United States Patent (19) 11 Patent Number: 4,585,593 Keulemans Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11 Patent Number: 4,585,593 Keulemans Et Al United States Patent (19) 11 Patent Number: 4,585,593 Keulemans et al. (45) Date of Patent: Apr. 29, 1986 54 INTERESTERIFICATION PROCESS AND 4,284,578 8/1981 Lathauwer et al. ............. 260/410.7 APPARATUS 4,335,156 6/1982 Kogan et al. ................ 260/410.7 X (75) Inventors: Cornelis N. M. Keulemans, FOREIGN PATENT DOCUMENTS Rozenburg; Gerard Smits, 55-012146 1/1980 Japan. Rotterdam, both of Netherlands 57-047396 3/1982 Japan. 73. Assignee: Lever Brothers Company, New York, 796808 11/1955 United Kingdom . N.Y. 767085 9/1980 U.S.S.R. (21) Appl. No.: 690,820 OTHER PUBLICATIONS 22 Filed: Jan. 11, 1985 J. Am. Oil Chemists' Soc., 44414A (1967). Journal of the American Oil Chemists Society, 55, 1978 Related U.S. Application Data (796) (Sreenivasan). 63 Continuation of Ser. No. 422,778, Sep. 24, 1982, aban Primary Examiner-Helen M. S. Sneed doned. Attorney, Agent, or Firm-James J. Farrell (30) Foreign Application Priority Data (57) ABSTRACT Oct. 6, 1981 GB) United Kingdom ................. 813013S The process is a continuous process and comprises bringing together streams comprising a triglyceride oil 51 int. Cl." ................................................ C11C3/02 and a catalyst solution of water, sodium hydroxide and 52 U.S. Cl. ............... ... 260/410.7; 422/224 glycerine respectively, homogenizing the mixture, re 58) Field of Search ...................... 260/410.7; 422/224 ducing its water content, and interesterifying. Prefera (56) References Cited bly the homogenization and drying steps take place consecutively and are combined and are performed by U.S. PATENT DOCUMENTS passage through a spray drying nozzle. The efficiency 2,309,949 2/1943 Gooding . 2,474,740 6/1949. Ittner ................................ 260/410.7 of the homogenization and drying steps allows the in 2,738,278 3/1956 Holman et al. .............. 260/410.7 X teresterifying step to take place in about 4 minutes and 3,095,431 6/1963 Giddings et al. thus permit operation of the process in a continuous ac. 3,170,798 2/1965 Burgers et al. .............. 260/410.7 X 3,271,434 9/1966 Baenitz ............................. 260/410.7 4,263,216 4/1981 Volpenhein ...................... 260/410.7 23 Claims, 8 Drawing Figures U.S. Patent Apr. 29, 1986 4,585,593 WWELS U.S. Patent Apr. 29, 1986 Sheet 2 of6 4.585,593 Fig. 2D. 28 \ \ Y o 0.07% NaOH O 0.10% NOOH 24 \ O 0.14% NaOH : 3 6- Ap(B)g5 (kg/h) U.S. Patent Apr. 29, 1986 Sheet 3 of 6 4,585,593 S. s Cd cd Cd 3 3 Nad s CN NOWOSN / U.S. Patent Apr. 29, 1986 Sheet 4 of 6 4,585,593 (NIW)HW||NOILIJVER] 001 NOV) SN / U.S. Patent Apr. 29, 1986 Sheets of 6 4,585,593 se : s st cN g s co ODOONOW/ U.S. Patent Apr. 29, 1986 Sheet 6 of 6 4,585,593 DVEH(NW)BWLINOII no3GIÐMIÐIG%0g+ NOILV)-23 IS383LN % 4,585,593 1. 2 solution; (ii) homogenising the oil and catalyst solution INTERESTERFICATION PROCESS AND by subjection to energetic shear; (iii) reducing the water APPARATUS content of the homogenised mixture so as to allow the formation of an active catalyst component as herein This is a continuation of Ser. No. 422,778, filed Sept. 5 defined; and (iv) holding the resulting mixture at a tem 24, 1982, now abandoned. perature sufficient to cause interesterification. The present invention relates to a process and an The continuous confluence of two streams followed apparatus for the interesterification of fats and oils and by homogenisation can allow a very fine and rapid to the fats and oils so treated. In the present specifica dispersion of the aqueous catalyst solution to be tion the terms "fats' and "oils' are used interchange 10 achieved in the oil. The size of the aqueous droplets ably. determines the rate of water removal as well as the Molecular rearrangement of triglycerides is a tool surface area between the catalyst and the oil and can well known in the art to adjust the physical characteris thus influence