LINUS PAULING Linus Carl Pauling Is a Noble Prize Chemist in 1954, Who
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Pedersen Memorial Issue
springer.com Chemistry : Organic Chemistry The Pedersen Memorial Issue Foreword: Charles J. Pedersen (1904-1989), Nobel Laureate in Chemistry (1987) This issue is dedicated to the memory of the late Charles J. Pedersen in recognition of his outstanding contribution to scientific research, culminating in his discovery of crown ethers and their remarkable cation complexing properties and his receipt of the 1987 Nobel Prize in Chemistry. Charlie's origin and early years in Korea did not portend the creative work in chemistry which would characterize his later life. However, we can see in his early years the influence of his Norwegian father and Japanese mother who considered his formal education to be of utmost importance. At the age of eight, he was sent abroad to Japan for schooling, first at a convent school in Nagasaki, and two years later at a French-American preparatory school in Yokohama run by a Marianist order of Catholic priests and brothers. The latter group encouraged him to attend the order's University of Dayton in Ohio where he received a bachelors degree in Springer chemical engineering. Charlie's academic experiences, his employment with du Pont, and the Softcover reprint of the creative spark which he manifested at an early stage of his scientific career are detailed in the 1st original 1st ed. 1992, VI, paper in this issue by Herman Schroeder. Schroeder had a long-time association with Charlie at edition 406 p. du Pont as a co-worker, supervisor, and friend. His recollections provide insight into Charlie's creative mind. In addition, they make it clear that a long period of creative work preceded the accidental discovery of the first synthetic crown ether. -
What Use Is Chemistry?
2 Inspirational chemistry What use is chemistry? Index 1.1 1 sheet This activity is based on a Sunday Times article by Sir Harry Kroto, a Nobel prize winning chemist who discovered a new allotrope of carbon – buckminsterfullerene or ‘bucky balls’. The article appeared on November 28, 2004 and is reproduced overleaf as a background for teachers. The aim is to introduce students to the scope of modern chemistry and the impact that it has on their lives, even in areas that they may not think of as related to chemistry. An alternative exercise for more able students would be to research what was used before chemical scientists had produced a particular new product or material (eg silk or wool stockings before nylon, leather footballs before synthetics, grated carbolic soap before shampoo) and then to write about the difference it would make to their lives if they did not have the modern product. Students will need: ■ Plenty of old magazines and catalogues (Argos catalogues are good as virtually everything in them would not exist without modern chemistry) ■ Large sheets of sugar paper ■ Glue and scissors. It works well if students produce the poster in groups, but then do the written work by themselves. The activity could be set for homework. Inspirational chemistry 3 What use is chemistry? Some years ago I was delighted chemistry-related industries make a to receive an honorary degree £5 billion profit on a £50 billion from Exeter University turnover, the apparent government recognising my contributions to inaction over the looming disaster chemistry – especially the is scarcely credible. -
The 2016 Nobel Prize in Chemistry
Pure Appl. Chem. 2016; 88(10-11): 917–918 Editorial Hugh D. Burrows* and Richard M. Hartshorn* The 2016 Nobel Prize in Chemistry DOI 10.1515/pac-2016-2005 Keywords: Ben L. Feringa; Jean-Pierre Sauvage; J. Fraser Stoddart; Nobel Prize in Chemistry; 2016. Pure and Applied Chemistry warmly congratulates Jean-Pierre Sauvage (University of Strasbourg, France), Sir J. Fraser Stoddart (Northwestern University, Evanston, IL, USA), and Bernard (Ben) L. Feringa (Univer- sity of Groningen, the Netherlands) on their award of the 2016 Nobel Prize in Chemistry. The citation from the Royal Swedish Academy of Sciences states that the award is “for the design and synthesis of molecu- lar machines”. Their work encompasses a broad spectrum of Chemistry, from elegant synthetic studies of catenanes, rotaxanes and other