Hazardous Materials Descriptions and Codes

Total Page:16

File Type:pdf, Size:1020Kb

Hazardous Materials Descriptions and Codes 2012 Commodity Flow Survey Hazardous Materials Descriptions and Codes Hazardous Materials Descriptions and Proper Shipping Names UN or NA Code Accellerene, see p-Nitrosodimethylaniline Accumulators, electric, see Batteries, wet etc Accumulators, pressurized, pneumatic or hydraulic (containing non-flammable gas), see Articles pressurized, pneumatic or hydraulic (containing non-flammable gas) Acetal 1088 Acetaldehyde 1089 Acetaldehyde ammonia 1841 Acetaldehyde oxime 2332 Acetic acid, glacial or Acetic acid solution, with more than 80 percent acid, by mass 2789 Acetic acid solution, not less than 50 percent but not more than 80 percent acid, by 2790 mass Acetic acid solution, with more than 10 percent and less than 50 percent acid, by mass 2790 Acetic anhydride 1715 Acetone 1090 Acetone cyanohydrin, stabilized 1541 Acetone oils 1091 Acetonitrile 1648 Acetyl bromide 1716 Acetyl chloride 1717 Acetyl iodide 1898 Acetyl methyl carbinol 2621 Acetylene, dissolved 1001 Acetylene tetrabromide, see Tetrabromoethane Acid butyl phosphate, see Butyl acid phosphate Acid, sludge, see Sludge acid Acridine 2713 Acrolein dimer, stabilized 2607 Acrolein, stabilized 1092 Acrylamide, solid 2074 Acrylamide solution 3426 Acrylic acid, stabilized 2218 Acrylonitrile, stabilized 1093 Actuating cartridge, explosive, see Cartridges, power device Adhesives, containing a flammable liquid 1133 Adiponitrile 2205 Aerosols, poison, Packing Group III (each not exceeding 1 L capacity) 1950 Aerosols, flammable, (each not exceeding 1 L capacity) 1950 Source: Electronic Code of Federal Regulations http://ecfr.gpoaccess.gov/cgi/t/text/text- idx?c=ecfr&sid=dfec99df9f21ef29b59a8565433a56cd&rgn=div6&view=text&node=49:2.1.1.3.8.2&idno=49 1 Hazardous Materials Descriptions and Proper Shipping Names UN or NA Code Aerosols, flammable, n.o.s. (engine starting fluid) (each not exceeding 1 L capacity) 1950 Aerosols, non-flammable,(each not exceeding 1 L capacity) 1950 Aerosols, poison, (each not exceeding 1 L capacity) 1950 Air bag inflators, or Air bag modules, or Seat-belt pretensioners. 0503 Air bag inflators, or Air bag modules, or Seat-belt pretensioners. 3268 Air, compressed 1002 Air, refrigerated liquid, (cryogenic liquid) 1003 Air, refrigerated liquid, (cryogenic liquid) non-pressurized 1003 Aircraft engines (including turbines), see Engines, internal combustion Aircraft evacuation slides, see Life saving appliances etc Aircraft hydraulic power unit fuel tank (containing a mixture of anhydrous hydrazine 3165 and monomethyl hydrazine) (M86 fuel) Aircraft survival kits, see Life saving appliances etc Alcoholates solution, n.o.s., in alcohol 3274 Alcoholic beverages 3065 Alcohols, n.o.s. 1987 Alcohols, flammable, toxic n.o.s 1986 Aldehydes, n.o.s. 1989 Aldehydes, flammable, toxic, n.o.s. 1988 Aldol 2839 Alkali metal alcoholates, self-heating, corrosive, n.o.s. 3206 Alkali metal alloys, liquid, n.o.s. 1421 Alkali metal amalgam, liquid 1389 Alkali metal amalgam, solid 3401 Alkali metal amides 1390 Alkali metal dispersions, flammable or Alkaline earth metal dispersions, flammable 3482 Alkali metal dispersions, or Alkaline earth metal dispersions 1391 Alkaline corrosive liquids, n.o.s., see Caustic alkali liquids, n.o.s. Alkaline earth metal alcoholates, n.o.s. 3205 Alkaline earth metal alloys, n.o.s. 1393 Alkaline earth metal amalgams, liquid 1392 Alkaline earth metal amalgams, solid 3402 Alkaloids, liquid, n.o.s., or Alkaloid salts, liquid, n.o.s. 3140 Alkaloids, solid, n.o.s. or Alkaloid salts, solid, n.o.s. poisonous 