Albert Einstein

Total Page:16

File Type:pdf, Size:1020Kb

Albert Einstein PHIL 444 (Groups & Choices): Final Study Guide Elise Woodard University of Michigan, Ann Arbor Contents 1 Concept Review 3 1.1 Approaches to Multiple Equilibria ............................ 3 1.2 Approval Voting ...................................... 3 1.3 Arrow’s Theorem ..................................... 3 1.4 Axelrod’s Tournament(s) ................................. 3 1.5 Backward Induction .................................... 4 1.6 Battle of the Sexes ..................................... 4 1.7 Borda Count ........................................ 4 1.8 Centipede ......................................... 5 1.9 Chicken ........................................... 5 1.10 Collectively Stable Strategy ................................ 5 1.11 Common Knowledge ................................... 6 1.12 Conciliationism ...................................... 6 1.13 Condorcet Jury Theorem ................................. 6 1.14 Condorcet Paradox .................................... 6 1.15 Correlation in Evolutionary Game Theory (EGT) .................... 6 1.16 Cumulative Voting ..................................... 6 1.17 Cut the Cake ........................................ 7 1.18 Discount Factor ...................................... 7 1.19 Equilibrium in Belief ................................... 7 1.20 Evolutionary Dynamics .................................. 7 1.21 Gibbard-Saterwaite Theorem ............................... 7 1.22 Grand Junction Voting .................................. 7 1.23 Instant Runoff Voting ................................... 8 1.24 May’s Theorem ...................................... 8 1.25 Method of Pairwise Comparison ............................. 8 1.26 Nash Equilibrium ..................................... 8 1.27 One Peak Voting ...................................... 8 1.28 Pavlov (Simpleton) .................................... 8 1.29 Plurality Voting ...................................... 9 1.30 Properties of Tit-For-Tat (Axelrod) ............................ 9 1.31 Prisoner’s Dilemma .................................... 9 1.32 Prisoner’s Dilemma with a Twin ............................. 9 1.33 Properties of Voting Systems ............................... 9 1.33.1 Anonymity .................................... 9 1.33.2 Condorcet Criterion ............................... 10 1.33.3 Condorcet Loser Criterion ............................ 10 1.33.4 Independence of Irrelevant Alternatives .................... 10 1.33.5 Majority Rule ................................... 10 1.33.6 Monotonicity ................................... 10 1 1.33.7 Non-Manipulability (Honesty) .......................... 10 1.33.8 Neutrality ..................................... 10 1.33.9 Non-Dictatorship ................................. 10 1.33.10 Transitivity .................................... 10 1.33.11 Unanimity ..................................... 11 1.33.12 Unrestricted Domain ............................... 11 1.34 Rationalizable Action ................................... 11 1.35 Ratifiable Choice ...................................... 11 1.36 Salient Equilibrium (Focal Point) ............................. 11 1.37 Schelling on Segregation ................................. 11 1.38 Social Preference Ranking ................................ 11 1.39 Steadfast .......................................... 12 1.40 Subgame Perfect Equilibrium ............................... 12 1.41 Tit-For-Tat (Copy Cat) .................................. 12 2 1 Concept Review 1.1 Approaches to Multiple Eqilibria Lecture Week 5 Problem: in non-zero sum games, how should we choose between multiple equilibria? Three approaches: 1. Psychological: There is no solution within game formal theory. The solution is foundin contingent facts about human psychology. 2. Refinement: We can identify ‘structural’ features of equilibria that show some them to be more “rational” than others. 3. Epistemic: We need a theory of how people reason themselves into making various choices. We can only be able to tell where the players will end up if we know something about their ‘path to equilibrium.’ Players who start in different epistemic states will settle at different equilibria. 1.2 Approval Voting Lecture Week Unlimited: Voters vote for as many candidates as they like without giving a ranking. 11 Limited: Voters vote for N candidates without giving a ranking A vote is supposed to mean that a candidate is ‘good enough’ or ‘acceptable.’ The candidate judged ‘acceptable’ by the most voters wins. 1.3 Arrow’s Theorem Lecture Week No method of extracting social preferences from voter preferences satisfies all the following con- 12; SEP ditions: page/Elise’s notes • Unrestricted Domain: It applies to any set of ballots that the electorate might offer • Transitivity of Social Preference: A ≥s B and B ≥s C implies A ≥s C • Unanimity: If ballots rank A above B then the social ordering does too • Independence of Irrelevant Alternatives: The social preferences for B over A is deter- mined entirely by the relative positions of A over B on all the ballots • No dictator: There is no individual who’s preference ranking coincides with the social rank- ing no matter what other individuals in the electorate might prefer. 