formerly considered exotic molecules, through coordination chemistry, and electron transfer reactions, to molecular switches and rotors driven by light and other external sources. They have all participated actively in IUPAC endorsed meetings and conference series, including the IUPAC World Congress in Chemistry, IUPAC International Conferences on Organic Synthesis (ICOS), Physical Organic Chemistry (ICPOC), and Coordination Chemistry (ICCC), and IUPAC International Symposia on Macrocyclic Chemistry (ISMC), Organometallic Chemistry Directed Towards Organic Synthesis (OMCOS), Novel Aromatic Compounds (ISNA), Carbohydrate Chemistry (ICS), the Chemistry of Natural Products ISCNP), and Photo- chemistry. Pure Appl. Chem. publishes collections of papers based upon authoritative lectures presented at such IUPAC endorsed events, in addition to IUPAC Recommendations, and Technical Reports. We are very pleased to highlight the following publications from these three Nobel Laureates that have been published in Pure and Applied Chemistry as a result of their involvement in these conferences. -
Chartered Status Charteredeverything You Need Tostatus Know Everything You Need to Know
Chartered Status CharteredEverything you need toStatus know Everything you need to know www.rsc.org/cchem www.rsc.org/cchem ‘The best of any profession is always chartered’ The RSC would like to thank its members (pictured top to bottom) Ben Greener, Pfizer, Elaine Baxter, Procter & Gamble, and Richard Sleeman, Mass Spec Analytical Ltd, for their participation and support . Chartered Status | 1 Contents About chartered status 3 Why become chartered? 3 What skills and experience do I need? 3 The professional attributes for a Chartered Chemist 5 Supporting you throughout the programme yThe Professional Development Programme 5 yThe Direct Programme 7 How to apply 7 Achieving Chartered Scientist status 8 Revalidation 8 The next step 8 Application form 9 2 | Chartered Status ‘Having a professionally recognised qualification will build my external credibility’ Elaine Baxter BSc PhD MRSC Procter & Gamble Elaine Baxter is a Senior Scientist at Procter & Gamble (P&G). Since joining the company, she has had roles in formulation, process and technology development in skin and shaving science. She graduated in 2001, before completing a PhD on synthetic inorganic chemistry of platinum dyes with applications in solar cells. Elaine is currently working towards Chartered Chemist status through the Professional Development Programme. Why do you want to achieve Chartered Chemist status? My role involves science communication with people such as dermatologists, academics and the media; having a professionally recognised qualification will build my external credibility with these professionals. How do you feel the programme has worked for you? Working towards achieving the attributes required for the CChem award has presented me with opportunities to share my industry knowledge and help others. -
Pauling-Linus.Pdf
NATIONAL ACADEMY OF SCIENCES L I N U S C A R L P A U L I N G 1901—1994 A Biographical Memoir by J A C K D. D UNITZ Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1997 NATIONAL ACADEMIES PRESS WASHINGTON D.C. LINUS CARL PAULING February 28, 1901–August 19, 1994 BY JACK D. DUNITZ INUS CARL PAULING was born in Portland, Oregon, on LFebruary 28, 1901, and died at his ranch at Big Sur, California, on August 19, 1994. In 1922 he married Ava Helen Miller (died 1981), who bore him four children: Linus Carl, Peter Jeffress, Linda Helen (Kamb), and Edward Crellin. Pauling is widely considered the greatest chemist of this century. Most scientists create a niche for themselves, an area where they feel secure, but Pauling had an enormously wide range of scientific interests: quantum mechanics, crys- tallography, mineralogy, structural chemistry, anesthesia, immunology, medicine, evolution. In all these fields and especially in the border regions between them, he saw where the problems lay, and, backed by his speedy assimilation of the essential facts and by his prodigious memory, he made distinctive and decisive contributions. He is best known, perhaps, for his insights into chemical bonding, for the discovery of the principal elements of protein secondary structure, the alpha-helix and the beta-sheet, and for the first identification of a molecular disease (sickle-cell ane- mia), but there are a multitude of other important contri- This biographical memoir was prepared for publication by both The Royal Society of London and the National Academy of Sciences of the United States of America. -
