HIST1H2BB and MAGI2 Methylation and Somatic Mutations As Precision Medicine Biomarkers for Diagnosis and Prognosis of High-Grade Serous Ovarian Cancer Blanca L

Total Page:16

File Type:pdf, Size:1020Kb

HIST1H2BB and MAGI2 Methylation and Somatic Mutations As Precision Medicine Biomarkers for Diagnosis and Prognosis of High-Grade Serous Ovarian Cancer Blanca L Published OnlineFirst June 24, 2020; DOI: 10.1158/1940-6207.CAPR-19-0412 CANCER PREVENTION RESEARCH | RESEARCH ARTICLE HIST1H2BB and MAGI2 Methylation and Somatic Mutations as Precision Medicine Biomarkers for Diagnosis and Prognosis of High-grade Serous Ovarian Cancer Blanca L. Valle1, Sebastian Rodriguez-Torres2,3, Elisabetta Kuhn4,5, Teresa Díaz-Montes6, Edgardo Parrilla-Castellar7, Fahcina P. Lawson1, Oluwasina Folawiyo1, Carmen Ili-Gangas8, Priscilla Brebi-Mieville8, James R. Eshleman9, James Herman3, Ie-Ming Shih4, David Sidransky1, and Rafael Guerrero-Preston1,10,11 ABSTRACT ◥ Molecular alterations that contribute to long-term (LT) (n ¼ 35). Immunoblot and clonogenic assays after pharma- and short-term (ST) survival in ovarian high-grade serous cologic unmasking show that HIST1H2BB and MAGI2 carcinoma (HGSC) may be used as precision medicine promoter methylation downregulates mRNA expression biomarkers. DNA promoter methylation is an early event levels in ovarian cancer cells. We then used qMSP in paired in tumorigenesis, which can be detected in blood and urine, tissue, ascites, plasma/serum, vaginal swabs, and urine from making it a feasible companion biomarker to somatic muta- a third cohort of patients with HGSC cancer (n ¼ 85) to test tions for early detection and targeted treatment workflows. the clinical potential of HIST1H2BB and MAGI2 in precision We compared the methylation profile in 12 HGSC tissue medicine workflows. We also performed next-generation samples to 30 fallopian tube epithelium samples, using the exome sequencing of 50 frequently mutated in human cancer Infinium Human Methylation 450K Array. We also used genes, using the Ion AmpliSeqCancer Hotspot Panel, to 450K methylation arrays to compare methylation among show that the somatic mutation profile found in tissue and HGSCs long-term survivors (more than 5 years) and short- plasma can be quantified in paired urine samples from term survivors (less than 3 years). We verified the array patients with HGSC. Our results suggest that HIST1H2BB results using bisulfite sequencing and methylation-specific and MAGI2 have growth-suppressing roles and can be used PCR (qMSP). in another cohort of HGSC patient samples as HGSC precision medicine biomarkers. Introduction 1Otolaryngology Department, Head and Neck Cancer Research Division, The Johns Hopkins University, School of Medicine, Baltimore, Maryland. 2Depart- Ovarian cancer is the fifth cause of cancer-related deaths ment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, among women, and the most lethal gynecologic malignancy (1). Massachusetts. 3Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania. 4Division of Pathology, Fondazione IRCCS Clinical and molecular factors that contribute to long-term Ca’ Granda, Ospedale Maggiore Policlinico; Department of Biomedical, Surgical, (LT) and short-term (ST) survival in ovarian high-grade serous and Dental Sciences, University of Milan, Italy. 5Departments of Pathology, cancer (HGSC) are lacking and only a few molecular alterations Gynecology and Obstetrics, The Johns Hopkins University, School of Medicine, of response to therapy have been identified. Somatic mutations Baltimore, Maryland. 6The Lya Segall Ovarian Cancer Institute, Mercy Medical Center, Baltimore, Maryland. 7Department of Pathology, University of Washing- are rare in HGSC (2), BRCA1/2 germline mutations, and ton, Seattle, Washington. 8Laboratory Integrative Biology (LIBi), Center for homologous repair deficiency in HGSC are among the few Excellence in Translational Medicine-Scientific and Technological Bioresources validated molecular predictors of response to platinum therapy Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile. 9Depart- – ment of Pathology, Johns Hopkins University, School of Medicine, Baltimore, and PARP inhibitors (3 6). Maryland. 