Laboratory News Vol 35 No 12 June 25 2012 Web[1]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Official Nh Dhhs Health Alert
THIS IS AN OFFICIAL NH DHHS HEALTH ALERT Distributed by the NH Health Alert Network [email protected] May 18, 2018, 1300 EDT (1:00 PM EDT) NH-HAN 20180518 Tickborne Diseases in New Hampshire Key Points and Recommendations: 1. Blacklegged ticks transmit at least five different infections in New Hampshire (NH): Lyme disease, Anaplasma, Babesia, Powassan virus, and Borrelia miyamotoi. 2. NH has one of the highest rates of Lyme disease in the nation, and 50-60% of blacklegged ticks sampled from across NH have been found to be infected with Borrelia burgdorferi, the bacterium that causes Lyme disease. 3. NH has experienced a significant increase in human cases of anaplasmosis, with cases more than doubling from 2016 to 2017. The reason for the increase is unknown at this time. 4. The number of new cases of babesiosis also increased in 2017; because Babesia can be transmitted through blood transfusions in addition to tick bites, providers should ask patients with suspected babesiosis whether they have donated blood or received a blood transfusion. 5. Powassan is a newer tickborne disease which has been identified in three NH residents during past seasons in 2013, 2016 and 2017. While uncommon, Powassan can cause a debilitating neurological illness, so providers should maintain an index of suspicion for patients presenting with an unexplained meningoencephalitis. 6. Borrelia miyamotoi infection usually presents with a nonspecific febrile illness similar to other tickborne diseases like anaplasmosis, and has recently been identified in one NH resident. Tests for Lyme disease do not reliably detect Borrelia miyamotoi, so providers should consider specific testing for Borrelia miyamotoi (see Attachment 1) and other pathogens if testing for Lyme disease is negative but a tickborne disease is still suspected. -
Bitten Enhance.Pdf
bitten. Copyright © 2019 by Kris Newby. All rights reserved. Printed in the United States of America. No part of this book may be used or reproduced in any manner whatsoever without written permission except in the case of brief quotations embodied in critical articles and reviews. For information, address HarperCollins Publishers, 195 Broadway, New York, NY 10007. HarperCollins books may be purchased for educational, business, or sales pro- motional use. For information, please email the Special Markets Department at [email protected]. first edition Frontispiece: Tick research at Rocky Mountain Laboratories, in Hamilton, Mon- tana (Courtesy of Gary Hettrick, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases [NIAID], National Institutes of Health [NIH]) Maps by Nick Springer, Springer Cartographics Designed by William Ruoto Library of Congress Cataloging- in- Publication Data Names: Newby, Kris, author. Title: Bitten: the secret history of lyme disease and biological weapons / Kris Newby. Description: New York, NY: Harper Wave, [2019] Identifiers: LCCN 2019006357 | ISBN 9780062896278 (hardback) Subjects: LCSH: Lyme disease— History. | Lyme disease— Diagnosis. | Lyme Disease— Treatment. | BISAC: HEALTH & FITNESS / Diseases / Nervous System (incl. Brain). | MEDICAL / Diseases. | MEDICAL / Infectious Diseases. Classification: LCC RC155.5.N49 2019 | DDC 616.9/246—dc23 LC record available at https://lccn.loc.gov/2019006357 19 20 21 22 23 lsc 10 9 8 7 6 5 4 3 2 1 Appendix I: Ticks and Human Disease Agents -
Ehrlichiosis and Anaplasmosis Are Tick-Borne Diseases Caused by Obligate Anaplasmosis: Intracellular Bacteria in the Genera Ehrlichia and Anaplasma
Ehrlichiosis and Importance Ehrlichiosis and anaplasmosis are tick-borne diseases caused by obligate Anaplasmosis: intracellular bacteria in the genera Ehrlichia and Anaplasma. These organisms are widespread in nature; the reservoir hosts include numerous wild animals, as well as Zoonotic Species some domesticated species. For many years, Ehrlichia and Anaplasma species have been known to cause illness in pets and livestock. The consequences of exposure vary Canine Monocytic Ehrlichiosis, from asymptomatic infections to severe, potentially fatal illness. Some organisms Canine Hemorrhagic Fever, have also been recognized as human pathogens since the 1980s and 1990s. Tropical Canine Pancytopenia, Etiology Tracker Dog Disease, Ehrlichiosis and anaplasmosis are caused by members of the genera Ehrlichia Canine Tick Typhus, and Anaplasma, respectively. Both genera contain small, pleomorphic, Gram negative, Nairobi Bleeding Disorder, obligate intracellular