Conae: Misiones Satelitales De Radar Y Su Aporte Al Agro L

Total Page:16

File Type:pdf, Size:1020Kb

Conae: Misiones Satelitales De Radar Y Su Aporte Al Agro L CONAE: MISIONES SATELITALES DE RADAR Y SU APORTE AL AGRO L. Frulla 5 y 6 de septiembre, 2016 Buenos Aires (ARGENTINA) 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 1 Qué es la CONAE? Organismo del Estado Nacional con competencia para proponer las políticas que permiten promover y ejecutar en la Rep. Argentina las actividades en el área espacial con fines pacíficos (Decreto de Creación: 995/91) Se le asigna a la CONAE proponer e implementar un Plan Espacial Nacional como Política de Estado de prioridad nacional. (http://www.conae.gov.ar/index.php/espanol/) 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 2 Objetivos Principales de la CONAE Desarrollar conocimiento y tecnología en el área espacial para los sectores sociales, económicos y productivos Impulsar el desarrollo de la industria nacional Satisfacer las demandas y necesidades de los sectores económicos y de la sociedad en lo que hace a la información de origen espacial, ofreciendo la capacitación necesaria Plan Nacional Espacial 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 3 Plan Nacional Espacial Áreas Estratégicas Sectores de Información Espacial 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 4 Facilidades: Infraestructura SAC-D/Aquarius Landsat 7 y 8 Spot 5 Eros 1B Terra d Aqua a NOAA t NPP o METOP s Feng-Yun GOES 13 COSMO Skymed 1-2-3 & 4 ERS Radarsat-1 ALOS-1 UAVSAR 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 SARAT 5 Facilidades: Capacitación Gulich-Formación superior: Maestrías 2MP 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 6 Facilidades: Capacitación Gulich-Formación superior: Maestrías 2MP • Aplicaciones de la Información Espacial (UNC/CONAE/ASI) • Instrumentos Satelitales (UTNM, Universidad Tecnológica Nacional Facultad Regional Mendoza) • Desarrollo de Software para Aplicaciones Espaciales (UNLAM, Universidad Nacional de La Matanza ) • Tecnología Satelital (UTNC, Universidad Tecnológica Nacional Facultad Regional Córdoba) 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 7 Misiones Satelitales 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 8 Objetivo Principal de la Misión SAOCOM a g r i c u l t u r a hidrología/ inundaciones humedad en el suelo 8° Congreso de Agroinformática, CAI 2016interferometría 5-6 de septiembre, 2016 9 Misión SAOCOM/SIASGE 2 SAOCOM 1 (A&B) SAR Microondas-Banda L 2017/ polarimétrico 2018 4 COSMO SkyMed (1-4) SAR Microondas-Banda X ESA SAOCOM-CS (sólo receptor) hoy 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 10 Beneficios de la Configuración Final Dos bandas y L (polarimétrica) Imágenes del mismo lugar adquiridas: casi simultáneamente con la misma geometría de observación diferentes resoluciones espaciales revisita de 12 horas Diferentes posiciones próximas al SAOCOM 1B se vinculan con distintas fases durante su vida útil: SAOCOM/ Fase tomográfica SAOCOM-CS Fase biestática Fase especular 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 11 Slide 1 Title SAOCOM 1B SAOCOM 1A peso: 3 T área de la 2 8° Congreso de Agroinformática, CAI 2016 antena SAR: 35 m 5-6 de septiembre, 2016 12 Características Generales del SAOCOM órbita polar, heliosincrónica capacidad de adquisición día/noche/independiente del clima altura 620 km hora local de pasada por el Ecuador en forma 06:12 am ascendente revisita 16 días (1 satélite)/8 días (constelación) dirección de observación derecha (nominal)/izquierda(capacidad) modos de adquisición tiempo real/almacenado cobertura global apoyo con trabajo de humedad de suelo (región pampeana) campo 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 13 Características Nominales de los Modos SAOCOM rango modos de modos de polarización