1.4 Axelrod’s Tournament(s) Lecture Week 7 Strategies are paired up w/ each other a large number of times. Strategy w most accured utiles at the end wins. Here every strategy plays every other strategy the same number of times. Strategies recall what happened in past rounds. Random mistakes are banned. 3 It does not matter that one strategy beats another when they play. All that matters is theaggregate score. TFT does well despite the fact it ties or loses to every opponent. 1.5 Backward Induction Lecture Week 2 Method that can sometimes be used to find equilibria of extensive form games of perfect informa- tion. To use BI, it must be true that every terminal choice node, all players can identify a unique action that the player(s) choosing at that node will surely select. Assumes all future play will be rational. How BI can fail: • Indifference on other players’ part • Lack of perfect information See slides for examples. 1.6 Battle of the Sexes Lecture Week 2 Background: Rowena and Columba want to see a concert. She likes opera, he likes chamber music. They want to be together whatever they hear. They have no prior agreement aboutwhat they will do, and act independently. opera quartet Opera 3,2 0,0 Quartet 0,0 2,3 What are the equilibria? Start with row. If column goes to opera, then row will also prefer to go to opera (3>0). If column goes to the quartet, then row also prefers to go to quartet (2>0). Same reasoning applies when figuring out what column will want to do. In short, they want to coordinate. Compare: stoplights, coordinating on what side of road we drive on! Equilibria: (O, o), (Q, q), (.4O + .6Q, .6o + .4q) Pure equilibria bolded: opera quartet Opera 3,2 0,0 Quartet 0,0 2,3 1.7 Borda Count Lecture Week Give each candidate 1 point for every ballot on which they appear as the first choice, 2 points for 11 every ballot on which they appear as the 2nd choice, 3 points for every ballot on which they appear as the 3rd choice, and so on 4 Add up the points Candidate w/ fewest number of points wins. 1.8 Centipede See Lecture Week 2 & Joyce, “The Role of Incredible Beliefs” Centipede is an extensive form game where two players take turns choosing to take a slightly larger share of an increasing pot (defect) or to pass the pot to the other player (cooperate). The payoffs are such that if one cooperates but then the other player defects, one would getaslightly smaller share of the pot than if they had previously defected. In the example below, the pot increases by $2 each time. The paradox is that a rational player that obeys the Common Knowledge Assumptions and satisfies backwards reasoning will defect on the first try! (and thus get 2.) This just shows how strong the common knowledge assumptions are. (Empirical studies showthat most of us do not defect immediately.) Figure 1: Centipede Game 1 C 2 C 1 C 2 C… 1 C 2 C 100, 100 D D D D D D 2, 0 1, 3 4, 2 3, 5 100, 98 99, 101 Here’s a video: https://www.youtube.com/watch?v=S3pdNJ-69Z8 1.9 Chicken Lecture Week 2 Rowena and Columba are driving at high speed toward one another. Neither wants to be the ‘chicken’ who swerves (right) when the other goes straight, but neither wants to crash. They have no prior agreement about what they will do, and act independently. chicken hero Chicken 2,2 1,3 Hero 3,1 0,0 Equilibria: (H, c), (C, h), (.5C + .5H, .5c + .5h) (Pure equilibria bolded) 1.10 Collectively Stable Strategy Lecture Week 8 A strategy is collectively stable when a population of individuals that are all playing it cannot be invaded by a ‘mutant’ strategy. This happens when the mutant strategy’s expected payoff isless than the average expected payoff for the population at large. 5 1.11 Common Knowledge Lecture Week Common Knowledge Assumptions: 2; Joyce, “The 1. All players are rational Role of ‘Incredible’ 2. All players understand structure of game Beliefs” 3. All players know what the others believe & want 4. All players know (a)-(c) 5. All players know (d) Etc., ad infinitum 1.12 Conciliationism Lecture Week The disagreement of others should typically cause one to be much less confident in one’s belief 13; Christensen than one would be otherwise — at least when those people seem like epistemic peers (2009) 1.13 Condorcet Jury Theorem Lecture Week i“f voters (a) face two options, (b) vote independently of one
Recommended publications
  • Cesifo Working Paper No. 9141
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Pakhnin, Mikhail Working Paper Collective Choice with Heterogeneous Time Preferences CESifo Working Paper, No. 9141 Provided in Cooperation with: Ifo Institute – Leibniz Institute for Economic Research at the University of Munich Suggested Citation: Pakhnin, Mikhail (2021) : Collective Choice with Heterogeneous Time Preferences, CESifo Working Paper, No. 9141, Center for Economic Studies and Ifo Institute (CESifo), Munich This Version is available at: http://hdl.handle.net/10419/236683 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu 9141 2021 June 2021 Collective Choice with Hetero- geneous Time Preferences Mikhail Pakhnin Impressum: CESifo Working Papers ISSN 2364-1428 (electronic version) Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo GmbH The international platform of Ludwigs-Maximilians University’s Center for Economic Studies and the ifo Institute Poschingerstr.
