LINUS PAULING Linus Carl Pauling Is a Noble Prize Chemist in 1954, Who

Total Page:16

File Type:pdf, Size:1020Kb

LINUS PAULING Linus Carl Pauling Is a Noble Prize Chemist in 1954, Who 25 WORDS: LINUS PAULING Linus Carl Pauling is a noble prize chemist in 1954, who was born in Portland, Oregon, 1901. He published about 350 experiments that including the diffraction of X-rays, radii structure, Van Der Waals forces, crystals’ molecules rotates motion, etc. One of his famous books is “A Scientist Speak Out on Humanism and World Survival”. Linus Pauling is one of the most important 20th century scientists. He was known for discoveries like resonance and the secondary protein structures of the alpha helix and beta pleated sheet. Linus Carl Pauling was an American scientist, peace activist, author, and educator. He was among the first scientists to work in the fields of quantum chemistry, molecular biology, and orthomolecular medicine. Linus Carl Pauling was an American scientist, peace activist, author and educator. He is considered one of the most influential chemists of the 20th century and ranks among the most important scientists in history. Linus Pauling; Linus Pauling was an influential American chemist in the 20th century. He was one of the two people that won Nobel Prizes from different fields. Linus Pauling was a chemist who won the Nobel Prize in Chemistry for elucidating the nature of chemical bonds and the structure of molecules. He also won the Nobel Peace Prize for advocating nuclear disarmament. Linus Carl Pauling, an American chemist, introduced the concept of electronegativity and orbital hybridization. He won the Nobel Prize in Chemistry in 1954 for his research on chemical bonds. Linus Pauling; Linus Pauling won two nobel prizes in two different fields. He developed the theory for hybridization of atomic orbitals, utilized X-ray crystallography to study protein structure, and became a pacifist after WWII. Linus Pauling was a famous chemist who lived from 1901-1994. He created an electronegativity scale, modeled protein structures, and did many other things. He is one of very few to receive two Nobel Prizes.- American chemist and biologist, Linus Pauling received two Nobel peace prize for chemistry and ending the century. Linus Pauling was born in February 28, 1901, and he is an American scientist, peace activist, author and educator. He was one of the mot influential chemists in history in any field of 20th century Linus Pauling;was an American scientist, peace activist, author and educator. He was best known for elucidating the nature of chemical bonds and the structure of molecules advocating nuclear disarmament. Linus Pauling, an American chemist, was awarded a Nobel Prize in Chemistry. Pauling established the concept of electronegativity and resonance. Pauling also researched protein structures. Linus Pauling was an American scientist, peace activist, author and educator. He is best known as the Vitamin C advocate and a two-time winner of the Nobel Prize. Linus Pauling, a peace activist, educator, author, and American scientist that won multiple Nobel Prizes for his works. He was know for the discoveries nature of chemical bonds and the structures of molecules. Linus Pauling was one of the first chemist to work on quantum chemistry, molecular biology, and orthomolecular medicine. He was one of the most influential chemist in history. He was born on 2/28/1901 and died on 8/19/1994. Linus Pauling was born on February 28, 1901. He worked in the field of quantum chemistry and wrote several books about it. He was also against war and won a Nobel Peace Prize. Linus Pauling, ( Feb. 28 1901- Aug. 19, 1994) was an English scientist who worked mainly on biology, quantum chemistry, and other molecular medicine, mainly contributing to various fields including chemical bonds and electronegativity. Linus Pauling was an American scientist, author, and educator. He was one of the most influential chemists of the 20th century. Pauling was known for elucidating the nature of chemical bonds and structures of molecules. Linus Pauling was an American scientist, peace