resolución mínimo de ancho de barrido adquisición espacial ángulo de incidencia SP: HH or HV or VH or VV > 40 km < 10 m 21 - 50 StripMap DP: HH/HV or VV/VH > 40 km < 10 m 21 - 50 QP: HH/HV/VH/VV > 20 km < 10 m 20 - 35 SP: HH or HV or VH or VV > 150 km < 30 m 25 - 45 TOPSAR DP: HH/HV or VV/VH > 150 km < 30 m 25 - 45 Narrow QP: HH/HV/VH/VV > 100 km < 50 m 20 - 35 SP: HH or HV or VH or VV > 350 km < 50 m 25 - 45 DP: HH/HV or VV/VH > 350 km < 50 m 25 - 45 TOPSAR Wide QP(1): HH/HV/VH/VV > 220 km < 100 m 20 - 35 CL-POL: RH/RV or LH/LV > 350 km < 50 m 25 - 45 8(1)° Congreso de Agroinformática, CAI 2016 5-6 deTOPSAR septiembre, 2016 Wide QP asignado para las mediciones de humedad de suelo 14 Características Nominales de los Modos COSMO modo tipo resolución [m] tamaño [km] 100 x 100 200 x 200 30 x 30 100 x 100 20 x 20 30 x 30 5 x 5 40 x 40 1 x 1 10 x 10 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 15 Presentación COMISION NACIONAL DE ACTIVIDADES ESPACIALES PRODUCTOS SIASGE (SAOCOM&COSMO) Productos Desarrollados y en Desarrollo Stand 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 Presentación 16 Red Operativa de Estaciones de Sensores para Medición de Humedad de Suelo, Temperatura y Salinidad A. Soldano 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 17 Protocolos de Medición: Equipamiento 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 18 Protocolos de Medición: Mediciones Volumétricas 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 19 Protocolos de Medición: Equipos para Mediciones en Cultivos 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 20 Red Telemétrica: Instalaciones 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 21 Red Telemétrica: Distribución de Nodos Experimental site: CETT SITIO NÚCLEO 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 22 Red Telemétrica: Registro y Consultas 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 23 Estructura de Base de Datos Relacional para Sistema de Información Geográfica A. Lorenzo 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 24 Introducción Objetivos: Desarrollar de un Sistema de Información Geográfico personalizado (custom) con acceso Web. Preservar series temporales de datos recolectados in situ (desde 2010). Incorporar los procesos de calibración y validación de datos. Servir de soporte para el gerenciamiento de la Red de Sensores en campo. Funcionalidades: Soporte de datos vectoriales y raster / Herramientas para el procesamiento de datos: Estadística y Análisis. Procesos custom de análisis. Procesos automáticos: Planillas de carga de datos recolectados en campaña, Generación de tablas de datos (SMAP-JPL), calibración y validación de datos, etc. 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 25 Portal del WebGIS https://saocom.aegis.conae.gov.ar 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 26 Interfaz de Usuario / Capas Vectoriales(1/3) Infraestructura Experimental 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 27 Interfaz de Usuario / Capas Vectoriales(2/3) Mediciones de Humedad de Suelo Red de Sensores Bell Ville Monte Buey Campañas de Campo Monte Buey 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 28 Interfaz de Usuario / Capas Vectoriales(3/3) Mediciones en Cultivos y Fotografía 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 29 Interfaz de Usuario / Capas Raster Mapa de Humedad de Suelo Perfil en Profundidad de Humedad de Suelo (Capa a 5 cm) 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 30 Interfaz de Usuario Personalizada / Herramientas Estadística sobre datos Raster y Tablas 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 31 Mapa de Humedad de suelo D. Dadamia 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 32 Definición del Producto Parámetros Características Imagen SAOCOM TOPSAR Wide QP single look