    [Show full text]
  • A Phase Transition in Arrow's Theorem
    A Phase Transition in Arrow's Theorem Frederic Koehler∗ Elchanan Mossely Abstract Arrow's Theorem concerns a fundamental problem in social choice theory: given the individual preferences of members of a group, how can they be aggregated to form rational group preferences? Arrow showed that in an election between three or more candidates, there are situations where any voting rule satisfying a small list of natural \fairness" axioms must produce an apparently irrational intransitive outcome. Fur- thermore, quantitative versions of Arrow's Theorem in the literature show that when voters choose rankings in an i.i.d. fashion, the outcome is intransitive with non-negligible probability. It is natural to ask if such a quantitative version of Arrow's Theorem holds for non-i.i.d. models. To answer this question, we study Arrow's Theorem under a natural non-i.i.d. model of voters inspired by canonical models in statistical physics; indeed, a version of this model was previously introduced by Raffaelli and Marsili in the physics literature. This model has a parameter, temperature, that prescribes the correlation between different voters. We show that the behavior of Arrow's Theorem in this model undergoes a striking phase transition: in the entire high temperature regime of the model, a Quantitative Arrow's Theorem holds showing that the probability of paradox for any voting rule satisfying the axioms is non-negligible; this is tight because the probability of paradox under pairwise majority goes to zero when approaching the critical temperature, and becomes exponentially small in the number of voters beyond it.
    [Show full text]
  • Problems with Group Decision Making There Are Two Ways of Evaluating Political Systems
    Problems with Group Decision Making There are two ways of evaluating political systems. 1. Consequentialist ethics evaluate actions, policies, or institutions in regard to the outcomes they produce. 2. Deontological ethics evaluate actions, policies, or institutions in light of the rights, duties, or obligations of the individuals involved. Many people like democracy because they believe it to be a fair way to make decisions. One commonsense notion of fairness is that group decisions should reflect the preferences of the majority of group members. Most people probably agree that a fair way to decide between two options is to choose the option that is preferred by the most people. At its heart, democracy is a system in which the majority rules. An actor is rational if she possesses a complete and transitive preference ordering over a set of outcomes. An actor has a complete preference ordering if she can compare each pair of elements (call them x and y) in a set of outcomes in one of the following ways - either the actor prefers x to y, y to x, or she is indifferent between them. An actor has a transitive preference ordering if for any x, y, and z in the set of outcomes, it is the case that if x is weakly preferred to y, and y is weakly preferred to z, then it must be the case that x is weakly preferred to z. Condorcet's paradox illustrates that a group composed of individuals with rational preferences does not necessarily have rational preferences as a collectivity. Individual rationality is not sufficient to ensure group rationality.
    [Show full text]
  • List of Paradoxes 1 List of Paradoxes
    List of paradoxes 1 List of paradoxes This is a list of paradoxes, grouped thematically. The grouping is approximate: Paradoxes may fit into more than one category. Because of varying definitions of the term paradox, some of the following are not considered to be paradoxes by everyone. This list collects only those instances that have been termed paradox by at least one source and which have their own article. Although considered paradoxes, some of these are based on fallacious reasoning, or incomplete/faulty analysis. Logic • Barbershop paradox: The supposition that if one of two simultaneous assumptions leads to a contradiction, the other assumption is also disproved leads to paradoxical consequences. • What the Tortoise Said to Achilles "Whatever Logic is good enough to tell me is worth writing down...," also known as Carroll's paradox, not to be confused with the physical paradox of the same name. • Crocodile Dilemma: If a crocodile steals a child and promises its return if the father can correctly guess what the crocodile will do, how should the crocodile respond in the case that the father guesses that the child will not be returned? • Catch-22 (logic): In need of something which can only be had by not being in need of it. • Drinker paradox: In any pub there is a customer such that, if he or she drinks, everybody in the pub drinks. • Paradox of entailment: Inconsistent premises always make an argument valid. • Horse paradox: All horses are the same color. • Lottery paradox: There is one winning ticket in a large lottery. It is reasonable to believe of a particular lottery ticket that it is not the winning ticket, since the probability that it is the winner is so very small, but it is not reasonable to believe that no lottery ticket will win.