activist, author, and educator. He was among the first scientists to work in the fields of quantum chemistry, molecular biology, and orthomolecular medicine. Linus Pauling was a chemist and peace activist who won a Nobel Chemistry Prize for his work in chemical bonds and a Nobel Peace Prize for his campaign against nuclear warfare. Linus Carl Pauling was born in Portland, Oregon, on 28th February, 1901, he entered the Oregon State College in 1917, receiving the degree of B.Sc. in chemical engineering in 1922. Linus Carl Pauling was one of the most important American scientists and chemists in history. His modeling in crystal and protein structures was used to discover the structure of DNA. Linus Pauling was an American scientist, author and educator. He influence chemists and was the most important scientists in any field of the 20th century. Linus Pauling was an American scientist, peace activist, author and educator. He was one of the most influential chemists in history and ranks among the most important scientists. Linus Pauling was a very important America chemist that introduced the concept of electro negativity. He was awarded a Nobel prize in chemistry and a Nobel peace prize. The first scientists to work in the fields of quantum chemistry, molecular biology and orthomolecular medicine. He is one of a small number of individuals to have been awarded more than one Nobel Prize Linus Pauling; Linus Pauling was one of the most influential chemists in history. He worked in the fields of quantum chemisty, molecular biology, and orthomolecular medicine. Pauling went on to win two Nobel prizes. Linus Carl Pauling was an American scientist. He accepted a job at Caltech in the year 1927. During his time there, he became interested in biomolecules. Linus Pauling was an American scientist and peace activist that had received the Noble Price in Chemistry and the Nobel Peace Price. He discovered the nature of chemical bonds. Linus Pauling was an American scientist and was one of the first scientists to work in quantum chemistry, molecular biology, and orthomolecular medicine. He has been awarded more than one Nobel Prize. Pauling, a winner of two Nobel prizes, was an American biochemist who devoted his life to quantum chemistry and molecular biology. He established the concepts of orbital hybridization, electronegativity, carbon tetravalency, and modeled protein structures. Linus Pauling was among the pioneers of quantum chemistry, molecular biology, and orthomolecular medicine. He received two Nobel Prizes for his research of the chemical bond and for his campaign against nuclear weapons testing. Linus Carl Pauling had an interest in molecular structure and was inspired of the Lewis Structure theory. He tried conducting an experiment using iron in a magnetic field. Linus Pauling, was an American scientist, peace activist, and teacher. He was the only person other than Marie Curie to receive a Nobel Prize in two different fields. His discoveries included the concepts of resonance and electronegativity.-- Linus Pauling, an American scientist, peace activist, author and educator. In the 1930s, he began publishing papers on the nature of the chemical bond. In 1954, he received the Nobel Prize in chemistry. Linus Carl Pauling was an American scientist, peace activist, author, and educator. He is one of the few people in the world who have been rewarded with more than one nobel prize. Linus Carl Pauling was an American scientist, peace activist and educator. Linus Pauling was on of the first scientist to work in the fields of quantum physics, molecular biology and orthomolecular medicine. He was awarded the Nobel peace prize and was one of the few people to win two Nobel prizes in different fields. Linus Pauling, an American scientist, received a Nobel prize in chemistry for his work in the nature of chemical bond and a Nobel peace prize for his campaign against nuclear weapons testing. Linus Pauling: first scientists to work in the fields of quantum chemistry, molecular biology and orthomolecular medicine. He was the few who have been awarded more than one Nobel Prize. .