10University of Puerto Rico School of Medicine, Department of DNA promoter methylation is an early event in tumorigen- Obstetrics and Gynecology, San Juan, Puerto Rico. 11LifeGene Biomarks Inc., esis, and can be detected in blood and other body fluids, making San Juan, Puerto Rico. it a feasible biomarker for early detection of tumors.(7–9) In Note: Supplementary data for this article are available at Cancer Prevention addition, DNA methylation has potential as a prognostic Research Online (http://cancerprevres.aacrjournals.org/). biomarker. For instance, the FDA has recently approved Corresponding Author: Rafael Guerrero-Preston, University of Puerto Rico EpiColon, a blood-based test for diagnosis of colorectal cancer School of Medicine, San Juan, PR 00927. E-mail: [email protected] based on methylation of septin 9 (10). Detection of promoter Cancer Prev Res 2020;13:1–12 methylation in tissues and biofluids represents a potential doi: 10.1158/1940-6207.CAPR-19-0412 biomarker strategy for ovarian cancer diagnosis and therapeu- Ó2020 American Association for Cancer Research. tic management within precision medicine workflows. AACRJournals.org | OF1 Downloaded from cancerpreventionresearch.aacrjournals.org on September 27, 2021. © 2020 American Association for Cancer Research. Published OnlineFirst June 24, 2020; DOI: 10.1158/1940-6207.CAPR-19-0412 Valle et al. Until recently, epithelial ovarian cancers were thought to Library kit 2.0 according to the manufacturer’s instructions arise from the ovarian surface epithelial cells (11). However, (Life Technologies). Included in this panel were primers for 207 recent studies suggest that many of HGSCs arise from lesions in amplicons covering 2,800 Catalog of Somatic Mutations in the fallopian tubes (12–17). In this study, we sought to identify Cancer of 50 genes with known cancer associations: ABL1, genes differentially methylated between fallopian tube tissue AKT1, ALK, APC, ATM, BRAF, CDH1, CDKN2A, CSF1R, and HGSC and test whether ovarian cancer associated DNA CTNNB1, EGFR, ERBB2, ERBB4, EZH2, FBXW7, FGFR1, methylation and somatic mutations measured in tissue can be FGFR2, FGFR3, FLT3, GNA11, GNAS, GNAQ, HNF1A, HRAS, reproducibly measured in urine samples. IDH1, JAK2, JAK3, IDH2, KDR, KIT, KRAS, MET, MLH1, MPL, NOTCH1, NPM1, NRAS, PDGFRA, PIK3CA, PTEN, Materials and Methods PTPN11, RB1, RET, SMAD4, SMARCB1, SMO, SRC, STK11, TP53 and VHL. (COSMIC, http://cancer.sanger.ac.uk/cancer Patient samples genome/projects/cosmic). Ten nanograms DNA from the tumor The study population consists of samples from three patient samples was used as the template to prepare the library. cohorts (n ¼ 77) and publicly available data from 1,742 Amplified libraries were quantified using the Qubit 2.0 Fluo- patients: a retrospective cohort of HGSC formalin fixed and rometer and the High Sensitivity Qubit Assay Kit (Life Tech- paraffin embedded (FFPE) samples selected from Johns Hop- nologies). Amplified libraries were assessed for quality (size and kins Pathology Department tumor bank (n ¼ 12); a cohort of concentration) using the Agilent 2100 Bioanalyzer Instrument women who were seen in the Ohio State University School of (Agilent Technologies) following the Bioanalyzer standard Medicine Obstetrics and Gynecology Department (n ¼ 30); a protocol. The AmpliSeq libraries were clonally amplified on cohort of patients with HGSC who were seen in Mercy Medical to Ion Sphere Particles (ISP) using emulsion PCR following Center in Baltimore, MD (n ¼ 35); and data from the Cancer standard Ion Torrent protocols. ISP preparation was per- Genome Atlas Project (TCGA). The inclusion criterion was to formed using the automated Ion Torrent OneTouch2 system have a clinical diagnosis of HGCS (ICD9-CM code 183), all following the manufacturer’s protocol (MAN0007220 Revision determined by pathologists