    [Show full text]
  • Arrow's Impossibility Theorem Is Not So Impossible And
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Papers in Economics DOCUMENTO CEDE 2005-63 ISSN 1657-7191 (Edición Electrónica) NOVIEMBRE DE 2005 CEDE ARROW’S IMPOSSIBILITY THEOREM IS NOT SO IMPOSSIBLE AND CONDORCET’S PARADOX IS NOT SO PARADOXICAL: THE ADEQUATE DEFINITION OF A SOCIAL CHOICE PROBLEM DANIEL CASTELLANOS* Abstract In this article, we do two things: first, we present an alternative and simplified proof of the known fact that cardinal individual utility functions are necessary, but not sufficient, and that interpersonal comparability is sufficient, but not necessary, for the construction of a social welfare function. This means that Arrow’s impossibility theorem is simply a consequence of forcing the individual utility functions to be ordinal. And second, based on this proof, this article establishes two necessary conditions for the adequate definition of a social choice problem. It is shown that, if these two conditions are satisfied, a number of desirable properties for a social choice are satisfied, including transitivity. This means that Condorcet’s paradox is simply the result of a social choice problem that is not well defined. Key words: Condition of independence of irrevelant alternatives, social choice, social welfare function, cardinality and interpersonal comparability, Arrow’s impossibility theorem, Condorcet’s paradox. JEL classification: I30, D60, D61. * BBVA Colombia and Universidad de los Andes. E-mail: [email protected]. I deeply thank Enrique Pinzón and Carmen Helena Botero for helping me translate this article into English. I thank Dr. Gustavo Pineda for providing, through the surgery he performed in my knee and its sequels, that almost take my life, the adequate conditions for thinking about the issues here considered.
    [Show full text]
  • Download (341Kb)
    0 1 INDEX Chapter 1 General voting systems 1.1 Introduction………………………………………………….…….……2 1.2 1970 US Senate elections in New York State…….……..5 1.3 Pairwise Majority Rule……………………………………..…..…6 Chapter 2 The voting rule of Borda……………………………….…...9 2.1 Borda’s Paradox…………………………………………………..….9 2.2 Borda’s Rule…………………………………………….……………..11 2.3 Major concerns of Borda rule………………….…………..…12 Chapter 3 The paradox of Condorcet………………………………..16 3.1 Condorcet’s Paradox……………………………….………………16 3.2 Conditions that prohibit the Paradox of Condorcet…18 3.3 Others Condorcet’s paradoxes.……………………………….20 Chapter 4 Others voting paradoxes…………………..………………22 4.1 The paradox of multiple elections…………………………..22 4.2 A strong paradox of multiple elections……………………26 4.3 Construction of a multiple elections paradox………….27 4.4 Conditions that prohibit “Multiple elections paradox”……………………………………………………………………………29 Conclusion…………………………………………………………………………30 Bibliography……………………………………………………………………..32 2 CHAPTER 1 GENERAL VOTING SYSTEMS 1.1 INTRODUCTION Every moment during every day’s life is a matter of choice. Every action we make, is a consequence of a choice among a series of alternatives at disposal at the moment. When our choices do not affect the life of people around us it is a mere personal issue. But, sooner or later, during our lives, we are asked to express our preferences together with other people, on matters that can have a great relevance, or little as well, for the whole society. Even if we do not pay attention, we are required to deal with voting rules even during an evening spent with our friends, for example when we have to decide among some options, as watching a film or going to a restaurant, or going out for a walk; when everybody expresses his opinion, then, the following step, is aggregating the individual preferences and taking a definitive decision for the evening: this is a trivial example given with the extent to make the reader understand that we always deal with the matter of aggregating individual preferences.
