External Landmarks for Identifying the Drainage Site of the Vein of Labb É : Application to Neurosurgical Procedures

Total Page:16

File Type:pdf, Size:1020Kb

External Landmarks for Identifying the Drainage Site of the Vein of Labb É : Application to Neurosurgical Procedures British Journal of Neurosurgery, June 2012; 26(3): 383–385 © 2012 The Neurosurgical Foundation ISSN: 0268-8697 print / ISSN 1360-046X online DOI: 10.3109/02688697.2011.631620 ORIGINAL ARTICLE External landmarks for identifying the drainage site of the vein of Labb é : application to neurosurgical procedures R. Shane Tubbs 1 , Robert G. Louis Jr. 2 , Young-Bin Song 1 , Martin Mortazavi1 , Marios Loukas 3 , Mohammadali M. Shoja 4 & Aaron A. Cohen - Gadol 5 * 1 Pediatric Neurosurgery, Children ’ s Hospital, Birmingham, Alabama, USA, 2 Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA, 3 Department of Anatomical Sciences, St. George ’ s University, Grenada, 4 Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran, and 5 Goodman Campbell Brain and Spine, Indiana University Department of Neurological Surgery, Indianapolis, Indiana, USA Abstract transverse sinus and is one of the most important draining Introduction. The vein of Labb é is an important structure of veins of the temporal and parietal regions. 1 – 3 Injury and the lateral cortical surface. However, to date, studies aimed at damage to the vein of Labb é may lead to postoperative lobar providing external landmarks for aiding in its identifi cation venous infarction and associated morbidity.1 – 4 Th erefore, have been scant. Therefore, the present study focussed on identifying and preserving this vessel during, for example, establishing reliable bony landmarks for localizing this deeper subtemporal approaches or tentorial division is important lying venous structure. Materials and methods. Fifteen adult in avoiding iatrogenic injury such as avulsion or thrombosis cadavers (30 sides) underwent dissection of the lateral cortical with prolonged retraction. 1,5 brain surface with special attention given to the drainage site Positionally, Oka et al. 5 found the vein of Labb é at the of the vein of Labb é into the transverse sinus. Measurements level of the middle temporal vein in 12 specimens, the poste- of the distance from this site to surrounding external bony rior temporal vein in 6, and the anterior temporal vein in 2. landmarks were then made. Results. We found that this drainage Gaillard6 described the position of this vein as midtemporal For personal use only. site into the transverse sinus was 0.8 – 1.5 cm (mean 1.1 cm, SD in 60%, posterior temporal in 30% and anterior temporal in 0.567) superior to the superior border of the zygomatic arch 10%. Bigelow et al. 7 acknowledged the variability of this vein and 2 – 5 cm (mean 2.9 cm, SD 0.713) posterior to the opening as it may cross the temporal lobe as far back as the posterior of the external auditory meatus. Statistically, there was no limit of the lobe or as far forward as the anterior one-third of signifi cance between left and right sides or between sexes. its lateral surface. In addition, some studies have identifi ed Conclusions. We found that the junction between the vein of more than one vein of Labb é per side.2,8 Although Sood and Labb é and transverse sinus may be variable. Nonetheless, colleagues9 observed similar fi ndings to Koperna et al.,1 they additional landmarks found in this study for identifying the observed size diff erences. By analyzing 47 epilepsy patients junction may aid in its earlier identifi cation during surgery, who underwent temporal lobe resection, Sindou et al. 3 found potentially decreasing operative morbidity. that 76.6% of patients had a dominant vein of Labb é . Of those Br J Neurosurg Downloaded from informahealthcare.com by St Joseph Hospital on 08/31/14 who had a small vein of Labb é , the