at two different institutions Hop- 4.0). The Qubit Fluorometer was used to assess ISP quality after kins and Mercy Medical Center. The Institutional Review ISP preparation but before ISP enrichment. Up to eight speci- Boards of Ohio State School of Medicine, Mercy Medical mens were barcoded with Ion Xpress Barcode Adapters (Life Center and Johns Hopkins School of Medicine (NA_00020633) Technologies), pooled, and run on a single Ion 318 chip. This approved the research protocols. Informed written consent was includes multiple patient samples and one control, which we obtained from all patients included in the study. rotate among water, normal, and a mix of positive control cell lines. Cancer genome atlas project data TCGA data was downloaded and analyzed for DNA meth- Methylation 450K arrays ylation alterations using the minfi package. Somatic mutation We sought to determine genes differentially methylated in and expression data were downloaded from the cBioPortal ovarian cancer as compared with fallopian tube epithelium, (http://www.cbioportal.org/). therefore we compared the methylation status in 12 HGSC FFPE tissue samples to 30 fallopian tube epithelium samples DNA extraction using the genome-wide Infinium HumanMethylation 450K DNA was extracted from frozen normal fallopian tube Array. The HumanMethylation450K DNA BeadChip assay epithelium, FFPE HGSC tissue samples, as well as from normal was used to perform unbiased genome-wide DNA methylation and ovarian cancer cell lines. Biofluids DNA was extracted as analysis. Bisulfite modification of genomic DNA (2 mg) was described previously (11, 18). The protocol for trans-renal performed with EpiTect Bisulfite Kit (Qiagen) according to the DNA extraction reduces the possibility of contamination from manufacturer’s protocol. We hybridized bisulfite-converted
Recommended publications
  • Analysis of Trans Esnps Infers Regulatory Network Architecture
    Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation.
    [Show full text]
  • Genome Wide Association Study of Response to Interval and Continuous Exercise Training: the Predict‑HIIT Study Camilla J
    Williams et al. J Biomed Sci (2021) 28:37 https://doi.org/10.1186/s12929-021-00733-7 RESEARCH Open Access Genome wide association study of response to interval and continuous exercise training: the Predict-HIIT study Camilla J. Williams1†, Zhixiu Li2†, Nicholas Harvey3,4†, Rodney A. Lea4, Brendon J. Gurd5, Jacob T. Bonafglia5, Ioannis Papadimitriou6, Macsue Jacques6, Ilaria Croci1,7,20, Dorthe Stensvold7, Ulrik Wislof1,7, Jenna L. Taylor1, Trishan Gajanand1, Emily R. Cox1, Joyce S. Ramos1,8, Robert G. Fassett1, Jonathan P. Little9, Monique E. Francois9, Christopher M. Hearon Jr10, Satyam Sarma10, Sylvan L. J. E. Janssen10,11, Emeline M. Van Craenenbroeck12, Paul Beckers12, Véronique A. Cornelissen13, Erin J. Howden14, Shelley E. Keating1, Xu Yan6,15, David J. Bishop6,16, Anja Bye7,17, Larisa M. Haupt4, Lyn R. Grifths4, Kevin J. Ashton3, Matthew A. Brown18, Luciana Torquati19, Nir Eynon6 and Jef S. Coombes1* Abstract Background: Low cardiorespiratory ftness (V̇O2peak) is highly associated with chronic disease and mortality from all causes. Whilst exercise training is recommended in health guidelines to improve V̇O2peak, there is considerable inter-individual variability in the V̇O2peak response to the same dose of exercise. Understanding how genetic factors contribute to V̇O2peak training response may improve personalisation of exercise programs. The aim of this study was to identify genetic variants that are associated with the magnitude of V̇O2peak response following exercise training. Methods: Participant change in objectively measured V̇O2peak from 18 diferent interventions was obtained from a multi-centre study (Predict-HIIT). A genome-wide association study was completed (n 507), and a polygenic predictor score (PPS) was developed using alleles from single nucleotide polymorphisms= (SNPs) signifcantly associ- –5 ated (P < 1 ­10 ) with the magnitude of V̇O2peak response.