    [Show full text]
  • Models of Political Economy
    Models of Political Economy Political economy – a discipline that has grown massively in terms of its popularity and importance in recent years – applies the language and techniques of economic theory to political phenomena. Models of Political Economy provides students with a rigorous introduction to the basic methodology of political economics, utilizing the notion of economic man to explore and evaluate models of rational decision making in various environments. In depth attention is given to key areas such as: • Game theory and social choice; • Public policy decision making; • Principal theories of justice and mechanism design. Models of Political Economy will prove an invaluable introduction to a burgeon- ing field within economics and political science. Hannu Nurmi is Academy Professor at the Academy of Finland and Professor of Political Science at the University of Turku, Finland. Models of Political Economy Hannu Nurmi I~ ~~o~fJ;n~~:up LONDON AND NEW YORK First published 2006 by Routledge Published 2017 by Routledge 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN 711 Third Avenue, New York, NY 10017, USA Routledge is an imprint of the Taylor & Francis Group, an informa business Copyright © 2006 Hannu Nurmi Typeset in Times New Roman by Keyword Group Ltd The Open Access version of this book, available at www.tandfebooks. com has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license. British Library Cataloguing in Publication Data A catalogue record for this book is available from
    [Show full text]
  • Condorcet and I - a Fictional Conversation Between Condorcet and Me: on the Outlines of an Historical View of the Progress of the Human Mind Michael S
    Rollins College Rollins Scholarship Online Master of Liberal Studies Theses Spring 2015 Condorcet and I - A Fictional Conversation between Condorcet and Me: on the Outlines of an Historical View of the Progress of the Human Mind Michael S. Christopher Rollins College, [email protected] Follow this and additional works at: http://scholarship.rollins.edu/mls Part of the Fiction Commons Recommended Citation Christopher, Michael S., "Condorcet and I - A Fictional Conversation between Condorcet and Me: on the Outlines of an Historical View of the Progress of the Human Mind" (2015). Master of Liberal Studies Theses. 63. http://scholarship.rollins.edu/mls/63 This Open Access is brought to you for free and open access by Rollins Scholarship Online. It has been accepted for inclusion in Master of Liberal Studies Theses by an authorized administrator of Rollins Scholarship Online. For more information, please contact [email protected]. Condorcet and I A Fictional Conversation between Condorcet and Me on the Outlines of an Historical View of the Progress of the Human Mind A Project Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Liberal Studies by Michael S. Christopher May, 2015 Mentor: Dean, Patrick Powers Reader: Dr. Eric Smaw Rollins College Hamilton Holt School Master of Liberal Studies Program Winter Park, Florida 2 Condorcet and I A Fictional Debate between Condorcet and Me on the Outlines of an Historical View of the Progress of the Human Mind ________________________________________________________________
    [Show full text]
  • A Fourier-Theoretic Perspective on the Condorcet Paradox and Arrow's
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Advances in Applied Mathematics 29 (2002) 412–426 www.academicpress.com A Fourier-theoretic perspective on the Condorcet paradox and Arrow’s theorem Gil Kalai Institute of Mathematics, Hebrew University, Jerusalem, Israel Received 20 June 2001; accepted 15 December 2001 Abstract We describe a Fourier-theoretic formula for the probability of rational outcomes for a social choice function on three alternatives. Several applications are given. 2002 Elsevier Science (USA). All rights reserved. 1. Introduction The Condorcet “paradox” demonstrates that the majority rule can lead to a situation in which the society prefers A on B, B on C, and C on A. Arrow’s Impossibility Theorem (1951) [1] asserts that under certain conditions if there are at least three alternatives, then every non-dictatorial social choice gives rise to a non-rational choice function, namely there exists a profile such that the social choice is not rational. A profile is a finite list of linear orders on a finite set of alternatives. (We will consider the case of three alternatives.) We consider social choice functions which, given a profile of n order relations Ri on a set X of m alternatives, yield an asymmetric relation R on the alternatives for the society. Thus, R = F(R1,R2,...,Rn) where F is the social choice function. If aRib we say that the ith individual prefers alternative a over alternative b.IfaRb we say that the society prefers alternative a over alternative b.