mean number of superfi - Keywords: anatomy; neurosurgery; landmarks; cranial; venous cial lateral temporal veins was signifi cantly greater, with 60% system. having three or more veins, compared to the mean number of superfi cial lateral temporal veins among the patients with a prominent vein of Labb é .3 Finally, as noted in the study of Introduction Oka et al. 5 the veins of Labb é and Trolard show an inverse Th e vein of Labb é (Charles Labb é 1851 – 1889), also known as relationship to one another; if one predominates, the other the inferior anastomotic vein, plays an important role in the vein is small or absent. Th e vein of Labb é has been found to superfi cial cerebral venous system. Th is 2 – 3-mm diameter be dominant on the left side in 42% and on the right side in vessel unites the superfi cial middle cerebral vein with the 21% of patients, whereas the vein of Trolard has been found * Author Contributions: A.A. Cohen-Gadol, R.S. Tubbs and R.G. Louis, Jr. conceived and designed the study. R.S. Tubbs, R.G. Louis, Jr. and Y.-B. Song gathered the data. All authors interpreted and analyzed the data. R.S. Tubbs, R.G. Louis, Jr. and A.A. Cohen-Gadol drafted the manuscript. R.S. Tubbs and A.A. Cohen- Gadol critically revised the manuscript. All authors approved the fi nal manuscript for submission. Correspondence: Aaron A. Cohen-Gadol, MD, MSc, Department of Neurological Surgery, Goodman Campbell Brain and Spine, Indiana University 1801 N. Senate Blvd, Suite 610, Indianapolis, IN 46202. Tel: ϩ 317-362-8760. Fax: 317-924-8472. E-mail: [email protected] Received for publication 14 September 2011 ; accepted 8 October 2011 383 384 R. Shane Tubbs et al. to be dominant on the left side in 24% and right side in 52% Results of patients. 6 Th e aim of the present study was to identify reliable super- Th e vein of Labb é drained into the transverse sinus on all fi cial landmarks for localizing the drainage site of the vein of sides. One right side had three tributaries of this vein and Labb é with the hopes of decreasing surgical morbidity that the most anterior of these was used for measurements. Th e may follow surgical procedures in this region. drainage site of the vein of Labb é was found to lie 0.8 – 1.5 cm (mean 1.1 cm, SD 0.567) superior to the zygomatic arch, and 2 – 5 cm (mean 2.9 cm, SD 0.713) posterior to the opening of Materials and methods the external auditory meatus. Statistically, no diff erence was ϭ Fifteen (30 sides) adult (aged 49 – 88 years at death, mean 74 found between left or right sides or between sexes ( P 0.563 ϭ years) latex-injected fresh cadavers underwent dissection and P 0.679, respectively). No intracranial pathology or of the lateral cortical surface of the brain. Th ese comprised anomaly was noted in any specimen. 9 male and 6 female specimens. After removal of the calvaria with an oscillating bone saw, the dura mater was carefully Discussion removed over the cerebral hemispheres. Two distances were 1 measured and all measurements were made with rulers Koperna et al. found that the vein of Labb é may frequently and calipers (Fig. 1). Th e fi rst measurement was the vertical drain into a tentorial sinus; however, this was not observed in distance from the upper edge of the zygomatic arch to the the current study where all veins drained into the transverse drainage site of the vein of Labb é . Th e second measurement sinus. Some of this discrepancy may be explained by the was of the horizontal distance posterior to the opening of the defi nition of a tentorial sinus as used by these prior authors. 