Original Article Construction of a Three-Dimensional Interactive Digital
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CHAPTER 8 Face, Scalp, Skull, Cranial Cavity, and Orbit
228 CHAPTER 8 Face, Scalp, Skull, Cranial Cavity, and Orbit MUSCLES OF FACIAL EXPRESSION Dural Venous Sinuses Not in the Subendocranial Occipitofrontalis Space More About the Epicranial Aponeurosis and the Cerebral Veins Subcutaneous Layer of the Scalp Emissary Veins Orbicularis Oculi CLINICAL SIGNIFICANCE OF EMISSARY VEINS Zygomaticus Major CAVERNOUS SINUS THROMBOSIS Orbicularis Oris Cranial Arachnoid and Pia Mentalis Vertebral Artery Within the Cranial Cavity Buccinator Internal Carotid Artery Within the Cranial Cavity Platysma Circle of Willis The Absence of Veins Accompanying the PAROTID GLAND Intracranial Parts of the Vertebral and Internal Carotid Arteries FACIAL ARTERY THE INTRACRANIAL PORTION OF THE TRANSVERSE FACIAL ARTERY TRIGEMINAL NERVE ( C.N. V) AND FACIAL VEIN MECKEL’S CAVE (CAVUM TRIGEMINALE) FACIAL NERVE ORBITAL CAVITY AND EYE EYELIDS Bony Orbit Conjunctival Sac Extraocular Fat and Fascia Eyelashes Anulus Tendineus and Compartmentalization of The Fibrous "Skeleton" of an Eyelid -- Composed the Superior Orbital Fissure of a Tarsus and an Orbital Septum Periorbita THE SKULL Muscles of the Oculomotor, Trochlear, and Development of the Neurocranium Abducens Somitomeres Cartilaginous Portion of the Neurocranium--the The Lateral, Superior, Inferior, and Medial Recti Cranial Base of the Eye Membranous Portion of the Neurocranium--Sides Superior Oblique and Top of the Braincase Levator Palpebrae Superioris SUTURAL FUSION, BOTH NORMAL AND OTHERWISE Inferior Oblique Development of the Face Actions and Functions of Extraocular Muscles Growth of Two Special Skull Structures--the Levator Palpebrae Superioris Mastoid Process and the Tympanic Bone Movements of the Eyeball Functions of the Recti and Obliques TEETH Ophthalmic Artery Ophthalmic Veins CRANIAL CAVITY Oculomotor Nerve – C.N. III Posterior Cranial Fossa CLINICAL CONSIDERATIONS Middle Cranial Fossa Trochlear Nerve – C.N. -
Non-Pathological Opacification of the Cavernous Sinus on Brain CT
healthcare Article Non-Pathological Opacification of the Cavernous Sinus on Brain CT Angiography: Comparison with Flow-Related Signal Intensity on Time-of-Flight MR Angiography Sun Ah Heo 1, Eun Soo Kim 1,* , Yul Lee 1, Sang Min Lee 1, Kwanseop Lee 1 , Dae Young Yoon 2, Young-Su Ju 3 and Mi Jung Kwon 4 1 Department of Radiology, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 14068, Korea; [email protected] (S.A.H.); [email protected] (Y.L.); [email protected] (S.M.L.); [email protected] (K.L.) 2 Department of Radiology, Kangdong Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 14068, Korea; [email protected] 3 National Medical Center, Seoul 04564, Korea; [email protected] 4 Department of Pathology, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 14068, Korea; [email protected] * Correspondence: [email protected] Abstract: Purpose: To investigate the non-pathological opacification of the cavernous sinus (CS) on brain computed tomography angiography (CTA) and compare it with flow-related signal intensity (FRSI) on time-of-flight magnetic resonance angiography (TOF-MRA). Methods: Opacification of the CS was observed in 355 participants who underwent CTA and an additional 77 participants who underwent examination with three diagnostic modalities: CTA, TOF-MRA, and digital subtraction angiography (DSA). Opacification of the CS, superior petrosal sinus (SPS), inferior petrosal sinus Citation: Heo, S.A.; Kim, E.S.; Lee, Y.; Lee, S.M.; Lee, K.; Yoon, D.Y.; Ju, Y.-S.; (IPS), and pterygoid plexus (PP) were also analyzed using a five-point scale. -
Safety Profile of Superior Petrosal Vein (The Vein of Dandy) Sacrifice in Neurosurgical Procedures: a Systematic Review
