the first scientific discipline to use space Figure 1.2). The United States, the European Space Agency capabilities in the 1960s, and today satellites provide obser- and France have established the most joint operations for vations of the state of the atmosphere and ocean surface environmental satellite missions (e.g. NASA is co-operating for the preparation of weather analyses, forecasts, adviso- with Japan’s Aerospace Exploration Agency on the Tropical ries and warnings, for climate monitoring and environ- Rainfall Measuring Mission (TRMM); ESA and NASA cooper- mental activities. Three quarters of the data used in ate on the Solar and Heliospheric Observatory (SOHO), numerical weather prediction models depend on satellite while the French CNES is co-operating with India on the measurements (e.g. in France, satellites provide 93% of data Megha-Tropiques mission to study the water cycle). Para- used in Météo-France’s Arpège model). Three main types of doxically, although there have never been so many weather satellites provide data: two families of weather satellites and environmental satellites in orbit, funding issues in and selected environmental satellites. several OECD countries threaten the sustainability of the Weather satellites are operated by agencies in China, provision of essential long-term data series on climate. France, India, Japan, Korea, the Russian Federation, the United States and Eumetsat for Europe, with international co-ordination by the World Meteorological Organisation Methodological notes (WMO). Some 18 geostationary weather satellites are posi- Based on data from the World Meteorological Orga- tioned above the earth’s equator, forming a ring located at nisation’s database Observing Systems Capability Analy- around 36 000 km (Table 10.1).
    [Show full text]
  • Securing Japan an Assessment of Japan´S Strategy for Space
    Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology
    [Show full text]
  • Horowitz, Scott J
    Biographical Data Lyndon B. Johnson Space Center Houston, Texas 77058 National Aeronautics and Space Administration SCOTT J. “DOC” HOROWITZ, PH.D. (COLONEL, USAF, RET.) NASA ASTRONAUT (FORMER) PERSONAL DATA: Born March 24, 1957, in Philadelphia, Pennsylvania, but considers Thousand Oaks, California, to be his hometown. Married to the former Lisa Marie Kern. They have three children. He enjoys designing, building, and flying home-built aircraft, restoring automobiles, and running. His father, Seymour B. Horowitz, resides in Thousand Oaks, California. His mother, Iris D. Chester, resides in Bluffton, South Carolina. Lisa’s mother, Joan Ecker, resides in Jensen Beach, Florida. EDUCATION: Graduated from Newbury Park High School, Newbury Park, California, in 1974; received a bachelor of science degree in engineering from California State University at Northridge in 1978; a master of science degree in aerospace engineering from Georgia Institute of Technology in 1979; and a doctorate in aerospace engineering from Georgia Institute of Technology in 1982. SPECIAL HONORS: Distinguished Flying Cross; NASA Exceptional Service Medal (1997, 2001); Defense Meritorious Service Medal (1997); NASA Space Flight Medals (STS-75 1996, STS-82 1997, STS-101 2000, STS-105 2001); Defense Superior Service Medal (1996); USAF Test Pilot School Class 90A Distinguished Graduate (1990); Combat Readiness Medal (1989); Air Force Commendation Medals (1987, 1989); F-15 Pilot, 22TFS, Hughes Trophy (1988); F-15 Pilot, 22TFS, CINCUSAFE Trophy; Systems Command Quarterly Scientific & Engineering Technical Achievement Award (1986); Master T- 38 Instructor Pilot (1986); Daedalean (1986); 82nd Flying Training Wing Rated Officer of the Quarter (1986); Outstanding Young Men In America (1985); Outstanding T-38 Instructor Pilot (1985); Outstanding Doctoral Research Award for 1981-82 (1982); Sigma Xi Scientific Research Society (1980); Tau Beta Pi Engineering Honor Society (1978); 1st Place ASME Design Competition.
    [Show full text]
  • Fiscal Year 1992
    Aeronautics and Space Report of the President Fiscal Year 1992 Activities NOTE TO READERS: ALL PRINTED PAGES ARE INCLUDED, UNNUMBERED BLANK PAGES DURING SCANNING AND QUALITY CONTROL CHECK HAVE BEEN DELETED Aeronautics and Space Report of the President Fiscal Year 1992 Activities 1993 National Aeronautics and Space Administration Washington, DC 20546 Table of Contents Executive Summary ................................................................................................................................................................. 1 National Aeronautics and Space Administration ................................................................................................................ 1 Department of Defense ............................................................................................................................................................ 2 Department of Commerce ....................................................................................................................................................... 3 Department of Energy .............................................................................................................................................................. 4 Department of Interior ............................................................................................................................................................. 4 Department of Agriculture .....................................................................................................................................................
    [Show full text]