John D. Roberts
John D. (Jack) Roberts 1918 – 2016 John D. Roberts, the Institute Professor of Chemistry, Emeritus, and one of the most influential chemists of the 20th century, passed away on October 29, 2016 at the age of 98 following a stroke. John Dombrowski “Jack” Roberts was born on June 8, 1918 in Los Angeles, California. He spent most of his 98 years in Southern California and witnessed first hand its transformation from a reasonably under- populated region into one of the world’s busiest metropolitan areas. In fact, Jack (or “JDR” as he was oft referred in the labs at Caltech) was born essentially right underneath what is now the famous four level interchange connecting the 101 and 110 freeways in modern day downtown LA. JDR also witnessed the growth and explosion of science and in particular chemistry over that century span. As summarized in his J. Org. Chem. 2009, 74, 4897-4917 article and numerous talks over the later part of his life, the explosion of instrumentation capabilities available to the organic chemist progressed in the course of his scientific career from no less than the melting point apparatus to some of the most advanced instruments on the planet. Without doubt, the advances most influential to JDR’s monumental career in chemistry were the advent of nuclear magnetic resonance (NMR) spectroscopy and the accompanying explosion in computing. Combined, these tools greatly facilitated the insightfully designed experimentation and careful analyses that became the hallmark of JDR’s career. It is clear that Jack’s thoroughgoing nature combined with his deep understanding of instrumentation and fundamental chemistry served as an inspiration to nearly four generations of scientists. -
Walter Loveland Oral History Interview, “Of Glenn Seaborg and Super Heavy Elements: a Nuclear Chemist Looks Back”, July Page 3 of 24 22, 2015
Walter Loveland Oral History Interview, July 22, 2015 Title “Of Glenn Seaborg and Super Heavy Elements: A Nuclear Chemist Looks Back” Date July 22, 2015 Location Valley Library, Oregon State University. Summary In the interview, Loveland discusses his colorful family background and upbringing in blue-collar suburban Chicago. He also describes his earliest interests in science, his path through undergraduate and graduate studies, and those who influenced him as he made his way through his higher education, including his contacts with luminaries like Charles Coryell and John Huizenga. From there, Loveland begins to reflect on his long association with both Oregon State University and the University of California, Berkeley. In so doing, he shares his memories of his initial impressions of OSU and Corvallis, his first contacts with Glenn Seaborg, a few initial research experiences in research, and his impressions of Seaborg as a personality. He likewise recounts his interactions with Linus Pauling as well as major figures in nuclear science at OSU, Chih Wang, John Ringle and Dale Trout among them. Loveland next recounts his memories of the Radiation Biology program at OSU; discusses the life and career of a former student, Sister Mary Joseph Bouchard; and comments on the climate for women and people of color in the sciences at OSU and in the community at large. Loveland's research is the next focus of the interview. In this he provides an overview of his work with super-heavy ions while also describing his research collaborations and the frequent trips to Berkeley that these collaborations demanded. He also recounts his interactions with OSU's Campus Radiation Safety Committee, his disinterest in working at the Hanford Nuclear Site, his experience of co-authoring two books with Glenn Seaborg, and hindrances to scientific advancement that he has noted as a result of denials of security clearance. -
Dr. Linus Pauling Named Recipient of Priestley Memorial Award