the time necessary to complete the intere tics of a fat or oil. Interesterification of the fatty acid sterification reaction. We have for example found that moieties can for example alter the melting point of a 15 aqueous droplets as small as about 10.5 m can be triglyceride composition without substantially effecting achieved on homogenisation, which on water removal its overall fatty acid composition. give catalyst particles of from about 2 to about 10 um A review article in J.A.O.C.S. 44414A(1967) entitled which bring about at least 90% interesterification "Interesterification Products and Processes' describes a within about 4 minutes. A continuous throughput of variety of process conditions and catalysts capable of 20 triglycerides is thus possible without a long residence bringing about the reaction. It refers for example to time for any part of the process. U.S. Pat. No. 3,170,798 which is an example of a batch Use of an on-line process can moreover allow very process. The oil, which if necessary has been pre-neu short contact times between the initial confluence of the tralised by heating with an aqueous alkaline solution to streams and the subsequent removal of water. Due to reduce its free fatty acid content to not more than 0.1%, 25 the variety of reactions which can occur on admixture is placed in a reaction vessel and the catalyst comprising of the catalyst solution and the oil the prompt removal a mixture of water, an alkali metal hydroxide and glyc of water to a value of less than 0.03 wt %, preferably erine is stirred into the oil. The reaction mixture is less than 0.01 wt % (as measured by the Karl-Fischer heated to a reaction temperature and the reaction is method), can be advantageous in furthering the desired allowed to proceed for between 30 minutes and 1 hour. 30 interesterification reaction. The water is necessarily The process described in U.S. Pat. No. 3,170,798 there present initially to act as a carrier for the alkali metal fore suffers inter alia from a long reaction time required hydroxide and glycerine and to aid their dispersal in the to effect interesterification. The specification moreover oil and is moreover produced by the action of the cata emphasises the need to reduce the free fatty acid con lyst. tent to less than 0.1 wt % in order to effect successful 35 interesterification. Sreenivasan (J.A.O.C.S. 55 (1978) The following are the more important reactions 796) therefore views the batch process as a two stage which are thought to occur following admixture of the reaction involving two distinct heating steps, one at a tWO Streams: low temperature of 60° C. under vacuum to effect neu tralisation, water removal and catalyst dispersion and H2O 1. the second at a higher temperature for interesterifica (a) MOH + glycerine s =&M glycerolate (insoluble in oil) tion. (b) M glycerolate -Gactive catalytic component A continuous process referred to at page 454A in the Rate of reaction (b) is increased in the presence of mono review article in JAOCS 44 comprises that described in and diglycerides. U.S. Pat. No. 2,738,278. The process there described 45 involves the use of an aqueous alkali metal hydroxide as the catalyst. The specification teaches continuously triglyceride introducing a flowing stream of aqueous alkali metal MOH -- monoglyceride saponification eM salt of fatty acids hydroxide into a flowing stream of the ester material diglyceride being subjected to molecular rearrangement. Disper 50 sion of solid hydroxide is said to occur following Rate of reaction is increased in presence of water. "flash' removal of the moisture. Reaction times of 5 minutes or less are claimed in the specification. Such MOH + free fatty acid neutralisation- M salt of fatty acids 3. short reaction times are however only obtained when relatively high catalyst concentrations with respect to 55 Removal of water from the system thus encourages the oil are employed. The process described in U.S. Pat. the equilibrium of reaction 1(a) to shift in the desired No. 