Recommended publications
  • The Pedersen Memorial Issue
    springer.com Chemistry : Organic Chemistry The Pedersen Memorial Issue Foreword: Charles J. Pedersen (1904-1989), Nobel Laureate in Chemistry (1987) This issue is dedicated to the memory of the late Charles J. Pedersen in recognition of his outstanding contribution to scientific research, culminating in his discovery of crown ethers and their remarkable cation complexing properties and his receipt of the 1987 Nobel Prize in Chemistry. Charlie's origin and early years in Korea did not portend the creative work in chemistry which would characterize his later life. However, we can see in his early years the influence of his Norwegian father and Japanese mother who considered his formal education to be of utmost importance. At the age of eight, he was sent abroad to Japan for schooling, first at a convent school in Nagasaki, and two years later at a French-American preparatory school in Yokohama run by a Marianist order of Catholic priests and brothers. The latter group encouraged him to attend the order's University of Dayton in Ohio where he received a bachelors degree in Springer chemical engineering. Charlie's academic experiences, his employment with du Pont, and the Softcover reprint of the creative spark which he manifested at an early stage of his scientific career are detailed in the 1st original 1st ed. 1992, VI, paper in this issue by Herman Schroeder. Schroeder had a long-time association with Charlie at edition 406 p. du Pont as a co-worker, supervisor, and friend. His recollections provide insight into Charlie's creative mind. In addition, they make it clear that a long period of creative work preceded the accidental discovery of the first synthetic crown ether.
    [Show full text]
  • What Use Is Chemistry?
    2 Inspirational chemistry What use is chemistry? Index 1.1 1 sheet This activity is based on a Sunday Times article by Sir Harry Kroto, a Nobel prize winning chemist who discovered a new allotrope of carbon – buckminsterfullerene or ‘bucky balls’. The article appeared on November 28, 2004 and is reproduced overleaf as a background for teachers. The aim is to introduce students to the scope of modern chemistry and the impact that it has on their lives, even in areas that they may not think of as related to chemistry. An alternative exercise for more able students would be to research what was used before chemical scientists had produced a particular new product or material (eg silk or wool stockings before nylon, leather footballs before synthetics, grated carbolic soap before shampoo) and then to write about the difference it would make to their lives if they did not have the modern product. Students will need: ■ Plenty of old magazines and catalogues (Argos catalogues are good as virtually everything in them would not exist without modern chemistry) ■ Large sheets of sugar paper ■ Glue and scissors. It works well if students produce the poster in groups, but then do the written work by themselves. The activity could be set for homework. Inspirational chemistry 3 What use is chemistry? Some years ago I was delighted chemistry-related industries make a to receive an honorary degree £5 billion profit on a £50 billion from Exeter University turnover, the apparent government recognising my contributions to inaction over the looming disaster chemistry – especially the is scarcely credible.
    [Show full text]
  • The 2016 Nobel Prize in Chemistry
    Pure Appl. Chem. 2016; 88(10-11): 917–918 Editorial Hugh D. Burrows* and Richard M. Hartshorn* The 2016 Nobel Prize in Chemistry DOI 10.1515/pac-2016-2005 Keywords: Ben L. Feringa; Jean-Pierre Sauvage; J. Fraser Stoddart; Nobel Prize in Chemistry; 2016. Pure and Applied Chemistry warmly congratulates Jean-Pierre Sauvage (University of Strasbourg, France), Sir J. Fraser Stoddart (Northwestern University, Evanston, IL, USA), and Bernard (Ben) L. Feringa (Univer- sity of Groningen, the Netherlands) on their award of the 2016 Nobel Prize in Chemistry. The citation from the Royal Swedish Academy of Sciences states that the award is “for the design and synthesis of molecu- lar machines”. Their work encompasses a broad spectrum of Chemistry, from elegant synthetic studies of catenanes, rotaxanes and other formerly considered exotic molecules, through coordination chemistry, and electron transfer reactions, to molecular switches and rotors driven by light and other external sources. They have all participated actively in IUPAC endorsed meetings and conference series, including the IUPAC World Congress in Chemistry, IUPAC International Conferences on Organic Synthesis (ICOS), Physical Organic Chemistry (ICPOC), and Coordination Chemistry (ICCC), and IUPAC International Symposia on Macrocyclic Chemistry (ISMC), Organometallic Chemistry Directed Towards Organic Synthesis (OMCOS), Novel Aromatic Compounds (ISNA), Carbohydrate Chemistry (ICS), the Chemistry of Natural Products ISCNP), and Photo- chemistry. Pure Appl. Chem. publishes collections of papers based upon authoritative lectures presented at such IUPAC endorsed events, in addition to IUPAC Recommendations, and Technical Reports. We are very pleased to highlight the following publications from these three Nobel Laureates that have been published in Pure and Applied Chemistry as a result of their involvement in these conferences.