NEUROSURGICAL FOCUS Neurosurg Focus 45 (1):E3, 2018 Safety profile of superior petrosal vein (the vein of Dandy) sacrifice in neurosurgical procedures: a systematic review *Vinayak Narayan, MD, MCh, Amey R. Savardekar, MD, MCh, Devi Prasad Patra, MD, MCh, Nasser Mohammed, MD, MCh, Jai D. Thakur, MD, Muhammad Riaz, MD, FCPS, and Anil Nanda, MD, MPH Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana OBJECTIVE Walter E. Dandy described for the first time the anatomical course of the superior petrosal vein (SPV) and its significance during surgery for trigeminal neuralgia. The patient’s safety after sacrifice of this vein is a challenging question, with conflicting views in current literature. The aim of this systematic review was to analyze the current surgical considerations regarding Dandy’s vein, as well as provide a concise review of the complications after its obliteration. METHODS A systematic review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A thorough literature search was conducted on PubMed, Web of Science, and the Cochrane database; articles were selected systematically based on the PRISMA protocol and reviewed completely, and then relevant data were summarized and discussed. RESULTS A total of 35 publications pertaining to the SPV were included and reviewed. Although certain studies report almost negligible complications of SPV sectioning, there are reports demonstrating the deleterious effects of SPV oblit- eration when achieving adequate exposure in surgical pathologies like trigeminal neuralgia, vestibular schwannoma, and petroclival meningioma. The incidence of complications after SPV sacrifice (32/50 cases in the authors’ series) is 2/32 (6.2%), and that reported in various case series varies from 0.01% to 31%. -
Hemodynamic Features in Normal and Cavernous Sinus Dural ORIGINAL RESEARCH Arteriovenous Fistulas
Published September 6, 2012 as 10.3174/ajnr.A3252 Superior Petrosal Sinus: Hemodynamic Features in Normal and Cavernous Sinus Dural ORIGINAL RESEARCH Arteriovenous Fistulas R. Shimada BACKGROUND AND PURPOSE: Normal hemodynamic features of the superior petrosal sinus and their H. Kiyosue relationships to the SPS drainage from cavernous sinus dural arteriovenous fistulas are not well known. We investigated normal hemodynamic features of the SPS on cerebral angiography as well as the S. Tanoue frequency and types of the SPS drainage from CSDAVFs. H. Mori T. Abe MATERIALS AND METHODS: We evaluated 119 patients who underwent cerebral angiography by focusing on visualization and hemodynamic status of the SPS. We also reviewed selective angiography in 25 consecutive patients with CSDAVFs; we were especially interested in the presence of drainage routes through the SPS from CSDAVFs. RESULTS: In 119 patients (238 sides), the SPS was segmentally (anterior segment, 37 sides; posterior segment, 82 sides) or totally (116 sides) demonstrated. It was demonstrated on carotid angiography in 11 sides (4.6%), receiving blood from the basal vein of Rosenthal or sphenopetrosal sinus, and on vertebral angiography in 235 sides (98.7%), receiving blood from the petrosal vein. No SPSs were demonstrated with venous drainage from the cavernous sinus. SPS drainage was found in 7 of 25 patients (28%) with CSDAVFs. CSDAVFs drained through the anterior segment of SPS into the petrosal vein without draining to the posterior segment in 3 of 7 patients (12%). CONCLUSIONS: The SPS normally works as the drainage route receiving blood from the anterior cerebellar and brain stem venous systems. -
Does the Superior Petrosal Vein Exist in All Human Brains?: a Unique
Does the superior petrosal vein exist in all human brains?: A unique anatomic specimen and venous considerations for posterior fossa surgery Ken Matsushima MD; Eduardo Ribas; Hiro Kiyosue; Noritaka Komune; Koichi Miki; Albert L. Rhoton MD Department of Neurological surgery, University of Florida, Gainesville, FL Department of Radiology, Oita University Faculty of Medicine, Oita, Japan, Introduction Conclusions Cadaveric cerebellopontine angle with Venographic images and illustration Occlusion of the superior petrosal vein, In these unique cases, in which the absence of the left superior petrosal one of the most constant and largest superior petrosal sinus and veins are venous structures in the posterior fossa, absent, care should be directed to veins and sinus. may result in venous complications. The preserving the collateral drainage through purpose of this study is to call attention to the galenic and tentorial tributaries. a unique variant in which the superior Although surgical strategies for petrosal veins and sinus were absent intraoperative management and unilaterally, and venous drainage was preservation of venous structures are still through the galenic and tentorial groups. controversial, knowledge of the possible anatomical variations is considered Methods essential to improving surgical outcomes. Anatomical dissection of one formalin-fixed adult head, in which the left superior References petrosal vein and sinus were not present. Elhammady MS, Heros RC. Cerebral Veins: To Supplementary, a detailed analysis of Sacrifice or Not to Sacrifice, That Is the venographic images of a patient without Question. World neurosurgery. Jun 18 2013. any identifiable superior petrosal vein or sinus. Ueyama T, Al-Mefty O, Tamaki N. Bridging veins on the tentorial surface of the cerebellum: a microsurgical anatomic study and operative Results considerations. -