2,738,278 therefore suffers from the disadvantage direction towards the M glycerolate and discourages that acceptable rates of reaction for a continuous pro reaction 2. The discouragement of the saponification cess are only achieved at the expense of high oil losses reaction reduces the amount of triglyceride and alkali due to saponification in the presence of excess hydrox metal hydroxide lost. ide. The presence of mono and diglycerides is believed to According to a first aspect of the present invention effect the rate constant of reaction 1 in two ways. there is provided a process for the interesterification of Firstly the mono and diglycerides preferentially un a triglyceride oil employing a catalyst solution compris dergo interesterification compared to triglycerides. ing a mixture of water, an alkali metal hydroxide and 65 During their interaction with the catalytic solution an glycerine, characterised by performing the process as a intermediate is formed, which is believed to be M dia continuous process comprising (i) bringing together cylglycerol, which promotes the interesterification of streams comprising respectively the oil and the catalyst the triglycerides. Secondly mono and diglycerides also 4,585,593 3 4 preferentially saponify compared to triglycerides. The The interesterification temperature is preferably in portion of mono and diglycerides which therefore un the range of from 100' to 160° C., more preferably in the dergoes saponification before the reaction is substan range of from 125 to 150° C. The temperature selected tially halted due to the removal of the water, provides depends on the overall desired reaction rate.
Recommended publications
  • Chemistry – Writing Equations
    Support Information 1, The following elements are diatomic; H2, O2, N2, F2, Cl2, Br2, I2, and At2. 2, Rules for naming compounds: If there are two elements in a compound the non-metal will end in –ide. e.g. CaCl2– calcium chloride, K2O – potassium oxide, Rb3P – rubidium phosphide If the compound contains a metal, non-metal and oxygen the non-metal will end in –ate. If the metal has variable ions, the valency of the ion present must be shown in brackets e.g. Fe2O3 iron (III) oxide and FeO iron (II) oxide 3, Examples of acids (all are soluble): Strong Acids Weak Acids Hydrochloric acid (HCl) Ethanoic Acid (CH3COOH) Sulfuric acid (H2SO4) Propanoic Acid (CH3CH2COOH) Nitric acid (HNO3) Carbonic Acid (H2CO3) Phosphoric acid (H3PO4) 4, Examples of soluble bases (alkalis): Strong Bases Weak Bases Sodium hydroxide (NaOH) Ammonia (NH3) Potassium hydroxide (KOH) Potassium hydrogen carbonate Note: Any base containing an alkali metal (Group 1) will be soluble. 5, Examples of types of insoluble bases: Metal oxides e.g. copper oxide (CuO) Metal carbonates e.g. calcium carbonate (CaCO3) Metal hydroxides e.g. magnesium hydroxide (Mg(OH)2) 6, Examples of types of salts (formed when an acid reacts with a metal or a base) Hydrochloric acid forms – chlorides ethanoic acid forms – ethanoates Sulfuric acid forms - sulfates propanoic acid forms - propanoates Nitric acid forms – nitrates Phosphoric acid forms - phosphates Exception: carbonic acid formed when carbon dioxide reacts with water – forms carbonates and hydrogen carbonates when reacting with a base
    [Show full text]
  • Crystengcomm Accepted Manuscript
    CrystEngComm Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/crystengcomm Page 1 of 8 CrystEngComm Journal Name RSC Publishing ARTICLE Influence of alkali metal cations on the formation of zeolites under hydrothermal Cite this: DOI: 10.1039/x0xx00000x conditions with no organic structure directing agents Received 00th January 2012, Accepted 00th January 2012 Antony Nearchou a and Asel Sartbaeva a,†. DOI: 10.1039/x0xx00000x Alkali metal cations play an important role in directing formation of zeolite frameworks in the www.rsc.org/ absence of organic structure directing agents. The interplay between Na and Cs cations in directing formation of zeolite RHO is the main focus of this study.