1544 Alkyl sulfonic acids, liquid or Aryl sulfonic acids, liquid with more than 5 percent free 2584 sulfuric acid Source: Electronic Code of Federal Regulations http://ecfr.gpoaccess.gov/cgi/t/text/text- idx?c=ecfr&sid=dfec99df9f21ef29b59a8565433a56cd&rgn=div6&view=text&node=49:2.1.1.3.8.2&idno=49 2 Hazardous Materials Descriptions and Proper Shipping Names UN or NA Code Alkyl sulfonic acids, liquid or Aryl sulfonic acids, liquid with not more than 5 percent 2586 free sulfuric acid Alkyl sulfonic acids, solid or Aryl sulfonic acids, solid, with more than 5 percent free 2583 sulfuric acid Alkyl sulfonic acids, solid or Aryl sulfonic acids, solid with not more than 5 percent free 2585 sulfuric acid Alkylphenols, liquid, n.o.s. (including C2-C12 homologues) 3145 Alkylphenols, solid, n.o.s. (including C2-C12 homologues) 2430 Alkylsulfuric acids 2571 Allethrin, see Pesticides, liquid, toxic, n.o.s. Allyl acetate 2333 Allyl alcohol 1098 Allyl bromide 1099 Allyl chloride 1100 Allyl chlorocarbonate, see Allyl chloroformate Allyl chloroformate 1722 Allyl ethyl ether 2335 Allyl formate 2336 Allyl glycidyl ether 2219 Allyl iodide 1723 Allyl isothiocyanate, stabilized 1545 Allylamine 2334 Allyltrichlorosilane, stabilized 1724 Aluminum borohydride or Aluminum borohydride in devices 2870 Aluminum bromide, anhydrous 1725 Aluminum bromide, solution 2580 Aluminum carbide 1394 Aluminum chloride, anhydrous 1726 Aluminum chloride, solution 2581 Aluminum ferrosilicon powder 1395 Aluminum hydride 2463 Aluminum, molten 9260 Aluminum nitrate 1438 Aluminum phosphate solution, see Corrosive liquids, etc Aluminum phosphide 1397 Aluminum phosphide pesticides 3048 Aluminum powder, coated 1309 Source: Electronic Code of Federal Regulations http://ecfr.gpoaccess.gov/cgi/t/text/text- idx?c=ecfr&sid=dfec99df9f21ef29b59a8565433a56cd&rgn=div6&view=text&node=49:2.1.1.3.8.2&idno=49 3 Hazardous Materials Descriptions and Proper Shipping Names UN or NA Code Aluminum powder, uncoated 1396 Aluminum resinate 2715 Aluminum silicon powder, uncoated 1398 Aluminum smelting by-products or Aluminum remelting by-products 3170 Amatols, see Explosives, blasting, type B Amine, flammable, corrosive, n.o.s. or Polyamines, flammable, corrosive, n.o.s 2733 Amine, liquid, corrosive, flammable, n.o.s. or Polyamines, liquid, corrosive, flammable, 2734 n.o.s Amines, liquid, corrosive, n.o.s., or Polyamines, liquid, corrosive, n.o.s. 2735 Amines, solid, corrosive, n.o.s., or Polyamines, solid, corrosive n.o.s. 3259 2-Amino-4-chlorophenol 2673 2-Amino-5-diethylaminopentane 2946 2-Amino-4,6-Dinitrophenol, wetted with not less than 20 percent water by mass 3317 2-(2-Aminoethoxy) ethanol 3055 N-Aminoethylpiperazine 2815 Aminophenols (o-; m-; p-) 2512 Aminopropyldiethanolamine, see Amines, etc n-Aminopropylmorpholine, see Amines, etc Aminopyridines (o-; m-; p-) 2671 Ammonia, anhydrous 1005 Ammonia, anhydrous 1005 Ammonia solution, relative density less than 0.880 at 15 degrees C in water, with more 3318 than 50 percent ammonia Ammonia solution, relative density less than 0.880 at 15 degrees C in water, with more 3318 than 50 percent ammonia Ammonia solutions, relative density less than 0.880 at 15 degrees C in water, with 2073 more than 35 percent but not more than 50 percent ammonia Ammonia solution, relative density between 0.880 and 0.957 at 15 degrees C in water, 2672 with more than 10 percent but not more than 35 percent ammonia Ammonium arsenate 1546 Ammonium bifluoride, solid, see Ammonium hydrogen difluoride, solid Ammonium bifluoride solution, see Ammonium hydrogen difluoride, solution Ammonium dichromate 1439 Ammonium dinitro-o-cresolate, solid 1843 