External Jugular Venous Sampling for Cushing's Disease in a Patient With
CASE REPORT External jugular venous sampling for Cushing’s disease in a patient with hypoplastic inferior petrosal sinuses Keyan A. Peterson, MS, MBA,1 Christofer D. Burnette, RT,2 Kyle M. Fargen, MD, MPH,1 Patrick A. Brown, MD,2 James L. West, MD,1 Stephen B. Tatter, MD, PhD,1 and Stacey Q. Wolfe, MD1 1Department of Neurosurgery, Wake Forest University School of Medicine; and 2Department of Radiology, Wake Forest Baptist Health, Winston-Salem, North Carolina The authors report the case of a 30-year-old female patient with suspected Cushing’s disease with an anatomical variation of hypoplastic inferior petrosal sinuses and nearly exclusive anterior drainage from the cavernous sinus, who underwent external jugular venous blood sampling with successful disease confirmation and microadenoma localization. The patient presented with signs and symptoms consistent with Cushing’s syndrome, but with discordant preliminary diagnostic testing. She underwent attempted bilateral inferior petrosal sinus sampling; however, she had hypoplastic in- ferior petrosal sinuses bilaterally and predominantly anterior drainage from the cavernous sinus into the external jugular circulation. Given this finding, the decision was made to proceed with external jugular venous access and sampling in addition to internal jugular venous sampling. A positive adrenocorticotropic hormone (ACTH) response to corticotropin- releasing factor was obtained in the right external jugular vein alone, suggesting a right-sided pituitary microadenoma as the cause of her Cushing’s disease. The patient subsequently underwent a transsphenoidal hypophysectomy that confirmed the presence of a right-sided ACTH-secreting microadenoma, which was successfully resected. She was hypocortisolemic on discharge and has had no signs of recurrence or relapse at 6 months postoperation. -
Current Concepts on Carotid Artery-Cavernous Sinus Fistulas
Neurosurg Focus 5 (4):Article 12, 1998 Current concepts on carotid arterycavernous sinus fistulas Jordi X. Kellogg, M.D., Todd A. Kuether, M.D., Michael A. Horgan, M.D., Gary M. Nesbit, M.D., and Stanley L. Barnwell, M.D., Ph.D. Department of Neurosurgery and the Dotter Interventional Institute, Oregon Health Sciences University, Portland, Oregon With greater understanding of the pathophysiological mechanisms by which carotid arterycavernous sinus fistulas occur, and with improved endovascular devices, more appropriate and definitive treatments are being performed. The authors define cartoid cavernous fistulas based on an accepted classification system and the signs and symptoms related to these fistulas are described. Angiographic evaluation of the risk the lesion may pose for precipitating stroke or visual loss in the patient is discussed. The literature on treatment alternatives for the different types of fistulas including transvenous, transarterial, and conservative management is reviewed. Key Words * carotid arterycavernous sinus fistula * review Arteriovenous fistulas in the region of the cavernous sinus are commonly classified into two major categories based on the location of the fistula. The first category includes the direct fistula and is termed, by the angiographic classification of Barrow, et al.,[3] a Type A carotidcavernous sinus fistula (CCF). In Type A fistulas there is a direct connection between the internal carotid artery (ICA) and the cavernous sinus (Fig. 1). These fistulas usually occur posttrauma, although spontaneous causes secondary to other medical conditions have been reported.[8,35,54] The other category of CCF is the indirect type. This lesion is an arteriovenous fistula in the dura around the cavernous sinus. -
The Development of Mammalian Dural Venous Sinuses with Especial Reference to the Post-Glenoid Vein