    [Show full text]
  • Zeolites Fit for a Crown: Probing Host-Guest Interactions with Thermogravimetric Methods
    Zeolites fit for a crown: probing host-guest interactions with thermogravimetric methods A. Nearchou, R. Castaing, P. R. Raithby and A. Sartbaeva University of Bath, Department of Chemistry, Claverton Down, Bath, BA2 7AY Abstract Every year millions of tons of zeolites are produced, being used as molecular sieves, hydrocracking catalysts, gas-capture materials and for emerging novel applications. There is a demand to synthesize new zeolites with bespoke frameworks, which are tailor-made for a chosen application. Steps towards tailor making zeolites have been listed in the top ten de-sired breakthroughs in 2011 by Science. To achieve these ‘designer zeolites’ it is crucial to fully understand the host-guest interactions between organic templates, used in their preparation, and the zeolitic frameworks, which are still not known. Here we have studied four different zeolites, synthesized with the same organic template, 18-crown-6 ether, which show observable differences in the host-guest interactions. We demonstrate that the framework dominates the decomposition temperature, enthalpy and mechanism. The zeolites show unique decomposition features, emphasizing, for the first time, the difference in how the template and framework interact during synthesis. Introduction Zeolites are crystalline aluminosilicate minerals, characterised by their unique open framework architectures and periodic microporosity. Currently, zeolites have a variety of uses across the chemical sciences, such as catalysts for organic chemistry, molecular sieving, carbon dioxide capture and many other emerging applications.1-4 To this day, zeolites are still the primary catalyst used for petroleum hydrocracking, demonstrating their contemporary robustness that has not been replaced via alternative porous materials.5 As such, there is a desire to prepare new de-signer zeolites which possess bespoke structures to enhance chosen chemical applications.6-10 Current approaches towards designer zeolites make use of organic additives, which direct the crystallisation of a desired topology.
    [Show full text]
  • Method of Producing Branched Silicone Oil Verfahren Zur Herstellung Von Verzweigtem Silikonöl Méthode Pour La Préparation D’Huile De Silicone Ramifiée
    Europäisches Patentamt *EP000919583B1* (19) European Patent Office Office européen des brevets (11) EP 0 919 583 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C08G 77/10, C08G 77/08 of the grant of the patent: 30.10.2002 Bulletin 2002/44 (21) Application number: 98309427.7 (22) Date of filing: 18.11.1998 (54) Method of producing branched silicone oil Verfahren zur Herstellung von verzweigtem Silikonöl Méthode pour la préparation d’huile de silicone ramifiée (84) Designated Contracting States: (74) Representative: Bubb, Antony John Allen et al DE FR GB Wilson Gunn Gee, Chancery House, (30) Priority: 28.11.1997 JP 34422497 Chancery Lane London WC2A 1QU (GB) (43) Date of publication of application: 02.06.1999 Bulletin 1999/22 (56) References cited: EP-A- 0 217 501 EP-A- 0 540 038 (73) Proprietor: SHIN-ETSU CHEMICAL CO., LTD. Chiyoda-ku Tokyo (JP) • PATENT ABSTRACTS OF JAPAN vol. 1997, no. 12, 25 December 1997 (1997-12-25) & JP 09 (72) Inventor: Aoki, Yoshitaka, 208701 A (SHIN ETSU CHEM CO LTD), 12 August Silicone Elec. Mat. Res. Ctr 1997 (1997-08-12) Matsuidacho, Usui-Gun, Gunma-Ken (JP) Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
    [Show full text]
  • SAFETY DATA SHEET Revision Date 04/30/2021 Print Date 09/25/2021
    Version 6.2 SAFETY DATA SHEET Revision Date 04/30/2021 Print Date 09/25/2021 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1 Product identifiers Product name : Cesium hydroxide hydrate Product Number : C8518 Brand : Aldrich CAS-No. : 12260-45-6 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses : Laboratory chemicals, Synthesis of substances 1.3 Details of the supplier of the safety data sheet Company : Sigma-Aldrich Inc. 3050 SPRUCE ST ST. LOUIS MO 63103 UNITED STATES Telephone : +1 314 771-5765 Fax : +1 800 325-5052 1.4 Emergency telephone Emergency Phone # : 800-424-9300 CHEMTREC (USA) +1-703- 527-3887 CHEMTREC (International) 24 Hours/day; 7 Days/week SECTION 2: Hazards identification 2.1 Classification of the substance or mixture GHS Classification in accordance with 29 CFR 1910 (OSHA HCS) Acute toxicity, Oral (Category 4), H302 Skin corrosion (Category 1A), H314 Serious eye damage (Category 1), H318 For the full text of the H-Statements mentioned in this Section, see Section 16. 