Ammonium dinitro-o-cresolate solution 3424 Ammonium fluoride 2505 Ammonium fluorosilicate 2854 Source: Electronic Code of Federal Regulations http://ecfr.gpoaccess.gov/cgi/t/text/text- idx?c=ecfr&sid=dfec99df9f21ef29b59a8565433a56cd&rgn=div6&view=text&node=49:2.1.1.3.8.2&idno=49 4 Hazardous Materials Descriptions and Proper Shipping Names UN or NA Code Ammonium hydrogen sulfate 2506 Ammonium hydrogendifluoride, solid 1727 Ammonium hydrogendifluoride, solution 2817 Ammonium hydrosulfide, solution, see Ammonium sulfide solution Ammonium hydroxide, see Ammonia solutions, etc Ammonium metavanadate 2859 Ammonium nitrate based fertilizer (Hazard class or Division 5.1) 2067 Ammonium nitrate based fertilizer (Hazard class or Division 9) 2071 Ammonium nitrate emulsion or Ammonium nitrate suspension or Ammonium nitrate 3375 gel, intermediate for blasting explosives Ammonium nitrate-fuel oil mixture containing only prilled ammonium nitrate and fuel 0331 oil Ammonium nitrate, liquid (hot concentrated solution) 2426 Ammonium nitrate, with more than 0.2 percent combustible substances, including any 0222 organic substance calculated as carbon, to the exclusion of any other added substance Ammonium nitrate, with not more than 0.2% total combustible material, including any 1942 organic substance, calculated as carbon to the exclusion of any other added substance Ammonium perchlorate 0402 Ammonium perchlorate 1442 Ammonium persulfate 1444 Ammonium picrate, dry or wetted with less than 10 percent water, by mass 0004 Ammonium picrate, wetted with not less than 10 percent water, by mass 1310 Ammonium polysulfide, solution 2818 Ammonium polyvadate 2861 Ammonium silicofluoride, see Ammonium fluorosilicate Ammonium sulfide solution 2683 Ammunition, blank, see Cartridges for weapons, blank Ammunition, illumiting with or without burster, expelling charge or propelling charge 0171 Ammunition, illumiting with or without burster, expelling charge or propelling charge 0254 Ammunition, illumiting with or without burster, expelling charge or propelling charge 0297 Ammunition, incendiary liquid or gel, with burster, expelling charge or propelling 0247 charge Ammunition, incendiary (water-activated contrivances) with burster, expelling charge or propelling charge, see Contrivances, water-activated, etc. Ammunition, incendiary, white phosphorus, with burster, expelling charge or 0243 propelling
Recommended publications
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • The Detection and Determination of Esters
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1958 The etD ection and Determination of Esters. Mohd. Mohsin Qureshi Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Qureshi, Mohd. Mohsin, "The eD tection and Determination of Esters." (1958). LSU Historical Dissertations and Theses. 501. https://digitalcommons.lsu.edu/gradschool_disstheses/501 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. Copright by Mohcl Mohsin Qureshi 1959 THE DETECTION AND DETERMINATION OF ESTERS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Mohd. Mohsin Qureshi M.Sc., Aligarh University, 1944 August, 1958 ACKNOWLEDGMENT The author wishes to express his sincere apprecia­ tion and gratitude to Dr. Philip W. West under whose guidance this research was carried out. He is grateful to Dr. James G. Traynham for sup­ plying him with a number of esters and for his many helpful suggestions. The financial support given to him by the Continental Oil Company is gratefully acknowledged. He offers his sincere thanks to Miss Magdalena Usategul for her valuable suggestions and her ungrudging help during the course of this investigation. Dr. Anil K.