8 external auditory meatus to the drainage site of the vein of Han et al. found that the average diameter of the vein of Labb é . Statistical analysis between sides and genders was Labb é was 2.8 mm and that 74% drained into the transverse performed using Statistica for Window and signifi cance was sinus directly. However, 8% travelled through the tentorial set at P Ͻ 0.05. sinuses before entering the transverse sinus, and 9 and 8% For personal use only. Br J Neurosurg Downloaded from informahealthcare.com by St Joseph Hospital on 08/31/14 Fig. 1. Schematic drawing of the measurements made in the current study between the external auditory meatus and zygomatic arch, 152 × 169 mm (300 × 300 DPI). Vein of Labb é 385 drained into the meningeal vein of the occipital dura and this area was, therefore, inconsequential. In addition, there petrosal sinus, respectively. Again, such drainage sites were was no signifi cant diff erence in surgical outcomes between not observed in our specimens. the two groups. 9 Regardless, an improved knowledge of the In regard to the drainage site of the vein, Koperna et al.1 drainage site of this vessel may assist the surgeon in avoid- observed a distance of at least 7 mm between the junctions of ing iatrogenic injury to this venous structure. the vein of Labb é and superior petrosal sinus into the trans- verse sinus. In a study of 40 temporal lobe specimens, Guppy 10 et al. discovered three basic venous confi gurations of the Conclusions vein of Labb é : (1) multiple veins forming a single draining vein; (2) multiple veins that drain independently; and (3) Additional external landmarks for identifying important a venous lake that drains from the tentorium cerebelli. As structures such as the vein of Labb é and its entrance into the mentioned above, other studies have shown that the vein of transverse sinus may aid the neurosurgeon during operative Labb é may on occasion join the tentorial sinus.2 interventions. Our hopes are that the simple superfi cial land- Localizing important cerebral venous structures via marks used in the present study will be useful in localizing superfi cial landmarks is important to the neurosurgeon.
Recommended publications
  • CHAPTER 8 Face, Scalp, Skull, Cranial Cavity, and Orbit
    228 CHAPTER 8 Face, Scalp, Skull, Cranial Cavity, and Orbit MUSCLES OF FACIAL EXPRESSION Dural Venous Sinuses Not in the Subendocranial Occipitofrontalis Space More About the Epicranial Aponeurosis and the Cerebral Veins Subcutaneous Layer of the Scalp Emissary Veins Orbicularis Oculi CLINICAL SIGNIFICANCE OF EMISSARY VEINS Zygomaticus Major CAVERNOUS SINUS THROMBOSIS Orbicularis Oris Cranial Arachnoid and Pia Mentalis Vertebral Artery Within the Cranial Cavity Buccinator Internal Carotid Artery Within the Cranial Cavity Platysma Circle of Willis The Absence of Veins Accompanying the PAROTID GLAND Intracranial Parts of the Vertebral and Internal Carotid Arteries FACIAL ARTERY THE INTRACRANIAL PORTION OF THE TRANSVERSE FACIAL ARTERY TRIGEMINAL NERVE ( C.N. V) AND FACIAL VEIN MECKEL’S CAVE (CAVUM TRIGEMINALE) FACIAL NERVE ORBITAL CAVITY AND EYE EYELIDS Bony Orbit Conjunctival Sac Extraocular Fat and Fascia Eyelashes Anulus Tendineus and Compartmentalization of The Fibrous "Skeleton" of an Eyelid -- Composed the Superior Orbital Fissure of a Tarsus and an Orbital Septum Periorbita THE SKULL Muscles of the Oculomotor, Trochlear, and Development of the Neurocranium Abducens Somitomeres Cartilaginous Portion of the Neurocranium--the The Lateral, Superior, Inferior, and Medial Recti Cranial Base of the Eye Membranous Portion of the Neurocranium--Sides Superior Oblique and Top of the Braincase Levator Palpebrae Superioris SUTURAL FUSION, BOTH NORMAL AND OTHERWISE Inferior Oblique Development of the Face Actions and Functions of Extraocular Muscles Growth of Two Special Skull Structures--the Levator Palpebrae Superioris Mastoid Process and the Tympanic Bone Movements of the Eyeball Functions of the Recti and Obliques TEETH Ophthalmic Artery Ophthalmic Veins CRANIAL CAVITY Oculomotor Nerve – C.N. III Posterior Cranial Fossa CLINICAL CONSIDERATIONS Middle Cranial Fossa Trochlear Nerve – C.N.