2.2 GHS Label elements, including precautionary statements Pictogram Signal word Danger Hazard statement(s) H302 Harmful if swallowed. Aldrich - C8518 Page 1 of 8 The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada H314 Causes severe skin burns and eye damage. Precautionary statement(s) P260 Do not breathe dusts or mists. P264 Wash skin thoroughly after handling. P270 Do not eat, drink or smoke when using this product. P280 Wear protective gloves/ protective clothing/ eye protection/ face protection.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • 2020 Emergency Response Guidebook
    2020 A guidebook intended for use by first responders A guidebook intended for use by first responders during the initial phase of a transportation incident during the initial phase of a transportation incident involving hazardous materials/dangerous goods involving hazardous materials/dangerous goods EMERGENCY RESPONSE GUIDEBOOK THIS DOCUMENT SHOULD NOT BE USED TO DETERMINE COMPLIANCE WITH THE HAZARDOUS MATERIALS/ DANGEROUS GOODS REGULATIONS OR 2020 TO CREATE WORKER SAFETY DOCUMENTS EMERGENCY RESPONSE FOR SPECIFIC CHEMICALS GUIDEBOOK NOT FOR SALE This document is intended for distribution free of charge to Public Safety Organizations by the US Department of Transportation and Transport Canada. This copy may not be resold by commercial distributors. https://www.phmsa.dot.gov/hazmat https://www.tc.gc.ca/TDG http://www.sct.gob.mx SHIPPING PAPERS (DOCUMENTS) 24-HOUR EMERGENCY RESPONSE TELEPHONE NUMBERS For the purpose of this guidebook, shipping documents and shipping papers are synonymous. CANADA Shipping papers provide vital information regarding the hazardous materials/dangerous goods to 1. CANUTEC initiate protective actions. A consolidated version of the information found on shipping papers may 1-888-CANUTEC (226-8832) or 613-996-6666 * be found as follows: *666 (STAR 666) cellular (in Canada only) • Road – kept in the cab of a motor vehicle • Rail – kept in possession of a crew member UNITED STATES • Aviation – kept in possession of the pilot or aircraft employees • Marine – kept in a holder on the bridge of a vessel 1. CHEMTREC 1-800-424-9300 Information provided: (in the U.S., Canada and the U.S. Virgin Islands) • 4-digit identification number, UN or NA (go to yellow pages) For calls originating elsewhere: 703-527-3887 * • Proper shipping name (go to blue pages) • Hazard class or division number of material 2.
    [Show full text]
  • Controlling and Exploiting the Caesium Effect in Palladium Catalysed Coupling Reactions
    Controlling and exploiting the caesium effect in palladium catalysed coupling reactions Thomas J. Dent Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Chemistry May 2019 i The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the report may be published without proper acknowledgement The right of Thomas Dent to be identified as Author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. © 2019 The University of Leeds and Thomas J. Dent ii Acknowledgements This project could not have been completed without the help of several individuals who’ve helped guide the project into the finished article. First and foremost I’d like to thank Dr. Bao Nguyen his support, useful discussions and the ability to sift through hundreds of experiments of kinetic data to put together a coherent figure. My writing has come a long way from my transfer report, so all the comments and suggestions seem to have mostly not been in vain. To Paddy, the discussions relating to the NMR studies and anything vaguely inorganic were incredibly useful, and provided me with data that supported our hypothesis with more direct evidence than just the reaction monitoring experiments. Rob, I really enjoyed my time at AZ and your support during my time there was incredibly useful so I could maximise my short secondment when I was getting more results than I knew what to do with.