    [Show full text]
  • 5. POTENTIAL for HUMAN EXPOSURE 5.1 OVERVIEW White
    WHITE PHOSPHORUS 157 5. POTENTIAL FOR HUMAN EXPOSURE 5.1 OVERVIEW White phosphorus can enter the environment from its production, use, accidental spills during loading and unloading for shipment, and accidental spills during transport. Hazardous wastes sites containing white phosphorus can also be a source of phosphorus in the environment. White phosphorus has been found in at least 77 of the 1,430 current or former EPA National Priorities List (NPL) hazardous waste sites (HazDat 1996). However, the number of sites evaluated for white phosphorus is not known. The frequency of these sites within the United States can be seen in Figure 5-l. The persistence of elemental phosphorus in the air is very short due to oxidation to phosphorus oxides and ultimately to phosphorus acids. However, the particulate phosphorus aerosol may be coated with a protective oxide layer that may prevent further oxidation and extend the lifetime of particulate phosphorus in air. Both wet and dry deposition remove unreacted elemental phosphorus and the degradation products from the air. Similarly, elemental phosphorus oxidizes and hydrolyzes in water and in soil. A small amount of elemental phosphorus is lost from soil and water by volatilization. Phosphorus is used as a fumigant in the storage of grain. Because of ease of application, pellets of aluminum or magnesium phosphide are commonly used (Garry et al. 1993). Phosphine, a highly toxic gas, is generated from phosphide. The rate of formation of phosphine (permissible exposure limit [PEL], 0.4 mg/m3) is dependent on the ambient temperature and humidity. Its release is rapid, and it is extremely fatal to the unprotected person (Garry et al.
    [Show full text]
  • Cylinder Valve Selection Quick Reference for Valve Abbreviations
    SHERWOOD VALVE COMPRESSED GAS PRODUCTS Appendix Cylinder Valve Selection Quick Reference for Valve Abbreviations Use the Sherwood Cylinder Valve Series Abbreviation Chart on this page with the Sherwood Cylinder Valve Selection Charts found on pages 73–80. The Sherwood Cylinder Valve Selection Chart are for reference only and list: • The most commonly used gases • The Compressed Gas Association primary outlet to be used with each gas • The Sherwood valves designated for use with this gas • The Pressure Relief Device styles that are authorized by the DOT for use with these gases PLEASE NOTE: The Sherwood Cylinder Valve Selection Charts are partial lists extracted from the CGA V-1 and S-1.1 pamphlets. They can change without notice as the CGA V-1 and S-1.1 pamphlets are amended. Sherwood will issue periodic changes to the catalog. If there is any discrepancy or question between these lists and the CGA V-1 and S-1.1 pamphlets, the CGA V-1 and S-1.1 pamphlets take precedence. Sherwood Cylinder Valve Series Abbreviation Chart Abbreviation Sherwood Valve Series AVB Small Cylinder Acetylene Wrench-Operated Valves AVBHW Small Cylinder Acetylene Handwheel-Operated Valves AVMC Small Cylinder Acetylene Wrench-Operated Valves AVMCHW Small Cylinder Acetylene Handwheel-Operated Valves AVWB Small Cylinder Acetylene Wrench-Operated Valves — WB Style BV Hi/Lo Valves with Built-in Regulator DF* Alternative Energy Valves GRPV Residual Pressure Valves GV Large Cylinder Acetylene Valves GVT** Vertical Outlet Acetylene Valves KVAB Post Medical Valves KVMB Post Medical Valves NGV Industrial and Chrome-Plated Valves YVB† Vertical Outlet Oxygen Valves 1 * DF Valves can be used with all gases; however, the outlet will always be ⁄4"–18 NPT female.