Parámetro Físico Humedad de suelo superficial (5 a 10 cm) Unidades 푚3/푚3 Rango de valores de 3 to 40% Resolución Espacial 100 m Resolución Radiométrica 1000 looks Error ≤ 7 % Numero de Bandas 9/17 Formato de la imagen GEOTIFF con un xml asociado donde se incluyen datos auxiliares. Resolución Temporal Composición de 8 días (Banda 1) Bandas 2-7: cada uno de los días que se uso en la composición. Proyección WGS84 8°EdadCongresodelde Agroinformática dato , CAI 2016 8/16 a días. 5-6 de septiembre, 2016 33 Producto Humedad de Suelo (Ejemplo) 40 30 20 10 5 No data Vol/Vol UAVSAR-JPL Alos Palsar - 1 Marzo 2015 Noviembre 2010 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 34 Mapas de Humedad de Suelo Parámetros Características Parámetro Humedad de suelo Físico superficial (5 a 10 cm) Unidades 푚3/푚3 SMOS SACD-Aquairius Rango de de 2 to 50% valores Tamaño pixel 25 km Resolución SACD: 100 km Producto cada 3 días Producto semanal Ascendentes Descendentes Ascendentes Descendentes Espacial SMOS: 35 km Sensor Formato de la GEOTIFF y kmz 6 am 6 pm 6 pm 6 am imagen 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 35 Soporte al Uso de Agroquímicos para el Control de la Fusariosis en el Trigo H. Lozza (M. Acuña) 8° Congreso de Agroinformática, CAI 2016 5-6 de septiembre, 2016 36 Fusariosis del trigo Objetivo: Desarrollar, implementar y operar un sistema de pronóstico de enfermedades espacialmente explícito que mejore la capacidad de los productores para controlar la fusariosis en cultivos de trigo de la región central. Usuarios: Productores, asesores, extensionistas. Características de los productos: a. Mapas de incidencia de la enfermedad por día con un horizonte de pronóstico de 5 días. b. Índice del estado de incidencia de la enfermedad (considerando opciones de variedad, fecha de siembra, fertilización, riego, etc.) y un pronostico de su evolución.
Recommended publications
  • Positional Accuracy in Orbital Images of High and Medium Resolution: Case Study with Image Sensors of the Spot, Rapideye and Resourcesat Satellites
    POSITIONAL ACCURACY IN ORBITAL IMAGES OF HIGH AND MEDIUM RESOLUTION: CASE STUDY WITH IMAGE SENSORS OF THE SPOT, RAPIDEYE AND RESOURCESAT SATELLITES Moreira, N. A. P1, Felgueiras, C. A.2 e Dutra, L. V.3 1,2,3 National Institute for Space Research – INPE Mailbox 515 - 12227-010- São José dos Campos-SP, Brazil [email protected], [email protected], [email protected] Abstract The objective of this work is to evaluate and to analyze positional accuracies, through specific sample points and tracks, of remote sensing registered images acquired by sensors on board the Spot-6, RapidEye and ResourceSat-1 satellites and having, respectively, 1.5, 5 and 24 meters of resolutions. A case study is developed in areas of the Santarém and Belterra municipalities of the Brazilian Pará state. In addition of generating reports with positional accuracy information, this paper investigates the relationship between the spatial resolutions and the positional accuracies of the different digital remote sensing image sensors. High precision reference points and tracks, continuous lines, were collected in field works in order to be compared to adjust points and tracks obtained directly by manual digitalization over each considered image. Samples of points and tracks were analyzed for different positional regions of the images and a C language program was used to perform the calculations of point and track accuracies considering metrics of Euclidean distances and error areas. Accuracy reports present statistics and deterministic error measurements, such as averages, variances, standard deviations, absolute values, areas, root mean square values, etc. Such errors were evaluated from the reference and adjust data, for points and tracks, in regions of interest of the analyzed images.