Dr. Linus Pauling named recipient of Priestley Memorial Award December 16, 1968 Dr. Linus Pauling, Professor of Chemistry in Residence at the University of California, San Diego, was recently named the 18th recipient of Dickinson College's Priestley Memorial Award. Presentation of the award next March 27 will be the highlight of the annual Priestley Day celebration at the Carlisle, Pa., college. Howard L. Rubendall, Dickinson president, said Pauling will be honored for his work in physical chemistry. The award is named for Joseph Priestley, discoverer of oxygen, and consists of a portrait medallion of Priestley. A check for $1,000 accompanies it. Dickinson, which owns one of the largest collections of Priestley memorabilia in America, created the award in 1952 to recognize modern scientists for research, discovery or other production benefiting mankind. Pauling is a winner of the Nobel Prize in chemistry and also holds the Nobel Peace Prize. During recent years, much of his work has been on the application of chemistry to biological and medical problems. Last spring he advanced a highly controversial theory that mental patients could well be treated by giving them "optimum amounts" of vitamins, amino acids and certain fatty acids. During the early war years, he worked on rocket propellants and other explosives but was among the scientists who opposed dropping atomic bombs on Hiroshima and Nagasaki. His work to abolish war began in 1945. Few scientists have been honored so often. Pauling holds the Roebling Medal of the Mineralogical Society, the American Chemical Society Award in Pure Chemistry, the Nichols Medal, Presidential Medal for Merit, Gibbs Medal, Richards Medal, the Gilbert Newton Lewis Medal, the Davey Medal of the Royal Society, the Thomas Addis Medal of the National Nephrosis Foundation, the Phillips Medal of the American College of Physicians and other awards. -
The 2009 Lindau Nobel Laureate Meeting: Roger Y. Tsien, Chemistry 2008
Journal of Visualized Experiments www.jove.com Video Article The 2009 Lindau Nobel Laureate Meeting: Roger Y. Tsien, Chemistry 2008 Roger Y. Tsien1 1 URL: https://www.jove.com/video/1575 DOI: doi:10.3791/1575 Keywords: Cellular Biology, Issue 35, GFP, Green Fluorescent Protein, IFPs, jellyfish, PKA, Calmodulin Date Published: 1/13/2010 Citation: Tsien, R.Y. The 2009 Lindau Nobel Laureate Meeting: Roger Y. Tsien, Chemistry 2008. J. Vis. Exp. (35), e1575, doi:10.3791/1575 (2010). Abstract American biochemist Roger Tsien shared the 2008 Nobel Prize in Chemistry with Martin Chalfie and Osamu Shimomura for their discovery and development of the Green Fluorescent Protein (GFP). Tsien, who was born in New York in 1952 and grew up in Livingston New Jersey, began to experiment in the basement of the family home at a young age. From growing silica gardens of colorful crystallized metal salts to attempting to synthesize aspirin, these early experiments fueled what would become Tsien's lifelong interest in chemistry and colors. Tsien's first official laboratory experience was an NSF-supported summer research program in which he used infrared spectroscopy to examine how metals bind to thiocyanate, for which he was awarded a $10,000 scholarship in the Westinghouse Science Talent Search. Following graduation from Harvard in 1972, Tsien attended Cambridge University in England under a Marshall Scholarship. There he learned organic chemistry --a subject he'd hated as an undergraduate-- and looked for a way to synthesize dyes for imaging neuronal activity, generating BAPTA based optical calcium indicator dyes. Following the completion of his postdoctoral training at Cambridge in 1982, Tsien accepted a faculty position at the University of California, Berkeley. -
CHAD A. MIRKIN, PH.D. Northwestern University
CHAD A. MIRKIN, PH.D. Northwestern University, Department of Chemistry 2145 Sheridan Road, Evanston, IL 60208-3113 Phone: 847-491-2907 Fax: 847-467-5123 Email: [email protected] Education 1991 NSF Postdoctoral Fellow in Chemistry, Massachusetts Institute of Technology, Cambridge, MA 1989 Ph.D. in Inorganic & Organic Chemistry, The Pennsylvania State University, State College, PA 1986 B.S. in Chemistry (Phi Beta Kappa), Dickinson College, Carlisle, PA Professional Experience 2008-present Director, International Institute for Nanotechnology; George B. Rathmann Professor of Chemistry, Medicine, Materials Science & Engineering, Biomedical Engineering, Chemical & Biological Engineering, Northwestern