    [Show full text]
  • Hazardous Materials Descriptions and Codes
    2012 Commodity Flow Survey Hazardous Materials Descriptions and Codes Hazardous Materials Descriptions and Proper Shipping Names UN or NA Code Accellerene, see p-Nitrosodimethylaniline Accumulators, electric, see Batteries, wet etc Accumulators, pressurized, pneumatic or hydraulic (containing non-flammable gas), see Articles pressurized, pneumatic or hydraulic (containing non-flammable gas) Acetal 1088 Acetaldehyde 1089 Acetaldehyde ammonia 1841 Acetaldehyde oxime 2332 Acetic acid, glacial or Acetic acid solution, with more than 80 percent acid, by mass 2789 Acetic acid solution, not less than 50 percent but not more than 80 percent acid, by 2790 mass Acetic acid solution, with more than 10 percent and less than 50 percent acid, by mass 2790 Acetic anhydride 1715 Acetone 1090 Acetone cyanohydrin, stabilized 1541 Acetone oils 1091 Acetonitrile 1648 Acetyl bromide 1716 Acetyl chloride 1717 Acetyl iodide 1898 Acetyl methyl carbinol 2621 Acetylene, dissolved 1001 Acetylene tetrabromide, see Tetrabromoethane Acid butyl phosphate, see Butyl acid phosphate Acid, sludge, see Sludge acid Acridine 2713 Acrolein dimer, stabilized 2607 Acrolein, stabilized 1092 Acrylamide, solid 2074 Acrylamide solution 3426 Acrylic acid, stabilized 2218 Acrylonitrile, stabilized 1093 Actuating cartridge, explosive, see Cartridges, power device Adhesives, containing a flammable liquid 1133 Adiponitrile 2205 Aerosols, poison, Packing Group III (each not exceeding 1 L capacity) 1950 Aerosols, flammable, (each not exceeding 1 L capacity) 1950 Source: Electronic Code of Federal Regulations http://ecfr.gpoaccess.gov/cgi/t/text/text- idx?c=ecfr&sid=dfec99df9f21ef29b59a8565433a56cd&rgn=div6&view=text&node=49:2.1.1.3.8.2&idno=49 1 Hazardous Materials Descriptions and Proper Shipping Names UN or NA Code Aerosols, flammable, n.o.s.
    [Show full text]
  • Fedex Ground Hazardous Materials Shipping Guide Is Intended to Simplify Title 49 CFR
    FedEx Ground Package Systems Inc. is committed to the safe transportation of hazardous materials. It is very important that each person engaged in the transportation of hazardous materials has the proper training and is thoroughly familiar with the Title 49CFR (Code of Federal Regulations) and/or USPS Publication 52. This guide is intended only to assist you in your preparation of hazardous materials shipped via FedEx Ground Package Systems Inc. It is the shipper’s responsibility to ensure each hazardous material package is in compliance with applicable Department of Transportation (D.O.T.) regulations and FedEx Ground Package Systems Inc. requirements. Failure to comply with these regulations and requirements may subject the shipper and carrier to fines and penalties. Improperly prepared hazmat packages or documentation may be subject to an additional charge(s) due to the unexpected hanlding associated with these shipments. Due to the changing nature of D.O.T. regulations and other information, it is impossible to guarantee absolute accuracy of the material contained in this guide. FedEx Ground Package Systems Inc., therefore, cannot assume any responsibility for omissions, errors, misprinting, or ambiguity contained within this guide and shall not be held liable in any degree for any loss or injury caused by such omission or error presented in this publication. Shippers should consult the most current version of the hazardous material regulations. Training is mandatory for those shipping hazardous materials, including limited quantity and other exceptions. The www.shipsafeshipsmart.com battery and hazmat training programs offer shippers an economical source of basic ground battery and/or hazardous materials shipping as well as addressing FedEx Ground specific issues.