J. Anat. (1967), 102, 1, pp. 33-56 33 With 12 figures Printed in Great Britian The development of mammalian dural venous sinuses with especial reference to the post-glenoid vein H. BUTLER Department ofAnatomy, University of Saskatchewan, Saskatoon, Canada The intracranial venous outflow of mammals drains into both the internal and external jugular veins and the relative role of these two veins varies between different adult mammals as well as at different phases of embryonic and foetal life. In general, the primary head vein (consisting of venae capitis medialis and lateralis and their tributaries) gives rise to the dural venous sinuses which drain into the anterior cardinal vein (the future internal jugular vein). The external jugular veins appear as the face and jaws develop but, at all times, the two venous systems freely com- municate with each other. Morphologically, as shown by Sutton (1888), both the dural venous sinuses and the external jugular venous system are extracranial in so far as they are situated outside the dura mater. The chondrocranium and the dermocranium, however, develop in between the dural venous sinuses and the external jugular vein system (Butler, 1957). Thus, in the adult mammal, the bony skull wall separates the two venous systems, and therefore the dural venous sinuses are topographically intracranial whereas the external jugular venous system is extracranial. Furthermore the development of the skull localizes the connexions between the dural venous sinuses and the external jugular venous system to the various fontanelles and neuro-vascular foramina to form the emissary veins. The post-glenoid vein is one of the more important and controversial emissary veins since its presence or absence has been used in attempts to establish mammalian phylogenetic relationships (van Gelderen, 1925; Boyd, 1930). -
Dural Venous Sinuses Dr Nawal AL-Shannan Dural Venous Sinuses ( DVS )
Dural venous sinuses Dr Nawal AL-Shannan Dural venous sinuses ( DVS ) - Spaces between the endosteal and meningeal layers of the dura Features: 1. Lined by endothelium 2. No musculare tissue in the walls of the sinuses 3. Valueless 4.Connected to diploic veins and scalp veins by emmissary veins .Function: receive blood from the brain via cerebral veins and CSF through arachnoid villi Classification: 15 venous sinuses Paried venous sinuses Unpaired venous sinuses ( lateral in position) • * superior sagittal sinus • * cavernous sinuses • * inferior sagittal sinus • * superior petrosal sinuses • * occipital sinus • * inferior petrosal sinuses • * anterior intercavernous • * transverse sinuses • sinus * sigmoid sinuses • * posterior intercavernous • * spheno-parietal sinuses • sinus • * middle meningeal veins • * basilar plexuses of vein SUPERIOR SAGITTAL SINUS • Begins in front at the frontal crest • ends behind at the internal occipital protuberance diliated to form confluence of sinuses and venous lacunae • • The superior sagittal sinus receives the following : • 1- Superior cerebral veins • 2- dipolic veins • 3- Emissary veins • 4- arachnoid granulation • 5- meningeal veins Clinical significance • Infection from scalp, nasal cavity & diploic tissue • septic thrombosis • CSF absorption intra cranial thrombosis (ICT) • Inferior sagittal sinus - small channel occupy • lower free magin of falx cerebri ( post 2/3) - runs backward and • joins great cerebral vein at free margin of tentorium cerebelli to form straight sinus. • - receives cerebral -
Combining Endovascular and Neurosurgical Treatments of High-Risk Dural Arteriovenous Fistulas in the Lateral Sinus and the Confluence of the Sinuses
Neurosurg Focus 5 (4):Article 10, 1998 Combining endovascular and neurosurgical treatments of high-risk dural arteriovenous fistulas in the lateral sinus and the confluence of the sinuses Katsuya Goto, M.D., Ph.D., Prijo Sidipratomo, M.D., Noboru Ogata, M.D., Toru Inoue, M.D., and Haruo Matsuno, M.D. Departments of Interventional Neuroradiology and Neurosurgery, Iizuka Hospital, Iizuka, Japan The authors describe their experience in treating dural arteriovenous fistulas (DAVFs) in the lateral sinus and the confluence of sinuses in 17 patients who presented with signs and symptoms related to intracranial hemorrhage, infarction, and diffuse brain swelling. Angiographic examination revealed three different types of DAVFs in these high-risk patients: 1) extremely