    [Show full text]
  • Safety Profile of Superior Petrosal Vein (The Vein of Dandy) Sacrifice in Neurosurgical Procedures: a Systematic Review
    NEUROSURGICAL FOCUS Neurosurg Focus 45 (1):E3, 2018 Safety profile of superior petrosal vein (the vein of Dandy) sacrifice in neurosurgical procedures: a systematic review *Vinayak Narayan, MD, MCh, Amey R. Savardekar, MD, MCh, Devi Prasad Patra, MD, MCh, Nasser Mohammed, MD, MCh, Jai D. Thakur, MD, Muhammad Riaz, MD, FCPS, and Anil Nanda, MD, MPH Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana OBJECTIVE Walter E. Dandy described for the first time the anatomical course of the superior petrosal vein (SPV) and its significance during surgery for trigeminal neuralgia. The patient’s safety after sacrifice of this vein is a challenging question, with conflicting views in current literature. The aim of this systematic review was to analyze the current surgical considerations regarding Dandy’s vein, as well as provide a concise review of the complications after its obliteration. METHODS A systematic review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A thorough literature search was conducted on PubMed, Web of Science, and the Cochrane database; articles were selected systematically based on the PRISMA protocol and reviewed completely, and then relevant data were summarized and discussed. RESULTS A total of 35 publications pertaining to the SPV were included and reviewed. Although certain studies report almost negligible complications of SPV sectioning, there are reports demonstrating the deleterious effects of SPV oblit- eration when achieving adequate exposure in surgical pathologies like trigeminal neuralgia, vestibular schwannoma, and petroclival meningioma. The incidence of complications after SPV sacrifice (32/50 cases in the authors’ series) is 2/32 (6.2%), and that reported in various case series varies from 0.01% to 31%.
    [Show full text]
  • Hemodynamic Features in Normal and Cavernous Sinus Dural ORIGINAL RESEARCH Arteriovenous Fistulas
    Published September 6, 2012 as 10.3174/ajnr.A3252 Superior Petrosal Sinus: Hemodynamic Features in Normal and Cavernous Sinus Dural ORIGINAL RESEARCH Arteriovenous Fistulas R. Shimada BACKGROUND AND PURPOSE: Normal hemodynamic features of the superior petrosal sinus and their H. Kiyosue relationships to the SPS drainage from cavernous sinus dural arteriovenous fistulas are not well known. We investigated normal hemodynamic features of the SPS on cerebral angiography as well as the S. Tanoue frequency and types of the SPS drainage from CSDAVFs. H. Mori T. Abe MATERIALS AND METHODS: We evaluated 119 patients who underwent cerebral angiography by focusing on visualization and hemodynamic status of the SPS. We also reviewed selective angiography in 25 consecutive patients with CSDAVFs; we were especially interested in the presence of drainage routes through the SPS from CSDAVFs. RESULTS: In 119 patients (238 sides), the SPS was segmentally (anterior segment, 37 sides; posterior segment, 82 sides) or totally (116 sides) demonstrated. It was demonstrated on carotid angiography in 11 sides (4.6%), receiving blood from the basal vein of Rosenthal or sphenopetrosal sinus, and on vertebral angiography in 235 sides (98.7%), receiving blood from the petrosal vein. No SPSs were demonstrated with venous drainage from the cavernous sinus. SPS drainage was found in 7 of 25 patients (28%) with CSDAVFs. CSDAVFs drained through the anterior segment of SPS into the petrosal vein without draining to the posterior segment in 3 of 7 patients (12%). CONCLUSIONS: The SPS normally works as the drainage route receiving blood from the anterior cerebellar and brain stem venous systems.