    [Show full text]
  • Chartered Status Charteredeverything You Need Tostatus Know Everything You Need to Know
    Chartered Status CharteredEverything you need toStatus know Everything you need to know www.rsc.org/cchem www.rsc.org/cchem ‘The best of any profession is always chartered’ The RSC would like to thank its members (pictured top to bottom) Ben Greener, Pfizer, Elaine Baxter, Procter & Gamble, and Richard Sleeman, Mass Spec Analytical Ltd, for their participation and support . Chartered Status | 1 Contents About chartered status 3 Why become chartered? 3 What skills and experience do I need? 3 The professional attributes for a Chartered Chemist 5 Supporting you throughout the programme yThe Professional Development Programme 5 yThe Direct Programme 7 How to apply 7 Achieving Chartered Scientist status 8 Revalidation 8 The next step 8 Application form 9 2 | Chartered Status ‘Having a professionally recognised qualification will build my external credibility’ Elaine Baxter BSc PhD MRSC Procter & Gamble Elaine Baxter is a Senior Scientist at Procter & Gamble (P&G). Since joining the company, she has had roles in formulation, process and technology development in skin and shaving science. She graduated in 2001, before completing a PhD on synthetic inorganic chemistry of platinum dyes with applications in solar cells. Elaine is currently working towards Chartered Chemist status through the Professional Development Programme. Why do you want to achieve Chartered Chemist status? My role involves science communication with people such as dermatologists, academics and the media; having a professionally recognised qualification will build my external credibility with these professionals. How do you feel the programme has worked for you? Working towards achieving the attributes required for the CChem award has presented me with opportunities to share my industry knowledge and help others.
    [Show full text]
  • Pauling-Linus.Pdf
    NATIONAL ACADEMY OF SCIENCES L I N U S C A R L P A U L I N G 1901—1994 A Biographical Memoir by J A C K D. D UNITZ Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1997 NATIONAL ACADEMIES PRESS WASHINGTON D.C. LINUS CARL PAULING February 28, 1901–August 19, 1994 BY JACK D. DUNITZ INUS CARL PAULING was born in Portland, Oregon, on LFebruary 28, 1901, and died at his ranch at Big Sur, California, on August 19, 1994. In 1922 he married Ava Helen Miller (died 1981), who bore him four children: Linus Carl, Peter Jeffress, Linda Helen (Kamb), and Edward Crellin. Pauling is widely considered the greatest chemist of this century. Most scientists create a niche for themselves, an area where they feel secure, but Pauling had an enormously wide range of scientific interests: quantum mechanics, crys- tallography, mineralogy, structural chemistry, anesthesia, immunology, medicine, evolution. In all these fields and especially in the border regions between them, he saw where the problems lay, and, backed by his speedy assimilation of the essential facts and by his prodigious memory, he made distinctive and decisive contributions. He is best known, perhaps, for his insights into chemical bonding, for the discovery of the principal elements of protein secondary structure, the alpha-helix and the beta-sheet, and for the first identification of a molecular disease (sickle-cell ane- mia), but there are a multitude of other important contri- This biographical memoir was prepared for publication by both The Royal Society of London and the National Academy of Sciences of the United States of America.