    [Show full text]
  • An Analysis of Random Elections with Large Numbers of Voters Arxiv
    An Analysis of Random Elections with Large Numbers of Voters∗ Matthew Harrison-Trainor September 8, 2020 Abstract In an election in which each voter ranks all of the candidates, we consider the head- to-head results between each pair of candidates and form a labeled directed graph, called the margin graph, which contains the margin of victory of each candidate over each of the other candidates. A central issue in developing voting methods is that there can be cycles in this graph, where candidate A defeats candidate B, B defeats C, and C defeats A. In this paper we apply the central limit theorem, graph homology, and linear algebra to analyze how likely such situations are to occur for large numbers of voters. There is a large literature on analyzing the probability of having a majority winner; our analysis is more fine-grained. The result of our analysis is that in elections with the number of voters going to infinity, margin graphs that are more cyclic in a certain precise sense are less likely to occur. 1 Introduction The Condorcet paradox is a situation in social choice theory where every candidate in an election with three or more alternatives would lose, in a head-to-head election, to some other candidate. For example, suppose that in an election with three candidates A, B, and C, and three voters, the voter's preferences are as follows: arXiv:2009.02979v1 [econ.TH] 7 Sep 2020 First choice Second choice Third choice Voter 1 A B C Voter 2 B C A Voter 3 C A B There is no clear winner, for one can argue that A cannot win as two of the three voters prefer C to A, that B cannot win as two of the three voters prefer A to B, and that C cannot win as two of the three voters prefer B to C.
    [Show full text]
  • Game Theory, Alive Anna R
    Game Theory, Alive Anna R. Karlin Yuval Peres 10.1090/mbk/101 Game Theory, Alive Game Theory, Alive Anna R. Karlin Yuval Peres AMERICAN MATHEMATICAL SOCIETY Providence, Rhode Island 2010 Mathematics Subject Classification. Primary 91A10, 91A12, 91A18, 91B12, 91A24, 91A43, 91A26, 91A28, 91A46, 91B26. For additional information and updates on this book, visit www.ams.org/bookpages/mbk-101 Library of Congress Cataloging-in-Publication Data Names: Karlin, Anna R. | Peres, Y. (Yuval) Title: Game theory, alive / Anna Karlin, Yuval Peres. Description: Providence, Rhode Island : American Mathematical Society, [2016] | Includes bibliographical references and index. Identifiers: LCCN 2016038151 | ISBN 9781470419820 (alk. paper) Subjects: LCSH: Game theory. | AMS: Game theory, economics, social and behavioral sciences – Game theory – Noncooperative games. msc | Game theory, economics, social and behavioral sciences – Game theory – Cooperative games. msc | Game theory, economics, social and behavioral sciences – Game theory – Games in extensive form. msc | Game theory, economics, social and behavioral sciences – Mathematical economics – Voting theory. msc | Game theory, economics, social and behavioral sciences – Game theory – Positional games (pursuit and evasion, etc.). msc | Game theory, economics, social and behavioral sciences – Game theory – Games involving graphs. msc | Game theory, economics, social and behavioral sciences – Game theory – Rationality, learning. msc | Game theory, economics, social and behavioral sciences – Game theory – Signaling,
    [Show full text]
  • Most American and French in the Presidential Election of 2002
    TheFairest All VOTING SYSTEMS have drawbacks. But by taking into rank candidates, one system gives the By Partha Dasgupta and Eric Maskin Most American and French in the presidential election of 2002. In the U.S., many citizens—indeed, those of democracies the world voters asked why the most popular candidate lost the over—spend little time contemplating their voting sys- election of 2000. tems. That preoccupation is usually left to political and We will leave discussions of hanging chads, butter- electoral analysts. But in the past few years, a large fly ballots, the electoral college and the U.S. Supreme segment of both these countries’ populations have Court to political commentators. But based on re- found themselves utterly perplexed. People in France search by ourselves and colleagues, we can address a wondered how a politician well outside the political more fundamental issue: What kinds of systems, be mainstream made it to the final two-candidate runoff they for electing national leaders or student council 92 SCIENTIFIC AMERICAN MARCH 2004 COPYRIGHT 2004 SCIENTIFIC AMERICAN, INC. Vote of all account how voters truest REFLECTION OF THE ELECTORATE’S VIEWS presidents, go furthest toward truly representing the rather than ranking them all. If just two candidates wishes of the voters? We argue that one particular sys- compete, this limitation makes no difference. But with tem would be best in this sense—and it would be sim- three or more candidates, it can matter a great deal. ple and practical to implement in the U.S., France and The French presidential election of 2002 provides a myriad other countries.
    [Show full text]