high flow DAVF not associated with sinus occlusion or leptomeningeal retrograde venous drainage (LRVD); 2) localized DAVF with exclusive LRVD and without sinus occlusion; and 3) diffuse DAVF with sinus occlusion and LRVD. Because of the complex nature of these lesions, the authors adopted a staged protocol in which they combined endovascular and surgical treatments. The authors believe that by close collaboration between endovascular therapists and vascular neurosurgeons, high-risk DAVFs in the lateral sinus and the confluence of sinuses can be successfully treated without treatment-related morbidity and mortality. Key Words * dural arteriovenous fistula * transverse sinus * sigmoid sinus * embolization * surgery * combined treatment Over the last two decades, there has been increased -
The LATIN LANGUAGE and Bases of Medical Terminology
The LATIN LANGUAGE and Bases of Medical Terminology The LATIN LANGUAGE and Bases of Medical Terminology ОДЕСЬКИЙ ДЕРЖАВНИЙ МЕДИЧНИЙ УНІВЕРСИТЕТ THE ODESSA STATE MEDICAL UNIVERSITY Áiáëiîòåêà ñòóäåíòà-ìåäèêà Medical Student’s Library Започатковано 1999 р. на честь 100-річчя Одеського державного медичного університету (1900–2000 рр.) Initiated in 1999 to mark the Centenary of the Odessa State Medical University (1900–2000) 2 THE LATIN LANGUAGE AND BASES OF MEDICAL TERMINOLOGY Practical course Recommended by the Central Methodical Committee for Higher Medical Education of the Ministry of Health of Ukraine as a manual for students of higher medical educational establishments of the IV level of accreditation using English Odessa The Odessa State Medical University 2008 3 BBC 81.461я73 UDC 811.124(075.8)61:001.4 Authors: G. G. Yeryomkina, T. F. Skuratova, N. S. Ivashchuk, Yu. O. Kravtsova Reviewers: V. K. Zernova, doctor of philological sciences, professor of the Foreign Languages Department of the Ukrainian Medical Stomatological Academy L. M. Kim, candidate of philological sciences, assistant professor, the head of the Department of Foreign Languages, Latin Language and Bases of Medical Terminology of the Vinnitsa State Medical University named after M. I. Pyrogov The manual is composed according to the curriculum of the Latin lan- guage and bases of medical terminology for medical higher schools. Designed to study the bases of general medical and clinical terminology, it contains train- ing exercises for the class-work, control questions and exercises for indivi- dual student’s work and the Latin-English and English-Latin vocabularies (over 2,600 terms). For the use of English speaking students of the first year of study at higher medical schools of IV accreditation level. -
27. Veins of the Head and Neck
GUIDELINES Students’ independent work during preparation to practical lesson Academic discipline HUMAN ANATOMY Topic VEINS OF THE HEAD AND NECK 1. The relevance of the topic: Knowledge of the anatomy of the veins of head and neck is a base of clinical thinking and differential diagnosis for the doctor of any specialty, but, above all, dentists, neurologists and surgeons who operate in areas of the neck or head. 2. Specific objectives - demonstrate superior vena cava, right and left brachiocephalic, subclavian, internal and external jugular, anterior jugular veins and venous angles. - demonstrate dural sinuses, veins of the brain. - demonstrate pterygoid plexus, retromandibular, facial veins and other tributaries of extracranial part of internal jugular vein. - demonstrate external jugular vein. - identify and demonstrate anastomoses on the head and neck. 3. Basic level of preparation Student should know and be able to: 1. To demonstrate the structural features of the cervical vertebrae. 2. To demonstrate the anatomical lesions of external and internal base of the skull. 3. To demonstrate the muscles of the head and neck. 4. To demonstrate the divisions of the brain. 4. Tasks for independent work during preparation for practical lessons 4.1. A list of the main terms, parameters, characteristics that need to be learned by student during the preparation for the lesson Term Definition JUGULAR VEINS Veins that take deoxygenated blood from the head to the heart via the superior vena cava. INTERNAL JUGULAR VEIN Starts from the sigmoid sinus of the dura mater and receives the blood from common facial vein. The internal jugular vein runs with the common carotid artery and vagus nerve inside the carotid sheath.