    [Show full text]
  • Summary Report on the 2008 Image Acquisition Campaign for Cwrs
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by JRC Publications Repository Summary Report on the 2008 Image Acquisition Campaign for CwRS Maria Erlandsson Mihaela Fotin Cherith Aspinall Yannian Zhu Pär Johan Åstrand EUR 23827 EN - 2009 The mission of the JRC-IPSC is to provide research results and to support EU policy-makers in their effort towards global security and towards protection of European citizens from accidents, deliberate attacks, fraud and illegal actions against EU policies. European Commission Joint Research Centre Institute for the Protection and Security of the Citizen Contact information Address: Pär-Johan Åstrand E-mail: [email protected] Tel.: +39-0332-786215 Fax: +39-0332-786369 http://ipsc.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC 50045 EUR 23827 EN ISSN 1018-5593 Luxembourg: Office for Official Publications of the European Communities © European Communities, 2009 Reproduction is authorised provided the source is acknowledged Printed in Italy EUROPEAN COMMISSION JOINT RESEARCH CENTRE Institute for the Protection and Security of the Citizen Agriculture Unit JRC IPSC/G03/C/PAR/mer D(2008)(9914) / Report Summary Report on the 2008 Image Acquisition Campaign for CwRS Author: Maria Erlandsson Status: v1.1 Co-author: Mihaela Fotin, Cherith Circulation: Aspinall, Yannian Zhu Approved: Pär Johan Åstrand Date: 22/12/2008 V1.0, Int.
    [Show full text]
  • USGS Earth Resources Observation and Science (EROS) Center
    USGS Earth Resources Observation and Science (EROS) Center National Satellite Land Remote Sensing Data Archive Report June 2019 U.S. Department of the Interior U.S. Geological Survey NATIONAL SATELLITE LAND REMOTE SENSING DATA ARCHIVE REPORT June 2019 Questions or comments concerning data holdings referenced in this report may be directed to: John Faundeen Archivist U.S. Geological Survey EROS Center 47914 252nd Street Sioux Falls, SD 57198 USA Tel: (605) 594-6092 E-mail: [email protected] NATIONAL SATELLITE LAND REMOTE SENSING DATA ARCHIVE REPORT June 2019 FILM SOURCE Date Range Frames Declassification I CORONA (KH-1, KH-2, KH-3, KH-4, KH-4A, KH-4B) Jul-60 May-72 907,788 ARGON (KH-5) May-62 Aug-64 36,887 LANYARD (KH-6) Jul-60 Aug-63 908 Total Declass I 945,583 Declassification II KH-7 Jul-63 Jun-67 17,814 KH-9 Mar-73 Oct-80 29,140 Total Declass II 46,954 Declassification III HEXAGON (KH-9) Jun-71 Oct-84 40,638 Total Declass III 40,638 Large Format Camera Large Format Camera Oct-84 Oct-84 2,139 Total Large Format Camera 2,139 Landsat MSS Landsat MSS 70-mm Jul-72 Sep-78 1,342,187 Landsat MSS 9-inch Mar-78 Oct-92 1,338,195 Total Landsat MSS 2,680,382 Landsat TM Landsat TM 9-inch Aug-82 May-88 175,665 Total Landsat TM 175,665 Landsat RBV Landsat RBV 70-mm Jul-72 Mar-83 138,168 Total Landsat RBV 138,168 Gemini Gemini Jun-65 Nov-66 2,447 Total Gemini 2,447 Skylab Skylab May-73 Feb-74 50,486 Total Skylab 50,486 TOTAL FILM SOURCE 4,082,462 NATIONAL SATELLITE LAND REMOTE SENSING DATA ARCHIVE REPORT June 2019 DIGITAL SOURCE Scenes Total Size (bytes)
    [Show full text]
  • 10. Satellite Weather and Climate Monitoring
    II. INTENSITY: ACTIVITIES AND OUTPUTS IN THE SPACE ECONOMY 10. Satellite weather and climate monitoring Meteorology was the first scientific discipline to use space Figure 1.2). The United States, the European Space Agency capabilities in the 1960s, and today satellites provide obser- and France have established the most joint operations for vations of the state of the atmosphere and ocean surface environmental satellite missions (e.g. NASA is co-operating for the preparation of weather analyses, forecasts, adviso- with Japan’s Aerospace Exploration Agency on the Tropical ries and warnings, for climate monitoring and environ- Rainfall Measuring Mission (TRMM); ESA and NASA cooper- mental activities. Three quarters of the data used in ate on the Solar and Heliospheric Observatory (SOHO), numerical weather prediction models depend on satellite while the French CNES is co-operating with India on the measurements (e.g. in France, satellites provide 93% of data Megha-Tropiques mission to study the water cycle). Para- used in Météo-France’s Arpège model). Three main types of doxically, although there have never been so many weather satellites provide data: two families of weather satellites and environmental satellites in orbit, funding issues in and selected environmental satellites. several OECD countries threaten the sustainability of the Weather satellites are operated by agencies in China, provision of essential long-term data series on climate. France, India, Japan, Korea, the Russian Federation, the United States and Eumetsat for Europe, with international co-ordination by the World Meteorological Organisation Methodological notes (WMO). Some 18 geostationary weather satellites are posi- Based on data from the World Meteorological Orga- tioned above the earth’s equator, forming a ring located at nisation’s database Observing Systems Capability Analy- around 36 000 km (Table 10.1).