    [Show full text]
  • Does the Superior Petrosal Vein Exist in All Human Brains?: a Unique
    Does the superior petrosal vein exist in all human brains?: A unique anatomic specimen and venous considerations for posterior fossa surgery Ken Matsushima MD; Eduardo Ribas; Hiro Kiyosue; Noritaka Komune; Koichi Miki; Albert L. Rhoton MD Department of Neurological surgery, University of Florida, Gainesville, FL Department of Radiology, Oita University Faculty of Medicine, Oita, Japan, Introduction Conclusions Cadaveric cerebellopontine angle with Venographic images and illustration Occlusion of the superior petrosal vein, In these unique cases, in which the absence of the left superior petrosal one of the most constant and largest superior petrosal sinus and veins are venous structures in the posterior fossa, absent, care should be directed to veins and sinus. may result in venous complications. The preserving the collateral drainage through purpose of this study is to call attention to the galenic and tentorial tributaries. a unique variant in which the superior Although surgical strategies for petrosal veins and sinus were absent intraoperative management and unilaterally, and venous drainage was preservation of venous structures are still through the galenic and tentorial groups. controversial, knowledge of the possible anatomical variations is considered Methods essential to improving surgical outcomes. Anatomical dissection of one formalin-fixed adult head, in which the left superior References petrosal vein and sinus were not present. Elhammady MS, Heros RC. Cerebral Veins: To Supplementary, a detailed analysis of Sacrifice or Not to Sacrifice, That Is the venographic images of a patient without Question. World neurosurgery. Jun 18 2013. any identifiable superior petrosal vein or sinus. Ueyama T, Al-Mefty O, Tamaki N. Bridging veins on the tentorial surface of the cerebellum: a microsurgical anatomic study and operative Results considerations.
    [Show full text]
  • Original Article Construction of a Three-Dimensional Interactive Digital
    Int J Clin Exp Med 2018;11(4):3078-3085 www.ijcem.com /ISSN:1940-5901/IJCEM0063223 Original Article Construction of a three-dimensional interactive digital atlas of the dural sinus and deep veins based on human head magnetic resonance images by a comprehensive modeling protocol Zhirong Yang, Zhilin Guo Department of Neurosurgical, The Ninth People Hospital, Medical School, Shanghai Jiaotong University, Shanghai 200011, China Received August 7, 2017; Accepted January 25, 2018; Epub April 15, 2018; Published April 30, 2018 Abstract: Objectives: To design a three-dimensional (3D) interactive digital atlas of the human dural sinus and deep veins for assisting neurosurgeons in preoperative planning and neurosurgical training. Methods: Sagittal head mag- netic resonance (MR) images were obtained of a 54-year-old female who suffered from left posterior fossa tumor. A comprehensive modeling protocol consisting of five steps including thresholding, crop mask, region growing, 3D calculating and 3D editing was used to develop a 3D digital atlas of the dural sinuses and deep veins based on the MR images. The accuracy of the atlas was also evaluated. Results: The 3D digital atlas of the human dural sinus and deep veins was successfully constructed using 176 sagittal head MR images. The contours of the acquired model matched very well with the corresponding structures of the original images in axial and oblique view of MR cross- sections. The atlas can be arbitrarily rotated and viewed from any direction. It can also be zoomed in and out directly using the zoom function. Conclusion: A 3D digital atlas of human dural sinus and deep veins was successfully cre- ated, it can be used for repeated observations and research purposes without limitations of time and shortage of corpses.