    [Show full text]
  • Dangerous Goods Panel (Dgp) Meeting of the Working Group of the Whole
    DGP-WG/06-IP/3 18/10/06 DANGEROUS GOODS PANEL (DGP) MEETING OF THE WORKING GROUP OF THE WHOLE Beijing, China, 25 October to 3 November 2006 Agenda Item 6: Discussion of miscellaneous dangerous goods issues EXCEPTED QUANTITY PROVISIONS ADOPTED BY UNITED NATIONS (Presented by the Secretary) 1. To assist members reviewing DGP-WG/06-WP/4, two listings (one in UN number and the other in alphabetical order) of the proposed excepted quantities sorted by class or division/packing group/liquid or solid are presented in the appendices. Appendix A contains the listing in UN number order and Appendix B contains the listing in alphabetical order. — — — — — — — — (79 pages) IP.3.en.doc DGP-WG/06-IP/3 NUMBERICAL LISTING Appendix A Excepted Quantities Division 2.2 Air, compressed 1002 2.2 Argon, compressed 1006 2.2 Bromotrifluoromethane 1009 2.2 Refrigerant gas R 13B1 1009 2.2 Carbon dioxide 1013 2.2 Carbon dioxide and nitrous oxide mixture 1015 2.2 Chlorodifluoromethane 1018 2.2 Refrigerant gas R 22 1018 2.2 Chloropentafluoroethane 1020 2.2 Refrigerant gas R 115 1020 2.2 1-Chloro-1,2,2,2-tetrafluoroethane 1021 2.2 Refrigerant gas R 124 1021 2.2 Chlorotrifluoromethane 1022 2.2 Refrigerant gas R 13 1022 2.2 Dichlorodifluoromethane 1028 2.2 Refrigerant gas R 12 1028 2.2 Dichlorofluoromethane 1029 2.2 Refrigerant gas R 21 1029 2.2 Helium, compressed 1046 2.2 Krypton, compressed 1056 2.2 Liquefied gases, non-flammable, charged with nitrogen, carbon dioxide or air 1058 2.2 Neon, compressed 1065 2.2 Nitrogen, compressed 1066 2.2 Refrigerant gas, n.o.s.* 1078
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2008/0166281 A1 Harms Et Al
    US 2008O166281A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0166281 A1 Harms et al. (43) Pub. Date: Jul. 10, 2008 (54) METHODS FOR PRODUCING CESIUM (30) Foreign Application Priority Data HYDROXDE SOLUTIONS Jan. 27, 2005 (DE) ......................... 102005OO3999.5 (76) Inventors: Gerd J. Harms, Goslar (DE); O O Alexander Schiedt, Hahausen Publication Classification (DE); Manfred Bick, Oberursel (51) Int. Cl. (DE); Wolfgang Hildebrandt, BOID LL/00 (2006.01) Langelsheim (DE) (52) U.S. Cl. ........................................................ 423/202 Correspondence Address: (57) ABSTRACT FULBRIGHT & JAWORSKI, LLP 666 FIFTHAVE Methods for producing cesium hydroxide Solutions during NEW YORK, NY 10103-3198 which: cesium-containing ore is disintegrated with Sulfuric acid while forming a cesium aluminum Sulfate hydrate, which (21) Appl. No.: 11/795,855 is poorly soluble at low temperatures; the formed cesium alum is separated away in the form of a solution from the Solid (22) PCT Filed: Jan. 25, 2006 ore residues; the aluminum is precipitated out of the cesium alum solution while forming a cesium sulfate Solution; the (86). PCT No.: PCT/EP2006/OOO634 formed cesium sulfate solution is reacted with barium hydroxide or stontium hydroxide while forming a cesium S371 (c)(1), hydroxide solution, and; the formed cesium hydroxide solu (2), (4) Date: Nov. 1, 2007 tion is concentrated and purified. US 2008/0166281 A1 Jul. 10, 2008 METHODS FOR PRODUCING CESIUM contents of Sulfate and/or barium or has a caesium carbonate HYDROXDE SOLUTIONS Solution as the end product. This process does not give cae sium hydroxide solutions. 0007 Caesium hydroxide solutions have numerous appli 0001.
    [Show full text]