    [Show full text]
  • Review of the Molluscicide Metaldehyde in the Environment Environmental Science Water Research & Technology
    Volume 3 Number 3 May 2017 Pages 381–574 Environmental Science Water Research & Technology rsc.li/es-water ISSN 2053-1400 CRITICAL REVIEW G. R. Fones et al. Review of the molluscicide metaldehyde in the environment Environmental Science Water Research & Technology View Article Online CRITICAL REVIEW View Journal | View Issue Review of the molluscicide metaldehyde in the Cite this: Environ. Sci.: Water Res. environment Technol., 2017, 3,415 G. D. Castle,a G. A. Mills,b A. Gravell,c L. Jones,d I. Townsend,d D. G. Camerone and G. R. Fones *a Metaldehyde is the active ingredient in most slug pellets used to protect crops. This molluscicide is consid- ered an emerging pollutant and is frequently detected in surface water bodies above the EU statutory drinking water limit of 0.1 μgL−1 for a pesticide. This presents a challenge for providers of drinking water. Received 4th February 2017, Understanding the sources, transport and environmental fate of this compound is therefore important. This Accepted 10th April 2017 critical review discusses these aspects including monitoring and analytical techniques used for the detec- tion of metaldehyde in environmental matrices. Novel techniques used for the removal of metaldehyde DOI: 10.1039/c7ew00039a from drinking water are presented together with potential catchment management strategies and initiatives rsc.li/es-water useful for the mitigation of this molluscicide in the environment. Creative Commons Attribution 3.0 Unported Licence. Water impact Metaldehyde is a potent molluscicide and is applied to land as baited-pellets. Due to its physicochemical properties, metaldehyde runs off readily from fields and enters surface water bodies where often it can be present at drinking water capitation sites at elevated concentrations.
    [Show full text]
  • Chloroplatinic Acid Hydrate
    Chloroplatinic acid hydrate sc-239532 Material Safety Data Sheet Hazard Alert Code Key: EXTREME HIGH MODERATE LOW Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME Chloroplatinic acid hydrate STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY0 HEALTH3 HAZARD INSTABILITY0 SUPPLIER Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800 EMERGENCY: ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 SYNONYMS Cl6-H2-Pt, H2PtCl6, "chloroplatinic (IV) acid", "chloroplatinic acid", "chlorplatinic acid", "dihydrogen hexachloroplatinate", "hydrogen hexachlorplatinate", "platinum chloride", "acid platinic chloride" Section 2 - HAZARDS IDENTIFICATION CHEMWATCH HAZARD RATINGS Min Max Flammability: 0 Toxicity: 3 Body Contact: 3 Min/Nil=0 Low=1 Reactivity: 0 Moderate=2 High=3 Chronic: 2 Extreme=4 CANADIAN WHMIS SYMBOLS 1 of 9 EMERGENCY OVERVIEW RISK Toxic if swallowed. Causes burns. Risk of serious damage to eyes. May cause SENSITISATION by inhalation and skin contact. POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS SWALLOWED ! Toxic effects may result from the accidental ingestion of the material; animal experiments indicate that ingestion of less than 40 gram may be fatal or may produce serious damage to the health of the individual. ! The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion. ! Ingestion of acidic corrosives may produce burns around and in the mouth. the throat and esophagus. EYE ! The material can produce chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,820,674 Shiozawa Et Al