    [Show full text]
  • Current Concepts on Carotid Artery-Cavernous Sinus Fistulas
    Neurosurg Focus 5 (4):Article 12, 1998 Current concepts on carotid artery­cavernous sinus fistulas Jordi X. Kellogg, M.D., Todd A. Kuether, M.D., Michael A. Horgan, M.D., Gary M. Nesbit, M.D., and Stanley L. Barnwell, M.D., Ph.D. Department of Neurosurgery and the Dotter Interventional Institute, Oregon Health Sciences University, Portland, Oregon With greater understanding of the pathophysiological mechanisms by which carotid artery­cavernous sinus fistulas occur, and with improved endovascular devices, more appropriate and definitive treatments are being performed. The authors define cartoid cavernous fistulas based on an accepted classification system and the signs and symptoms related to these fistulas are described. Angiographic evaluation of the risk the lesion may pose for precipitating stroke or visual loss in the patient is discussed. The literature on treatment alternatives for the different types of fistulas including transvenous, transarterial, and conservative management is reviewed. Key Words * carotid artery­cavernous sinus fistula * review Arteriovenous fistulas in the region of the cavernous sinus are commonly classified into two major categories based on the location of the fistula. The first category includes the direct fistula and is termed, by the angiographic classification of Barrow, et al.,[3] a Type A carotid­cavernous sinus fistula (CCF). In Type A fistulas there is a direct connection between the internal carotid artery (ICA) and the cavernous sinus (Fig. 1). These fistulas usually occur posttrauma, although spontaneous causes secondary to other medical conditions have been reported.[8,35,54] The other category of CCF is the indirect type. This lesion is an arteriovenous fistula in the dura around the cavernous sinus.
    [Show full text]
  • The Development of Mammalian Dural Venous Sinuses with Especial Reference to the Post-Glenoid Vein
    J. Anat. (1967), 102, 1, pp. 33-56 33 With 12 figures Printed in Great Britian The development of mammalian dural venous sinuses with especial reference to the post-glenoid vein H. BUTLER Department ofAnatomy, University of Saskatchewan, Saskatoon, Canada The intracranial venous outflow of mammals drains into both the internal and external jugular veins and the relative role of these two veins varies between different adult mammals as well as at different phases of embryonic and foetal life. In general, the primary head vein (consisting of venae capitis medialis and lateralis and their tributaries) gives rise to the dural venous sinuses which drain into the anterior cardinal vein (the future internal jugular vein). The external jugular veins appear as the face and jaws develop but, at all times, the two venous systems freely com- municate with each other. Morphologically, as shown by Sutton (1888), both the dural venous sinuses and the external jugular venous system are extracranial in so far as they are situated outside the dura mater. The chondrocranium and the dermocranium, however, develop in between the dural venous sinuses and the external jugular vein system (Butler, 1957). Thus, in the adult mammal, the bony skull wall separates the two venous systems, and therefore the dural venous sinuses are topographically intracranial whereas the external jugular venous system is extracranial. Furthermore the development of the skull localizes the connexions between the dural venous sinuses and the external jugular venous system to the various fontanelles and neuro-vascular foramina to form the emissary veins. The post-glenoid vein is one of the more important and controversial emissary veins since its presence or absence has been used in attempts to establish mammalian phylogenetic relationships (van Gelderen, 1925; Boyd, 1930).
    [Show full text]
  • Dural Venous Sinuses Dr Nawal AL-Shannan Dural Venous Sinuses ( DVS )