    [Show full text]
  • Circular RNA Hsa Circ 0005114‑Mir‑142‑3P/Mir‑590‑5P‑ Adenomatous
    ONCOLOGY LETTERS 21: 58, 2021 Circular RNA hsa_circ_0005114‑miR‑142‑3p/miR‑590‑5p‑ adenomatous polyposis coli protein axis as a potential target for treatment of glioma BO WEI1*, LE WANG2* and JINGWEI ZHAO1 1Department of Neurosurgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033; 2Department of Ophthalmology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China Received September 12, 2019; Accepted October 22, 2020 DOI: 10.3892/ol.2020.12320 Abstract. Glioma is the most common type of brain tumor APC expression with a good overall survival rate. UALCAN and is associated with a high mortality rate. Despite recent analysis using TCGA data of glioblastoma multiforme and the advances in treatment options, the overall prognosis in patients GSE25632 and GSE103229 microarray datasets showed that with glioma remains poor. Studies have suggested that circular hsa‑miR‑142‑3p/hsa‑miR‑590‑5p was upregulated and APC (circ)RNAs serve important roles in the development and was downregulated. Thus, hsa‑miR‑142‑3p/hsa‑miR‑590‑5p‑ progression of glioma and may have potential as therapeutic APC‑related circ/ceRNA axes may be important in glioma, targets. However, the expression profiles of circRNAs and their and hsa_circ_0005114 interacted with both of these miRNAs. functions in glioma have rarely been studied. The present study Functional analysis showed that hsa_circ_0005114 was aimed to screen differentially expressed circRNAs (DECs) involved in insulin secretion, while APC was associated with between glioma and normal brain tissues using sequencing the Wnt signaling pathway. In conclusion, hsa_circ_0005114‑ data collected from the Gene Expression Omnibus database miR‑142‑3p/miR‑590‑5p‑APC ceRNA axes may be potential (GSE86202 and GSE92322 datasets) and explain their mecha‑ targets for the treatment of glioma.
    [Show full text]
  • Download Download
    Supplementary Figure S1. Results of flow cytometry analysis, performed to estimate CD34 positivity, after immunomagnetic separation in two different experiments. As monoclonal antibody for labeling the sample, the fluorescein isothiocyanate (FITC)- conjugated mouse anti-human CD34 MoAb (Mylteni) was used. Briefly, cell samples were incubated in the presence of the indicated MoAbs, at the proper dilution, in PBS containing 5% FCS and 1% Fc receptor (FcR) blocking reagent (Miltenyi) for 30 min at 4 C. Cells were then washed twice, resuspended with PBS and analyzed by a Coulter Epics XL (Coulter Electronics Inc., Hialeah, FL, USA) flow cytometer. only use Non-commercial 1 Supplementary Table S1. Complete list of the datasets used in this study and their sources. GEO Total samples Geo selected GEO accession of used Platform Reference series in series samples samples GSM142565 GSM142566 GSM142567 GSM142568 GSE6146 HG-U133A 14 8 - GSM142569 GSM142571 GSM142572 GSM142574 GSM51391 GSM51392 GSE2666 HG-U133A 36 4 1 GSM51393 GSM51394 only GSM321583 GSE12803 HG-U133A 20 3 GSM321584 2 GSM321585 use Promyelocytes_1 Promyelocytes_2 Promyelocytes_3 Promyelocytes_4 HG-U133A 8 8 3 GSE64282 Promyelocytes_5 Promyelocytes_6 Promyelocytes_7 Promyelocytes_8 Non-commercial 2 Supplementary Table S2. Chromosomal regions up-regulated in CD34+ samples as identified by the LAP procedure with the two-class statistics coded in the PREDA R package and an FDR threshold of 0.5. Functional enrichment analysis has been performed using DAVID (http://david.abcc.ncifcrf.gov/)
    [Show full text]
  • Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights Into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle
    animals Article Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle Masoumeh Naserkheil 1 , Abolfazl Bahrami 1 , Deukhwan Lee 2,* and Hossein Mehrban 3 1 Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; [email protected] (M.N.); [email protected] (A.B.) 2 Department of Animal Life and Environment Sciences, Hankyong National University, Jungang-ro 327, Anseong-si, Gyeonggi-do 17579, Korea 3 Department of Animal Science, Shahrekord University, Shahrekord 88186-34141, Iran; [email protected] * Correspondence: [email protected]; Tel.: +82-31-670-5091 Received: 25 August 2020; Accepted: 6 October 2020; Published: 9 October 2020 Simple Summary: Hanwoo is an indigenous cattle breed in Korea and popular for meat production owing to its rapid growth and high-quality meat. Its yearling weight and carcass traits (backfat thickness, carcass weight, eye muscle area, and marbling score) are economically important for the selection of young and proven bulls. In recent decades, the advent of high throughput genotyping technologies has made it possible to perform genome-wide association studies (GWAS) for the detection of genomic regions associated with traits of economic interest in different species. In this study, we conducted a weighted single-step genome-wide association study which combines all genotypes, phenotypes and pedigree data in one step (ssGBLUP). It allows for the use of all SNPs simultaneously along with all phenotypes from genotyped and ungenotyped animals. Our results revealed 33 relevant genomic regions related to the traits of interest.
    [Show full text]
  • The Landscape of Genomic Imprinting Across Diverse Adult Human Tissues
    Downloaded from genome.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Research The landscape of genomic imprinting across diverse adult human tissues Yael Baran,1 Meena Subramaniam,2 Anne Biton,2 Taru Tukiainen,3,4 Emily K. Tsang,5,6 Manuel A. Rivas,7 Matti Pirinen,8 Maria Gutierrez-Arcelus,9 Kevin S. Smith,5,10 Kim R. Kukurba,5,10 Rui Zhang,10 Celeste Eng,2 Dara G. Torgerson,2 Cydney Urbanek,11 the GTEx Consortium, Jin Billy Li,10 Jose R. Rodriguez-Santana,12 Esteban G. Burchard,2,13 Max A. Seibold,11,14,15 Daniel G. MacArthur,3,4,16 Stephen B. Montgomery,5,10 Noah A. Zaitlen,2,19 and Tuuli Lappalainen17,18,19 1The Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv 69978, Israel; 2Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA; 3Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; 4Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA; 5Department of Pathology, Stanford University, Stanford, California 94305, USA; 6Biomedical Informatics Program, Stanford University, Stanford, California 94305, USA; 7Wellcome Trust Center for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom; 8Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland; 9Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland;
    [Show full text]
  • Genome-Wide Screen of Cell-Cycle Regulators in Normal and Tumor Cells
    bioRxiv preprint doi: https://doi.org/10.1101/060350; this version posted June 23, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Genome-wide screen of cell-cycle regulators in normal and tumor cells identifies a differential response to nucleosome depletion Maria Sokolova1, Mikko Turunen1, Oliver Mortusewicz3, Teemu Kivioja1, Patrick Herr3, Anna Vähärautio1, Mikael Björklund1, Minna Taipale2, Thomas Helleday3 and Jussi Taipale1,2,* 1Genome-Scale Biology Program, P.O. Box 63, FI-00014 University of Helsinki, Finland. 2Science for Life laboratory, Department of Biosciences and Nutrition, Karolinska Institutet, SE- 141 83 Stockholm, Sweden. 3Science for Life laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden To identify cell cycle regulators that enable cancer cells to replicate DNA and divide in an unrestricted manner, we performed a parallel genome-wide RNAi screen in normal and cancer cell lines. In addition to many shared regulators, we found that tumor and normal cells are differentially sensitive to loss of the histone genes transcriptional regulator CASP8AP2. In cancer cells, loss of CASP8AP2 leads to a failure to synthesize sufficient amount of histones in the S-phase of the cell cycle, resulting in slowing of individual replication forks. Despite this, DNA replication fails to arrest, and tumor cells progress in an elongated S-phase that lasts several days, finally resulting in death of most of the affected cells.