    [Show full text]
  • John D. Roberts
    John D. (Jack) Roberts 1918 – 2016 John D. Roberts, the Institute Professor of Chemistry, Emeritus, and one of the most influential chemists of the 20th century, passed away on October 29, 2016 at the age of 98 following a stroke. John Dombrowski “Jack” Roberts was born on June 8, 1918 in Los Angeles, California. He spent most of his 98 years in Southern California and witnessed first hand its transformation from a reasonably under- populated region into one of the world’s busiest metropolitan areas. In fact, Jack (or “JDR” as he was oft referred in the labs at Caltech) was born essentially right underneath what is now the famous four level interchange connecting the 101 and 110 freeways in modern day downtown LA. JDR also witnessed the growth and explosion of science and in particular chemistry over that century span. As summarized in his J. Org. Chem. 2009, 74, 4897-4917 article and numerous talks over the later part of his life, the explosion of instrumentation capabilities available to the organic chemist progressed in the course of his scientific career from no less than the melting point apparatus to some of the most advanced instruments on the planet. Without doubt, the advances most influential to JDR’s monumental career in chemistry were the advent of nuclear magnetic resonance (NMR) spectroscopy and the accompanying explosion in computing. Combined, these tools greatly facilitated the insightfully designed experimentation and careful analyses that became the hallmark of JDR’s career. It is clear that Jack’s thoroughgoing nature combined with his deep understanding of instrumentation and fundamental chemistry served as an inspiration to nearly four generations of scientists.
    [Show full text]
  • Walter Loveland Oral History Interview, “Of Glenn Seaborg and Super Heavy Elements: a Nuclear Chemist Looks Back”, July Page 3 of 24 22, 2015
    Walter Loveland Oral History Interview, July 22, 2015 Title “Of Glenn Seaborg and Super Heavy Elements: A Nuclear Chemist Looks Back” Date July 22, 2015 Location Valley Library, Oregon State University. Summary In the interview, Loveland discusses his colorful family background and upbringing in blue-collar suburban Chicago. He also describes his earliest interests in science, his path through undergraduate and graduate studies, and those who influenced him as he made his way through his higher education, including his contacts with luminaries like Charles Coryell and John Huizenga. From there, Loveland begins to reflect on his long association with both Oregon State University and the University of California, Berkeley. In so doing, he shares his memories of his initial impressions of OSU and Corvallis, his first contacts with Glenn Seaborg, a few initial research experiences in research, and his impressions of Seaborg as a personality. He likewise recounts his interactions with Linus Pauling as well as major figures in nuclear science at OSU, Chih Wang, John Ringle and Dale Trout among them. Loveland next recounts his memories of the Radiation Biology program at OSU; discusses the life and career of a former student, Sister Mary Joseph Bouchard; and comments on the climate for women and people of color in the sciences at OSU and in the community at large. Loveland's research is the next focus of the interview. In this he provides an overview of his work with super-heavy ions while also describing his research collaborations and the frequent trips to Berkeley that these collaborations demanded. He also recounts his interactions with OSU's Campus Radiation Safety Committee, his disinterest in working at the Hanford Nuclear Site, his experience of co-authoring two books with Glenn Seaborg, and hindrances to scientific advancement that he has noted as a result of denials of security clearance.
    [Show full text]
  • Dr. Linus Pauling Named Recipient of Priestley Memorial Award
    Dr. Linus Pauling named recipient of Priestley Memorial Award December 16, 1968 Dr. Linus Pauling, Professor of Chemistry in Residence at the University of California, San Diego, was recently named the 18th recipient of Dickinson College's Priestley Memorial Award. Presentation of the award next March 27 will be the highlight of the annual Priestley Day celebration at the Carlisle, Pa., college. Howard L. Rubendall, Dickinson president, said Pauling will be honored for his work in physical chemistry. The award is named for Joseph Priestley, discoverer of oxygen, and consists of a portrait medallion of Priestley. A check for $1,000 accompanies it. Dickinson, which owns one of the largest collections of Priestley memorabilia in America, created the award in 1952 to recognize modern scientists for research, discovery or other production benefiting mankind. Pauling is a winner of the Nobel Prize in chemistry and also holds the Nobel Peace Prize. During recent years, much of his work has been on the application of chemistry to biological and medical problems. Last spring he advanced a highly controversial theory that mental patients could well be treated by giving them "optimum amounts" of vitamins, amino acids and certain fatty acids. During the early war years, he worked on rocket propellants and other explosives but was among the scientists who opposed dropping atomic bombs on Hiroshima and Nagasaki. His work to abolish war began in 1945. Few scientists have been honored so often. Pauling holds the Roebling Medal of the Mineralogical Society, the American Chemical Society Award in Pure Chemistry, the Nichols Medal, Presidential Medal for Merit, Gibbs Medal, Richards Medal, the Gilbert Newton Lewis Medal, the Davey Medal of the Royal Society, the Thomas Addis Medal of the National Nephrosis Foundation, the Phillips Medal of the American College of Physicians and other awards.