    Dural venous sinuses Dr Nawal AL-Shannan Dural venous sinuses ( DVS ) - Spaces between the endosteal and meningeal layers of the dura Features: 1. Lined by endothelium 2. No musculare tissue in the walls of the sinuses 3. Valueless 4.Connected to diploic veins and scalp veins by emmissary veins .Function: receive blood from the brain via cerebral veins and CSF through arachnoid villi Classification: 15 venous sinuses Paried venous sinuses Unpaired venous sinuses ( lateral in position) • * superior sagittal sinus • * cavernous sinuses • * inferior sagittal sinus • * superior petrosal sinuses • * occipital sinus • * inferior petrosal sinuses • * anterior intercavernous • * transverse sinuses • sinus * sigmoid sinuses • * posterior intercavernous • * spheno-parietal sinuses • sinus • * middle meningeal veins • * basilar plexuses of vein SUPERIOR SAGITTAL SINUS • Begins in front at the frontal crest • ends behind at the internal occipital protuberance diliated to form confluence of sinuses and venous lacunae • • The superior sagittal sinus receives the following : • 1- Superior cerebral veins • 2- dipolic veins • 3- Emissary veins • 4- arachnoid granulation • 5- meningeal veins Clinical significance • Infection from scalp, nasal cavity & diploic tissue • septic thrombosis • CSF absorption intra cranial thrombosis (ICT) • Inferior sagittal sinus - small channel occupy • lower free magin of falx cerebri ( post 2/3) - runs backward and • joins great cerebral vein at free margin of tentorium cerebelli to form straight sinus. • - receives cerebral
    [Show full text]
  • Combining Endovascular and Neurosurgical Treatments of High-Risk Dural Arteriovenous Fistulas in the Lateral Sinus and the Confluence of the Sinuses
    Neurosurg Focus 5 (4):Article 10, 1998 Combining endovascular and neurosurgical treatments of high-risk dural arteriovenous fistulas in the lateral sinus and the confluence of the sinuses Katsuya Goto, M.D., Ph.D., Prijo Sidipratomo, M.D., Noboru Ogata, M.D., Toru Inoue, M.D., and Haruo Matsuno, M.D. Departments of Interventional Neuroradiology and Neurosurgery, Iizuka Hospital, Iizuka, Japan The authors describe their experience in treating dural arteriovenous fistulas (DAVFs) in the lateral sinus and the confluence of sinuses in 17 patients who presented with signs and symptoms related to intracranial hemorrhage, infarction, and diffuse brain swelling. Angiographic examination revealed three different types of DAVFs in these high-risk patients: 1) extremely high flow DAVF not associated with sinus occlusion or leptomeningeal retrograde venous drainage (LRVD); 2) localized DAVF with exclusive LRVD and without sinus occlusion; and 3) diffuse DAVF with sinus occlusion and LRVD. Because of the complex nature of these lesions, the authors adopted a staged protocol in which they combined endovascular and surgical treatments. The authors believe that by close collaboration between endovascular therapists and vascular neurosurgeons, high-risk DAVFs in the lateral sinus and the confluence of sinuses can be successfully treated without treatment-related morbidity and mortality. Key Words * dural arteriovenous fistula * transverse sinus * sigmoid sinus * embolization * surgery * combined treatment Over the last two decades, there has been increased
    [Show full text]
  • The LATIN LANGUAGE and Bases of Medical Terminology
    The LATIN LANGUAGE and Bases of Medical Terminology The LATIN LANGUAGE and Bases of Medical Terminology ОДЕСЬКИЙ ДЕРЖАВНИЙ МЕДИЧНИЙ УНІВЕРСИТЕТ THE ODESSA STATE MEDICAL UNIVERSITY Áiáëiîòåêà ñòóäåíòà-ìåäèêà Medical Student’s Library Започатковано 1999 р. на честь 100-річчя Одеського державного медичного університету (1900–2000 рр.) Initiated in 1999 to mark the Centenary of the Odessa State Medical University (1900–2000) 2 THE LATIN LANGUAGE AND BASES OF MEDICAL TERMINOLOGY Practical course Recommended by the Central Methodical Committee for Higher Medical Education of the Ministry of Health of Ukraine as a manual for students of higher medical educational establishments of the IV level of accreditation using English Odessa The Odessa State Medical University 2008 3 BBC 81.461я73 UDC 811.124(075.8)61:001.4 Authors: G. G. Yeryomkina, T. F. Skuratova, N. S. Ivashchuk, Yu. O. Kravtsova Reviewers: V. K. Zernova, doctor of philological sciences, professor of the Foreign Languages Department of the Ukrainian Medical Stomatological Academy L. M. Kim, candidate of philological sciences, assistant professor, the head of the Department of Foreign Languages, Latin Language and Bases of Medical Terminology of the Vinnitsa State Medical University named after M. I. Pyrogov The manual is composed according to the curriculum of the Latin lan- guage and bases of medical terminology for medical higher schools. Designed to study the bases of general medical and clinical terminology, it contains train- ing exercises for the class-work, control questions and exercises for indivi- dual student’s work and the Latin-English and English-Latin vocabularies (over 2,600 terms). For the use of English speaking students of the first year of study at higher medical schools of IV accreditation level.