University 2004-2008 Director, International Institute for Nanotechnology; George B. Rathmann Professor of Chemistry, Medicine, and Materials Science & Engineering, Northwestern University 2000-2004 Director, Center for Nanofabrication and Molecular Self-Assembly and George B. Rathmann Professor of Chemistry, Northwestern University 1997-2000 Charles E. and Emma H. Morrison Professor of Chemistry, Northwestern University 1995-1997 Associate Professor, Department of Chemistry, Northwestern University 1991-1995 Assistant Professor, Department of Chemistry, Northwestern University Awards and Honors (selected, over 230 national and international total) 2020 ACS Division of Colloid and Surface Science Award for Outstanding Achievement in Nanoscience; AAAS Philip Hauge Abelson Award 2019 Kabiller Prize in Nanoscience and Nanomedicine; SCI Perkin -
Otto Hahn Otto Hahn
R.N. 70269/98 Postal Registration No.: DL-SW-1/4082/15-17 ISSN : 0972-169X Date of posting: 26-27 of advance month Date of publication: 24 of advance month May 2017 Vol. 19 No. 8 Rs. 5.00 Otto Hahn Discoverer of Nuclear Fission Editorial: Consolidating 35 science communication activities in our country Otto Hahn: Discoverer of 34 Nuclear Fission Keep Your Eyes Healthy 31 Phenol: A Serious 30 Environmental Threat Accidental Discoveries in 28 Medical Science Cures for haemorrhoids— 24 Simple treatments and Surgeries Recent developments 21 in science and technology 36 Editorial Consolidating science communication activities in our country Dr. R. Gopichandran It is well known that the National Council of Science Museums of India’s leadership in science technology and innovation (STI) across the Ministry of Culture, Government of India, the National Institute the bilateral and multilateral framework also. The news feature service of Science Communication and Information Resources (NISCAIR) and the portal activity have well defined action plans to reach out to of CSIR, the National Council for Science and Technology fellow institutions and citizens with suitably embellished platform Communication (NCSTC) of the Department of Science and and opportunities for all to deliver together. Technology (DST), Government of India and Vigyan Prasar, also While these are interesting and extremely important, especially of DST, have been carrying out excellent science communication because they respond to the call to upscale and value add science activities over the years. It cannot be denied that the reach has been and technology communication, it is equally important to document quite significant collectively. -
2016 Nobel Prize in Chemistry
2016 NOBEL PRIZE IN CHEMISTRY The Nobel Prize in Chemistry 2016 was awarded to Jean-Pierre Sauvage, Sir Fraser Stoddart, and Bernard Feringa for the design and production of molecular machines with controllable movements. This year’s chemistry Nobel Prize is awarded for work on molecular machines which are a thousand times thinner than a human hair. The machines are formed from mechanically interlocked ring- shaped molecules which are able to move Ring-SHAPED MOLECULE 1 Ring-SHAPED MOLECULE 2 BINDING SITE relative to each other. UV 20˚C UV, 60˚C ORGANIC-BASED CORDINATING RINGS ‘SHUTLE’ Bulky Groups CENTRAL COPER ION ‘STATIONS’ REST OF MOLECULE DOUBLE BOND; ISOMERISATION DRIVES ROTATION Jean-Pierre Sauvage created a Fraser Stoddart made a ring-shaped Ben Feringa produced the pair of interlocking rings (called molecule attached to an axle (a first molecular motor by a catenane). One ring could rotaxane) which could shuttle up constructing a molecule that rotate around the other when and down. He also helped produce responded to light and heat and energy was added. a rotaxane-based computer chip. spun in a particular direction. WHY DOES THIS RESEARCH MATER? Research is investigating using molecular machines to transport and release drugs to specific cells in the body. They could also find future uses in ? electronic devices. The tasks they can accomplish are constantly expanding, so they may have further as yet unforeseen uses. Nobel Prize in Physics Press release: http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2016/press.html © Compound Interest/Andy Brunning – compoundchem.com C COMPOUND INTEREST Shared under a CC Attribution-NonCommercial-NoDerivatives licence BY NC ND.