    [Show full text]
  • Global Precipitation Measurement (Gpm) Mission
    GLOBAL PRECIPITATION MEASUREMENT (GPM) MISSION Algorithm Theoretical Basis Document GPROF2017 Version 1 (used in GPM V5 processing) June 1st, 2017 Passive Microwave Algorithm Team Facility TABLE OF CONTENTS 1.0 INTRODUCTION 1.1 OBJECTIVES 1.2 PURPOSE 1.3 SCOPE 1.4 CHANGES FROM PREVIOUS VERSION – GPM V5 RELEASE NOTES 2.0 INSTRUMENTATION 2.1 GPM CORE SATELITE 2.1.1 GPM Microwave Imager 2.1.2 Dual-frequency Precipitation Radar 2.2 GPM CONSTELLATIONS SATELLTES 3.0 ALGORITHM DESCRIPTION 3.1 ANCILLARY DATA 3.1.1 Creating the Surface Class Specification 3.1.2 Global Model Parameters 3.2 SPATIAL RESOLUTION 3.3 THE A-PRIORI DATABASES 3.3.1 Matching Sensor Tbs to the Database Profiles 3.3.2 Ancillary Data Added to the Profile Pixel 3.3.3 Final Clustering of Binned Profiles 3.3.4 Databases for Cross-Track Scanners 3.4 CHANNEL AND CHANNEL UNCERTAINTIES 3.5 PRECIPITATION PROBABILITY THRESHOLD 3.6 PRECIPITATION TYPE (Liquid vs. Frozen) DETERMINATION 4.0 ALGORITHM INFRASTRUCTURE 4.1 ALGORITHM INPUT 4.2 PROCESSING OUTLINE 4.2.1 Model Preparation 4.2.2 Preprocessor 4.2.3 GPM Rainfall Processing Algorithm - GPROF 2017 4.2.4 GPM Post-processor 4.3 PREPROCESSOR OUTPUT 4.3.1 Preprocessor Orbit Header 2 4.3.2 Preprocessor Scan Header 4.3.3 Preprocessor Data Record 4.4 GPM PRECIPITATION ALGORITHM OUTPUT 4.4.1 Orbit Header 4.4.2 Vertical Profile Structure of the Hydrometeors 4.4.3 Scan Header 4.4.4 Pixel Data 4.4.5 Orbit Header Variable Description 4.4.6 Vertical Profile Variable Description 4.4.7 Scan Variable Description 4.4.8 Pixel Data Variable Description
    [Show full text]
  • Satellite Image, Source for Terrestrial Information, Threat to National Security
    www.myreaders.info Satellite Image, RC Chakraborty, www.myreaders.info Source for Terrestrial Information, Threat to National Security by R. C. Chakraborty Visiting Professor at JIET, Guna. Former Director of DTRL & ISSA (DRDO), [email protected] www.myreaders.wordpress.com December 11, 2007 MANIT TRAINING PROGRAMME on Information Security December 10 -14, 2007 at Maulana Azad National Institute of Technology (MANIT), Bhopal – 462 016 The Maulana Azad National Institute of Technology (MANIT), Bhopal, conducted a short term course on "Information Security", Dec. 10 -14, 2007. The institute invited me to deliver a lecture. I preferred to talk on "Satellite Image - source for terrestrial information, threat to RC Chakraborty, www.myreaders.info national security". I extended my talk around 50 slides, tried to give an over view of Imaging satellites, Globalization of terrestrial information and views express about National security. Highlights of my talk were: ► Remote sensing, Communication, and the Global Positioning satellite Systems; ► Concept of Remote Sensing; ► Satellite Images Of Different Resolution; ► Desired Spatial Resolution; ► Covert Military Line up in 1950s; ► Concept Of Freedom Of International Space; ► The Roots Of Remote Sensing Satellites; ► Land Remote Sensing Act of 1992; ► Popular Commercial Earth Surface Imaging satellites - Landsat , SPOT and Pleiades , IRS and Cartosat , IKONOS , OrbView & GeoEye, EarlyBird, QuickBird, WorldView, EROS; ► Orbits and Imaging characteristics of the satellites; ► Other Commercial Earth Surface Imaging satellites – KOMPSAT, Resurs DK, Cosmo/Skymed, DMCii, ALOS, RazakSat, FormoSAT, THEOS; ► Applications of Very High Resolution Imaging Satellites; ► Commercial Satellite Imagery Companies; ► National Security and International Regulations – United Nations , United States , India; ► Concern about National Security - Views expressed; ► Conclusion.