    [Show full text]
  • 27. Veins of the Head and Neck
    GUIDELINES Students’ independent work during preparation to practical lesson Academic discipline HUMAN ANATOMY Topic VEINS OF THE HEAD AND NECK 1. The relevance of the topic: Knowledge of the anatomy of the veins of head and neck is a base of clinical thinking and differential diagnosis for the doctor of any specialty, but, above all, dentists, neurologists and surgeons who operate in areas of the neck or head. 2. Specific objectives - demonstrate superior vena cava, right and left brachiocephalic, subclavian, internal and external jugular, anterior jugular veins and venous angles. - demonstrate dural sinuses, veins of the brain. - demonstrate pterygoid plexus, retromandibular, facial veins and other tributaries of extracranial part of internal jugular vein. - demonstrate external jugular vein. - identify and demonstrate anastomoses on the head and neck. 3. Basic level of preparation Student should know and be able to: 1. To demonstrate the structural features of the cervical vertebrae. 2. To demonstrate the anatomical lesions of external and internal base of the skull. 3. To demonstrate the muscles of the head and neck. 4. To demonstrate the divisions of the brain. 4. Tasks for independent work during preparation for practical lessons 4.1. A list of the main terms, parameters, characteristics that need to be learned by student during the preparation for the lesson Term Definition JUGULAR VEINS Veins that take deoxygenated blood from the head to the heart via the superior vena cava. INTERNAL JUGULAR VEIN Starts from the sigmoid sinus of the dura mater and receives the blood from common facial vein. The internal jugular vein runs with the common carotid artery and vagus nerve inside the carotid sheath.
    [Show full text]
  • Powerpoint Handout: Lab 1, Part B: Dural Folds, Dural Sinuses, and Arterial Supply to Head and Neck
    PowerPoint Handout: Lab 1, Part B: Dural Folds, Dural Sinuses, and Arterial Supply to Head and Neck Slide Title Slide Number Slide Title Slide Number Arterial Blood Supply to the Head: Aortic Arch Branches Slide 2 Innervation of Dura Slide 14 Arterial Blood Supply to the Head: Carotid Arteries Slide 3 Emissary Veins & Diploic Veins Slide 15 Arterial Blood Supply to the Head: Internal Carotid Artery Slide4 Cerebral & Cerebellar Veins Slide 16 Blood Supply Review from MSI: Subclavian Artery & Named Dural Folds Slide 5 Slide 17 Thyrocervical Trunk Dural Venous Sinuses Slide 18 Vertebral Artery Slide 6 Dural Venous Sinuses (Continued) Slide 19 Subclavian Steal Syndrome Slide 7 Osseous Grooves formed by Dural Sinuses Slide 20 Thyrocervical Trunk Slide 8 Venous Drainage of Head: Cavernous Sinuses Slide 21 Review: Suprascapular Artery Slide 9 Head & Neck Venous Drainage Slide 22 Review: Transverse Cervical Artery Slide 10 Intracranial Versus EXtracranial Venous Drainage Slide 23 Middle Meningeal Artery Slide 11 Meningeal Layers & Spaces Slide 12 Cranial Dura, Dural Folds, & Dural Venous Sinuses Slide 13 Arterial Blood Supply to the Head: Aortic Arch Branches The head and neck receive their blood supply from https://3d4medic.al/PXGmbxEt branches of the right and left common carotid and right and left subclavian arteries. • On the right side, the subclavian and common carotid arteries arise from the brachiocephalic trunk. • On the left side, these two arteries originate from the arch of the aorta. Arterial Blood Supply to the Head: Carotid Arteries On each side of the neck, the common carotid arteries ascend in the neck to the upper border of the thyroid cartilage (vertebral level C3/C4) where they divide into eXternal and internal carotid arteries at the carotid bifurcation.
    [Show full text]