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • MAGI2 Gene Region and Celiac Disease
    ORIGINAL RESEARCH published: 19 December 2019 doi: 10.3389/fnut.2019.00187 MAGI2 Gene Region and Celiac Disease Amaia Jauregi-Miguel 1, Izortze Santin 2,3, Koldo Garcia-Etxebarria 1, Ane Olazagoitia-Garmendia 1, Irati Romero-Garmendia 1, Maialen Sebastian-delaCruz 1, Iñaki Irastorza 4, Spanish Consortium for the Genetics of Celiac Disease, Ainara Castellanos-Rubio 1,5* and Jose Ramón Bilbao 1,3* 1 Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Leioa, Spain, 2 Department of Biochemistry and Molecular Biology, Biocruces-Bizkaia Health Research Institute, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Leioa, Spain, 3 CIBER in Diabetes and Associated Metabolic Diseases, Madrid, Spain, 4 Department of Pediatrics, Biocruces-Bizkaia Health Research Institute, Cruces University Hospital, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Barakaldo, Spain, 5 Ikerbasque, Basque Foundation for Science, Bilbao, Spain Edited by: Carmen Gianfrani, Institute of Biochemistry and Cell Celiac disease (CD) patients present a loss of intestinal barrier function due to structural Biology (CNR), Italy alterations in the tight junction (TJ) network, the most apical unions between epithelial Reviewed by: cells. The association of TJ-related gene variants points to an implication of this network Yanfei Zhang, Geisinger Health System, in disease susceptibility. This work aims to characterize the functional implication of United States TJ-related, disease-associated loci in CD pathogenesis. We performed an association Xiaofei Sun, study of 8 TJ-related gene variants in a cohort of 270 CD and 91 non-CD controls.
    [Show full text]
  • MAGI2 Mutations Cause Congenital Nephrotic Syndrome
    CLINICAL RESEARCH www.jasn.org MAGI2 Mutations Cause Congenital Nephrotic Syndrome † ‡ Agnieszka Bierzynska,* Katrina Soderquest, Philip Dean, Elizabeth Colby,* Ruth Rollason,* | Caroline Jones,§ Carol D. Inward,* Hugh J. McCarthy,* Michael A. Simpson, † ‡ † Graham M. Lord, Maggie Williams, Gavin I. Welsh,* Ania B. Koziell, and Moin A. Saleem* on behalf of NephroS, the UK study of Nephrotic Syndrome *Bristol Renal and Children’s Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; †Division of Transplantation Immunology and Mucosal Biology, Department of Experimental Immunobiology, and |Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom; ‡Bristol Genetics Laboratory, North Bristol National Health Service Trust, Bristol, United Kingdom; and §Alder Hey Children’s Hospital, Liverpool, United Kingdom ABSTRACT Steroid–resistant nephrotic syndrome (SRNS), a heterogeneous disorder of the renal glomerular filtration barrier, results in impairment of glomerular permselectivity. Inheritance of genetic SRNS may be autosomal dominant or recessive, with a subset of autosomal recessive SRNS presenting as congenital nephrotic syn- drome (CNS). Mutations in 53 genes are associated with human SRNS, but these mutations explain #30% of patients with hereditary cases and only 20% of patients with sporadic cases. The proteins encoded by these genes are expressed in podocytes, and malfunction of these proteins leads to a universal end point of podocyte injury, glomerular filtration barrier disruption, and SRNS. Here, we identified novel disease–causing mutations in membrane–associated guanylate kinase, WW, and PDZ domain–containing 2 (MAGI2)through whole-exome sequencing of a deeply phenotyped cohort of patients with congenital, childhood–onset SRNS.