    [Show full text]
  • Laura WG-Disast
    Strengthening Disaster Risk Reduction Across the Americas: A Regional Summit on the Contribution of Earth Observations CEOS Working Group on Disasters Meeting # 8 CONAE Recent Projects and Presentation of Disaster-related activities in the context of future collaboration with the CEOS WG Disasters Laura Frulla 4 a 8 de septiembre, 2017 Buenos Aires (ARGENTINA) 4-8 de septiembre, 2017 1 Disasters – National Space Plan fires floods desertification droughts avalanches landslides … … earthquakes volcanic eruptions oil spill 4-8 de septiembre, 2017 2 Data Adquisition Capabilities Receiving Station-1 (Córdoba) end 2017 / beginning 2018 * 13 m * 5 m * 3 m Receiving Station-2, Tolhuin (Tierra del Fuego) 4-8 de septiembre, 2017 3 Received and Catalogued Data SAC-D/Aquarius satellite data Landsat 5, 7, 8 Córdoba Receiving Station Spot 4, 5, 6, 7 Eros 1B Terra/Modis Aqua/Modis NOAA NPP METOP Feng-Yun GOES 12, 13, 16 (R) COSMO Skymed 1, 2, 3, 4 ERS 1 and 2 Radarsat-1 ALOS-1 Sentinel 2 UAVSAR field data in-situ SARAT 4-8 de septiembre, 2017 sensors 4 SPOT/COSMO SkyMed SPOT 6 and 7: multispectral: 6 m phanchromatic: 1,5 m all the countries inside the área any use registration is required licence to use SPOT 4 and 5: archived Argentina only COSMO: Argentina only registration is required 4-8 de septiembrelicence, 2017 to use 5 SPOT 7: Urban Monitoring 4-8 de septiembre, 2017 6 COSMO SkyMed: Urban Monitoring 4-8 de septiembre, 2017 7 Satellite Data: Products from the Catalogue(1/4) 4-8 de septiembre, 2017 8 Satellite Data: Products
    [Show full text]
  • Satellite Communications in the New Space
    IEEE COMMUNICATIONS SURVEYS & TUTORIALS (DRAFT) 1 Satellite Communications in the New Space Era: A Survey and Future Challenges Oltjon Kodheli, Eva Lagunas, Nicola Maturo, Shree Krishna Sharma, Bhavani Shankar, Jesus Fabian Mendoza Montoya, Juan Carlos Merlano Duncan, Danilo Spano, Symeon Chatzinotas, Steven Kisseleff, Jorge Querol, Lei Lei, Thang X. Vu, George Goussetis Abstract—Satellite communications (SatComs) have recently This initiative named New Space has spawned a large number entered a period of renewed interest motivated by technological of innovative broadband and earth observation missions all of advances and nurtured through private investment and ventures. which require advances in SatCom systems. The present survey aims at capturing the state of the art in SatComs, while highlighting the most promising open research The purpose of this survey is to describe in a structured topics. Firstly, the main innovation drivers are motivated, such way these technological advances and to highlight the main as new constellation types, on-board processing capabilities, non- research challenges and open issues. In this direction, Section terrestrial networks and space-based data collection/processing. II provides details on the aforementioned developments and Secondly, the most promising applications are described i.e. 5G associated requirements that have spurred SatCom innovation. integration, space communications, Earth observation, aeronauti- cal and maritime tracking and communication. Subsequently, an Subsequently, Section III presents the main applications and in-depth literature review is provided across five axes: i) system use cases which are currently the focus of SatCom research. aspects, ii) air interface, iii) medium access, iv) networking, v) The next four sections describe and classify the latest SatCom testbeds & prototyping.