    United States Patent (19) 11 Patent Number: 4,820,674 Shiozawa et al. 45) Date of Patent: Apr. 11, 1989 54 PROCESS FOR PREPARING A 58) Field of Search ....................... 502/169, 172, 230; HYDROSLYLATION CATALYST 556/479, 136; 549/206, 211 75 Inventors: Kouji Shiozawa, Saitama; Yoshiharu (56) References Cited Okumura, Tokyo; Chihiro Imai, U.S. PATENT DOCUMENTS Kanagawa; Nobukazu Okamoto, 3,220,972 11/1965 Lamoreaux ......................... 502/169 Saitama, all of Japan 3,624,119 11/1971 Rothe.................................. 502/169 73) Assignee: Toa Nenryo Kogyo Kabushiki Kaisha, 3,814,731 6/1974 Nitzsche .............................. 502/169 Tokyo, Japan Primary Examiner-Patrick P. Garvin Assistant Examiner-Elizabeth Irzinski 21 Appl. No.: 149,092 Attorney, Agent, or Firm-Wenderoth, Lind and Ponack 22 Filed: Jan. 27, 1988 57 ABSTRACT A process for preparing a hydrosilylation catalyst by 30 Foreign Application Priority Data dissolving chloroplatinic acid H2PtCl6 in a cyclic ether or cyclic ester containing at least 3 carbon atoms, and Jan. 29, 1987 JP Japan .................................. 62-18916 maintaining the resulting solution at a temperature of at (51 Int. Cl. .............................................. B01J 31/00 least 3O C. 52 U.S. Cl. .................................... 502/169; 502/172; 502/230 4. Claims, No Drawings 4,820,674 1. 2 the resulting solution at a temperature of at least 30 C., PROCESS FOR PREPARING A preferably from 50° to 120° C. HYDROSILYLATION CATALYST DETAILED DESCRIPTION OF THE BACKGROUND OF THE INVENTION INVENTION This invention relates to a process for preparing a A process for preparing a hydrosilylation catalyst hydrosilylation catalyst which is preferably used in according to the present invention will be fully de synthesizing a silane coupling agent and, more particu scribed hereinafter.
    [Show full text]
  • Sodium Hydroxide, Solution (Material Safety Data Sheet)
    3/7/2018 Report | CAMEO Chemicals | NOAA Print Chemical Datasheet SODIUM HYDROXIDE SOLUTION Chemical Identifiers CAS Number UN/NA Number DOT Hazard Label USCG CHRIS Code 1310-73-2 1824 Corrosive CSS NFPA 704 Diamond Hazard Value Description 0 Health 3 Can cause serious or permanent injury. 3 1 Flammability 0 Will not burn under typical fire conditions. Normally stable but can become unstable at elevated temperatures and Instability 1 pressures. Special (NFPA, 2010) NIOSH Pocket Guide International Chem Safety Card Sodium hydroxide SODIUM HYDROXIDE General Description A colorless liquid. More dense than water. Contact may severely irritate skin, eyes, and mucous membranes. Toxic by ingestion. Corrosive to metals and tissue. Hazards Reactivity Alerts none Air & Water Reactions Slowly absorbs carbon dioxide from the air to give solid products as crusts or precipitates. Water soluble. Dilution with water liberates heat, possibly enough to cause local boiling and spattering. Fire Hazard Excerpt from ERG Guide 154 [Substances - Toxic and/or Corrosive (Non-Combustible)]: https://cameochemicals.noaa.gov/report?key=CH1499 1/5 3/7/2018 Report | CAMEO Chemicals | NOAA Non-combustible, substance itself does not burn but may decompose upon heating to produce corrosive and/or toxic fumes. Some are oxidizers and may ignite combustibles (wood, paper, oil, clothing, etc.). Contact with metals may evolve flammable hydrogen gas. Containers may explode when heated. For electric vehicles or equipment, ERG Guide 147 (lithium ion batteries) or ERG Guide 138 (sodium batteries) should also be consulted. (ERG, 2016) Health Hazard Causes severe burns of eyes, skin, and mucous membranes. (USCG, 1999) Reactivity Profile SODIUM HYDROXIDE SOLUTION refers to an aqueous solution of sodium hydroxide.