    [Show full text]
  • Genomic Rearrangements of the 7Q11-21 Region
    GENOMIC REARRANGEMENTS IN HUMAN AND MOUSE AND THEIR CONTRIBUTION TO THE WILLIAMS-BEUREN SYNDROME PHENOTYPE. by Edwin James Young A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy, Institute of Medical Science University of Toronto © Copyright by Edwin James Young (2010) Genomic rearrangements in human and mouse and their contribution to the Williams- Beuren Syndrome phenotype. Doctor of Philosophy (2010) Edwin James Young Institute of Medical Science University of Toronto Abstract: Genomic rearrangements, particularly deletions and duplications, are known to cause many genetic disorders. The chromosome 7q11.23 region in humans is prone to recurrent chromosomal rearrangement, due to the presence of low copy repeats that promote non-allelic homologous recombination. The most well characterized rearrangement of 7q11.23 is a hemizygous 1.5 million base pair (Mb) deletion spanning more than 25 genes. This deletion causes Williams-Beuren Syndrome (WBS; OMIM 194050), a multisystem developmental disorder with distinctive physical and behavioural features. Other rearrangements of the region lead to phenotypes distinct from that of WBS. Here we describe the first individual identified with duplication of the same 1.5 Mb region, resulting in severe impairment of expressive language, in striking contrast to people with WBS who have relatively well preserved language skills. We also describe the identification of a new gene for a severe form of childhood epilepsy through the analysis of individuals with deletions on ii chromosome 7 that extend beyond the boundaries typical for WBS. This gene, MAGI2, is part of the large protein scaffold at the post-synaptic membrane and provides a new avenue of research into both the molecular basis of infantile spasms and the development of effective therapies.
    [Show full text]
  • IGF1R Deficiency Attenuates Acute Inflammatory Response in A
    www.nature.com/scientificreports OPEN IGF1R deficiency attenuates acute inflammatory response in a bleomycin-induced lung injury Received: 7 November 2016 Accepted: 17 May 2017 mouse model Published: xx xx xxxx Sergio Piñeiro-Hermida1, Icíar P. López1, Elvira Alfaro-Arnedo1, Raquel Torrens1, María Iñiguez2, Lydia Alvarez-Erviti3, Carlos Ruíz-Martínez4 & José G. Pichel 1 IGF1R (Insulin-like Growth Factor 1 Receptor) is a tyrosine kinase with pleiotropic cellular functions. IGF activity maintains human lung homeostasis and is implicated in pulmonary diseases such as cancer, ARDS, COPD, asthma and fibrosis. Here we report that lung transcriptome analysis in mice with a postnatally-induced Igf1r gene deletion showed differentially expressed genes with potentially protective roles related to epigenetics, redox and oxidative stress. After bleomycin-induced lung injury, IGF1R-deficient mice demonstrated improved survival within a week. Three days post injury, IGF1R- deficient lungs displayed changes in expression of IGF system-related genes and reduced vascular fragility and permeability. Mutant lungs presented reduced inflamed area, down-regulation of pro- inflammatory markers and up-regulation of resolution indicators. Decreased inflammatory cell presence in BALF was reflected in diminished lung infiltration mainly affecting neutrophils, also corroborated by reduced neutrophil numbers in bone marrow, as well as reduced lymphocyte and alveolar macrophage counts. Additionally, increased SFTPC expression together with hindered HIF1A expression and augmented levels of Gpx8 indicate that IGF1R deficiency protects against alveolar damage. These findings identify IGF1R as an important player in murine acute lung inflammation, suggesting that targeting IGF1R may counteract the inflammatory component of many lung diseases. Inflammation is a relevant component of many lung diseases including ARDS, COPD, asthma, cancer, fibrosis and pneumonia1–5.
    [Show full text]