    [Show full text]
  • SPOT 6 & 7 Technical Sheet
    SPOT 6 | SPOT 7 Technical Sheet Technical Features With SPOT 6 and SPOT 7, Astrium secures the mission continuity of the SPOT series, which has collected an archive of more than 30 million scenes since 1986. This new generation of optical satellites features technological improvements and advanced system performance that increases reactivity and acquisition capacity as well as simplifying data access. Products 1.5m Resolution . Panchromatic Products . Multispectral 3-bands: R, G, NIR or R, G, B . Multispectral 4-bands: R, G, B, NIR Location Accuracy 10 m (CE90) Swath 60 km at Nadir, max strip length = 600 km Processing Levels Primary, Ortho, Tailored Ortho Space Segment Number of satellites 2 . SPOT 6: September 9, 2012 Launch periods . SPOT 7: Q1 2014 Design lifetime 10 years Body: ~ 1.55 x 1.75 x 2.7 m Size Solar array wingspan 5.4 m2 Launch mass 712 kg Altitude 694 km Onboard Storage 1 TB www.astrium-geo.com | [email protected] SPOT 6 | SPOT 7 Technical Sheet Orbital Characteristics and Viewing Capability The SPOT 6 and SPOT 7 missions are designed to provide large area coverage and detailed information on individual targets. This is possible thanks to the superior agility of the satellite. Orbit Sun-synchronous; 10:00 AM local time at descending node Period 98.79 minutes Cycle 26 days Viewing Angle Standard: +/- 30° in roll | Extended: +/- 45° in roll . 1 day with SPOT 6 and SPOT 7 operating simultaneously Revisit . Between 1 and 3 days with only one satellite in operation1 Control Moment Gyroscopes allow quick maneuvers in all Pointing Agility directions for targeting several areas of interest on the same pass (30° in 14 seconds, including stabilization time) Up to 6 million km2 daily with SPOT 6 and SPOT 7 when Acquisition Capacity operating simultaneously .
    [Show full text]
  • Analysis of Sentinel-2 and Rapideye for Retrieval of Leaf Area Index in a Saltmarsh Using a Radiative Transfer Model
    remote sensing Article Analysis of Sentinel-2 and RapidEye for Retrieval of Leaf Area Index in a Saltmarsh Using a Radiative Transfer Model Roshanak Darvishzadeh 1,* , Tiejun Wang 1 , Andrew Skidmore 1,2 , Anton Vrieling 1 , Brian O’Connor 3, Tawanda W Gara 1,4 , Bruno J. Ens 5 and Marc Paganini 6 1 Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; [email protected] (T.W.); [email protected] (A.S.); [email protected] (A.V.); [email protected] (T.W.G.) 2 Department of Environmental Science, Macquarie University, Sydney 2106, Australia 3 UN Environment World Conservation Monitoring Centre, 219 Huntingdon Road, Cambridge CB3 0DL, UK; Brian.O’[email protected] 4 Department of Geography and Environmental Science, University of Zimbabwe, Mount Pleasant, Harare P.O. Box MP167, Zimbabwe 5 Sovon Dutch Centre for Field Ornithology, Sovon-Texel, Den Burg 1790 AB, The Netherlands; [email protected] 6 European Space Agency-ESRIN, Via Galileo Galilei, Casella Postale 64, Frascati 00044, Italy; [email protected] * Correspondence: [email protected]; Tel.: +31-53-4874240 Received: 14 February 2019; Accepted: 13 March 2019; Published: 20 March 2019 Abstract: The Sentinel satellite fleet of the Copernicus Programme offers new potential to map and monitor plant traits at fine spatial and temporal resolutions. Among these traits, leaf area index (LAI) is a crucial indicator of vegetation growth and an essential variable in biodiversity studies. Numerous studies have shown that the radiative transfer approach has been a successful method to retrieve LAI from remote-sensing data.