    [Show full text]
  • The 2009 Lindau Nobel Laureate Meeting: Roger Y. Tsien, Chemistry 2008
    Journal of Visualized Experiments www.jove.com Video Article The 2009 Lindau Nobel Laureate Meeting: Roger Y. Tsien, Chemistry 2008 Roger Y. Tsien1 1 URL: https://www.jove.com/video/1575 DOI: doi:10.3791/1575 Keywords: Cellular Biology, Issue 35, GFP, Green Fluorescent Protein, IFPs, jellyfish, PKA, Calmodulin Date Published: 1/13/2010 Citation: Tsien, R.Y. The 2009 Lindau Nobel Laureate Meeting: Roger Y. Tsien, Chemistry 2008. J. Vis. Exp. (35), e1575, doi:10.3791/1575 (2010). Abstract American biochemist Roger Tsien shared the 2008 Nobel Prize in Chemistry with Martin Chalfie and Osamu Shimomura for their discovery and development of the Green Fluorescent Protein (GFP). Tsien, who was born in New York in 1952 and grew up in Livingston New Jersey, began to experiment in the basement of the family home at a young age. From growing silica gardens of colorful crystallized metal salts to attempting to synthesize aspirin, these early experiments fueled what would become Tsien's lifelong interest in chemistry and colors. Tsien's first official laboratory experience was an NSF-supported summer research program in which he used infrared spectroscopy to examine how metals bind to thiocyanate, for which he was awarded a $10,000 scholarship in the Westinghouse Science Talent Search. Following graduation from Harvard in 1972, Tsien attended Cambridge University in England under a Marshall Scholarship. There he learned organic chemistry --a subject he'd hated as an undergraduate-- and looked for a way to synthesize dyes for imaging neuronal activity, generating BAPTA based optical calcium indicator dyes. Following the completion of his postdoctoral training at Cambridge in 1982, Tsien accepted a faculty position at the University of California, Berkeley.