    [Show full text]
  • UNITED STATES PATENT OFFICE 2,499,833 METEOD of MARING FLUORNATED ORGANIC COMPOUNDS Melvin A
    Patented Mar. 7, 1950 2,499,833 UNITED STATES PATENT OFFICE 2,499,833 METEOD OF MARING FLUORNATED ORGANIC COMPOUNDS Melvin A. Perkins, Wilmington, Del, assignor to the United States of America as represented by the United States Atomic Energy Commission No Drawing. Application July 2, 1944, Serial No. 546,916 3 Claims. (C. 260-648) 2 This invention relates to new halogen com silver difluoride to replace hydrogen and saturate pounds and to methods for their production. any residual double bonds. It is an object of the invention to provide prod The products have densities in the neighbor lucts of high thermal stability and inertness to hood of 1.8 and refractive indices of about 1.3 chemical reagents, particularly oxidizing agents, s (sodium-D-line) at 23° C. They are usually ob acids, bases and metals. A further object is the tained in the crude state as mixtures of compounds provision of products suitable for use as heat of the molecular formulae CaF16, CaClF15, CaCl2F14 transfer media, lubricants and Sealants. Further and other chloro-fluorocarbons, from which the objects will appear from the following detailed individual constituents may be obtained by frac description of the invention. tional distillation. The products possess a high In my United States patent application Serial degree of stability to oxidizing agents, acids, bases Number 546,915 entitled "Halogenated organic and metals, and the stability increases with the compounds and method of making,' filed on the degree of fluorination. Thus the compound CaF16 Same date herewith, which became U. S. Patent is the most stable compound of the group and the No.
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Chemistry – Writing Equations
    Support Information 1, The following elements are diatomic; H2, O2, N2, F2, Cl2, Br2, I2, and At2. 2, Rules for naming compounds: If there are two elements in a compound the non-metal will end in –ide. e.g. CaCl2– calcium chloride, K2O – potassium oxide, Rb3P – rubidium phosphide If the compound contains a metal, non-metal and oxygen the non-metal will end in –ate. If the metal has variable ions, the valency of the ion present must be shown in brackets e.g. Fe2O3 iron (III) oxide and FeO iron (II) oxide 3, Examples of acids (all are soluble): Strong Acids Weak Acids Hydrochloric acid (HCl) Ethanoic Acid (CH3COOH) Sulfuric acid (H2SO4) Propanoic Acid (CH3CH2COOH) Nitric acid (HNO3) Carbonic Acid (H2CO3) Phosphoric acid (H3PO4) 4, Examples of soluble bases (alkalis): Strong Bases Weak Bases Sodium hydroxide (NaOH) Ammonia (NH3) Potassium hydroxide (KOH) Potassium hydrogen carbonate Note: Any base containing an alkali metal (Group 1) will be soluble. 5, Examples of types of insoluble bases: Metal oxides e.g. copper oxide (CuO) Metal carbonates e.g. calcium carbonate (CaCO3) Metal hydroxides e.g. magnesium hydroxide (Mg(OH)2) 6, Examples of types of salts (formed when an acid reacts with a metal or a base) Hydrochloric acid forms – chlorides ethanoic acid forms – ethanoates Sulfuric acid forms - sulfates propanoic acid forms - propanoates Nitric acid forms – nitrates Phosphoric acid forms - phosphates Exception: carbonic acid formed when carbon dioxide reacts with water – forms carbonates and hydrogen carbonates when reacting with a base
    [Show full text]
  • Used at Rocky Flats
    . TASK 1 REPORT (Rl) IDENTIFICATION OF CHEMICALS AND RADIONUCLIDES USED AT ROCKY FLATS I PROJECT BACKGROUND ChemRisk is conducting a Rocky Flats Toxicologic Review and Dose Reconstruction study for The Colorado Department of Health. The two year study will be completed by the fall of 1992. The ChemRisk study is composed of twelve tasks that represent the first phase of an independent investigation of off-site health risks associated with the operation of the Rocky Flats nuclear weapons plant northwest of Denver. The first eight tasks address the collection of historic information on operations and releases and a detailed dose reconstruction analysis. Tasks 9 through 12 address the compilation of information and communication of the results of the study. Task 1 will involve the creation of an inventory of chemicals and radionuclides that have been present at Rocky Flats. Using this inventory, chemicals and radionuclides of concern will be selected under Task 2, based on such factors as the relative toxicity of the materials, quantities used, how the materials might have been released into the environment, and the likelihood for transport of the materials off-site. An historical activities profile of the plant will be constructed under Task 3. Tasks 4, 5, and 6 will address the identification of where in the facility activities took place, how much of the materials of concern were released to the environment, and where these materials went after the releases. Task 7 addresses historic land-use in the vicinity of the plant and the location of off-site populations potentially affected by releases from Rocky Flats.
    [Show full text]