    [Show full text]
  • Satellite Imagery Resources and Usage for the Farm Service Agency
    Satellite Imagery Resources and Usage for the Farm Service Agency April 2014 USDA/FSA/APFO Geospatial Services Branch Service Center Support Section Introduction Many imagery users in the Farm Service Agency (FSA) are familiar with satellite imagery, however most FSA user’s interaction with aerial imagery comes via the National Agriculture Imagery Program (NAIP). Satellite imagery from various platforms is available for free usage in many cases as well. The imagery comes in various pixel sizes (ground sample distance) and band combinations. The variety and amount of data could be of great use to FSA users. These uses include vegetation analysis, disaster preparedness, post-disaster evaluation, field assessments, etc. The goal of this paper is to present some of the satellite imagery options, how these options could be used with FSA programs, and how the data could be integrated with FSA policies. Also, there will be some discussion of how the USDA-FSA-Aerial Photography Field Office (APFO) can be used as a resource for assistance with satellite imagery. This paper is intended to be a brief overview of satellite imagery resources and usage. Satellite Imagery Resources There are many online sources where users may obtain satellite imagery for free; several of them will be discussed here but keep in mind there are a vast amount of resources available. Most of the imagery that may meet FSA needs can be found on the USGS Earth Explorer website, Digital Globe’s My DigitalGlobe website, and the USGS Hazards Data Distribution System (HDDS) where disaster response satellite imagery may be downloaded. Each of these portals host imagery from various sensors including LANDSAT, SPOT, and Worldview (these will be discussed in more detail later).
    [Show full text]
  • The Metop Satellite Metop Peter G
    Edwards 8/8/06 2:51 PM Page 8 The MetOp Satellite MetOp Peter G. Edwards, Bruno Berruti, Paul Blythe, Joerg Callies, Stefane Carlier, Cees Fransen, Rainer Krutsch, Alain-Robert Lefebvre, Marc Loiselet & Nico Stricker Directorate of Earth Observation Programmes, ESTEC, Noordwijk, The Netherlands etOp-A is Europe's first polar-orbiting satellite dedicated to operational M meteorology. With its array of advanced instruments, it will provide data of unprecedented accuracy and resolution on temperature and humidity, wind speed and direction over the ocean, and ozone and other trace gases, making a huge contribution to global weather forecasting and climate monitoring. In addition, MetOp-A will observe land and ocean surfaces and its search-and- rescue service will help ships and aircraft in distress. Introduction MetOp-A is Europe’s first satellite dedicated to operational meteorology from polar orbit. It will balance the long-standing service provided by the Weather US since the first Tiros satellite in 1960. The US has provided the data from this evolving series free of charge to the Information world’s meteorological community. As early as 1967, Europe looked at contributing to this effort, but selected from Polar the geostationary satellite mission as the higher priority. This led to the develop- ment of the Meteosat series, which has Orbit been remarkably successful since 1977. esa bulletin 127 - august 2006 9 Edwards 8/8/06 2:51 PM Page 8 The MetOp Satellite MetOp Peter G. Edwards, Bruno Berruti, Paul Blythe, Joerg Callies, Stefane Carlier, Cees Fransen, Rainer Krutsch, Alain-Robert Lefebvre, Marc Loiselet & Nico Stricker Directorate of Earth Observation Programmes, ESTEC, Noordwijk, The Netherlands etOp-A is Europe's first polar-orbiting satellite dedicated to operational M meteorology.
    [Show full text]