    [Show full text]
  • CHAD A. MIRKIN, PH.D. Northwestern University
    CHAD A. MIRKIN, PH.D. Northwestern University, Department of Chemistry 2145 Sheridan Road, Evanston, IL 60208-3113 Phone: 847-491-2907 Fax: 847-467-5123 Email: [email protected] Education 1991 NSF Postdoctoral Fellow in Chemistry, Massachusetts Institute of Technology, Cambridge, MA 1989 Ph.D. in Inorganic & Organic Chemistry, The Pennsylvania State University, State College, PA 1986 B.S. in Chemistry (Phi Beta Kappa), Dickinson College, Carlisle, PA Professional Experience 2008-present Director, International Institute for Nanotechnology; George B. Rathmann Professor of Chemistry, Medicine, Materials Science & Engineering, Biomedical Engineering, Chemical & Biological Engineering, Northwestern University 2004-2008 Director, International Institute for Nanotechnology; George B. Rathmann Professor of Chemistry, Medicine, and Materials Science & Engineering, Northwestern University 2000-2004 Director, Center for Nanofabrication and Molecular Self-Assembly and George B. Rathmann Professor of Chemistry, Northwestern University 1997-2000 Charles E. and Emma H. Morrison Professor of Chemistry, Northwestern University 1995-1997 Associate Professor, Department of Chemistry, Northwestern University 1991-1995 Assistant Professor, Department of Chemistry, Northwestern University Awards and Honors (selected, over 230 national and international total) 2020 ACS Division of Colloid and Surface Science Award for Outstanding Achievement in Nanoscience; AAAS Philip Hauge Abelson Award 2019 Kabiller Prize in Nanoscience and Nanomedicine; SCI Perkin
    [Show full text]
  • Otto Hahn Otto Hahn
    R.N. 70269/98 Postal Registration No.: DL-SW-1/4082/15-17 ISSN : 0972-169X Date of posting: 26-27 of advance month Date of publication: 24 of advance month May 2017 Vol. 19 No. 8 Rs. 5.00 Otto Hahn Discoverer of Nuclear Fission Editorial: Consolidating 35 science communication activities in our country Otto Hahn: Discoverer of 34 Nuclear Fission Keep Your Eyes Healthy 31 Phenol: A Serious 30 Environmental Threat Accidental Discoveries in 28 Medical Science Cures for haemorrhoids— 24 Simple treatments and Surgeries Recent developments 21 in science and technology 36 Editorial Consolidating science communication activities in our country Dr. R. Gopichandran It is well known that the National Council of Science Museums of India’s leadership in science technology and innovation (STI) across the Ministry of Culture, Government of India, the National Institute the bilateral and multilateral framework also. The news feature service of Science Communication and Information Resources (NISCAIR) and the portal activity have well defined action plans to reach out to of CSIR, the National Council for Science and Technology fellow institutions and citizens with suitably embellished platform Communication (NCSTC) of the Department of Science and and opportunities for all to deliver together. Technology (DST), Government of India and Vigyan Prasar, also While these are interesting and extremely important, especially of DST, have been carrying out excellent science communication because they respond to the call to upscale and value add science activities over the years. It cannot be denied that the reach has been and technology communication, it is equally important to document quite significant collectively.
    [Show full text]
  • 2016 Nobel Prize in Chemistry
    2016 NOBEL PRIZE IN CHEMISTRY The Nobel Prize in Chemistry 2016 was awarded to Jean-Pierre Sauvage, Sir Fraser Stoddart, and Bernard Feringa for the design and production of molecular machines with controllable movements. This year’s chemistry Nobel Prize is awarded for work on molecular machines which are a thousand times thinner than a human hair. The machines are formed from mechanically interlocked ring- shaped molecules which are able to move Ring-SHAPED MOLECULE 1 Ring-SHAPED MOLECULE 2 BINDING SITE relative to each other. UV 20˚C UV, 60˚C ORGANIC-BASED CORDINATING RINGS ‘SHUTLE’ Bulky Groups CENTRAL COPER ION ‘STATIONS’ REST OF MOLECULE DOUBLE BOND; ISOMERISATION DRIVES ROTATION Jean-Pierre Sauvage created a Fraser Stoddart made a ring-shaped Ben Feringa produced the pair of interlocking rings (called molecule attached to an axle (a first molecular motor by a catenane). One ring could rotaxane) which could shuttle up constructing a molecule that rotate around the other when and down. He also helped produce responded to light and heat and energy was added. a rotaxane-based computer chip. spun in a particular direction. WHY DOES THIS RESEARCH MATER? Research is investigating using molecular machines to transport and release drugs to specific cells in the body. They could also find future uses in ? electronic devices. The tasks they can accomplish are constantly expanding, so they may have further as yet unforeseen uses. Nobel Prize in Physics Press release: http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2016/press.html © Compound Interest/Andy Brunning – compoundchem.com C COMPOUND INTEREST Shared under a CC Attribution-NonCommercial-NoDerivatives licence BY NC ND.
    [Show full text]