organisms, and belong to the family Anaplasmataceae, order Canine Granulocytic Ehrlichiosis, Rickettsiales. They are classified as α-proteobacteria. A number of Ehrlichia and Canine Granulocytic Anaplasmosis, Anaplasma species affect animals. A limited number of these organisms have also Equine Granulocytic Ehrlichiosis, been identified in people. Equine Granulocytic Anaplasmosis, Recent changes in taxonomy can make the nomenclature of the Anaplasmataceae Tick-borne Fever, and their diseases somewhat confusing. At one time, ehrlichiosis was a group of Pasture Fever, diseases caused by organisms that mostly replicated in membrane-bound cytoplasmic Human Monocytic Ehrlichiosis, vacuoles of leukocytes, and belonged to the genus Ehrlichia, tribe Ehrlichieae and Human Granulocytic Anaplasmosis, family Rickettsiaceae. The names of the diseases were often based on the host Human Granulocytic Ehrlichiosis, species, together with type of leukocyte most often infected. -
Tick-Borne Diseases in Maine a Physician’S Reference Manual Deer Tick Dog Tick Lonestar Tick (CDC Photo)
tick-borne diseases in Maine A Physician’s Reference Manual Deer Tick Dog Tick Lonestar Tick (CDC PHOTO) Nymph Nymph Nymph Adult Male Adult Male Adult Male Adult Female Adult Female Adult Female images not to scale know your ticks Ticks are generally found in brushy or wooded areas, near the DEER TICK DOG TICK LONESTAR TICK Ixodes scapularis Dermacentor variabilis Amblyomma americanum ground; they cannot jump or fly. Ticks are attracted to a variety (also called blacklegged tick) (also called wood tick) of host factors including body heat and carbon dioxide. They will Diseases Diseases Diseases transfer to a potential host when one brushes directly against Lyme disease, Rocky Mountain spotted Ehrlichiosis anaplasmosis, babesiosis fever and tularemia them and then seek a site for attachment. What bites What bites What bites Nymph and adult females Nymph and adult females Adult females When When When April through September in Anytime temperatures are April through August New England, year-round in above freezing, greatest Southern U.S. Coloring risk is spring through fall Adult females have a dark Coloring Coloring brown body with whitish Adult females have a brown Adult females have a markings on its hood body with a white spot on reddish-brown tear shaped the hood Size: body with dark brown hood Unfed Adults: Size: Size: Watermelon seed Nymphs: Poppy seed Nymphs: Poppy seed Unfed Adults: Sesame seed Unfed Adults: Sesame seed suMMer fever algorithM ALGORITHM FOR DIFFERENTIATING TICK-BORNE DISEASES IN MAINE Patient resides, works, or recreates in an area likely to have ticks and is exhibiting fever, This algorithm is intended for use as a general guide when pursuing a diagnosis. -
Molecular Evidence of Babesia Infections in Spinose Ear Tick, Otobius Megnini Infesting Stabled Horses in Nuwara Eliya Racecourse: a Case Study
Ceylon Journal of Science 47(4) 2018: 405-409 DOI: http://doi.org/10.4038/cjs.v47i4.7559 SHORT COMMUNICATION Molecular evidence of Babesia infections in Spinose ear tick, Otobius megnini infesting stabled horses in Nuwara Eliya racecourse: A case study G.C.P. Diyes1,2, R.P.V.J. Rajapakse3 and R.S. Rajakaruna1,2,* 1Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka 2The Postgraduate Institute of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka 3Department of Veterinary Pathobiology, Faculty of Veterinary Medicine & Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka Received:26/04/2018; Accepted:02/08/2018 Abstract: Spinose ear tick, Otobius megnini (Family Argasidae) Race Club (Joseph, 1982). There is a speculation that O. is a one-host soft tick that parasitizes domesticated animals and megnini was introduced to Sri Lanka from India via horse occasionally humans. It causes otoacariasis or parasitic otitis in trading. The first report of O. megnini in Sri Lanka is in humans and animals and also known to carry infectious agents. 2010 from stable workers and jockeys as an intra-aural Intra aural infestations of O. megnini is a serious health problem infestation (Ariyaratne et al., 2010). In Sri Lanka, O. in the well-groomed race horses in Nuwara Eliya. Otobius megnini appears to have a limited distribution with no megnini collected from the ear canal of stabled horses in Nuwara records of it infesting any other domesticated animals other Eliya racecourse were tested for three possible infections, than horses in the racecourses (Diyes and Rajakaruna, Rickettsia, Theileria and Babesia. -
20210315092550 48603.Pdf
ORIGINAL RESEARCH published: 24 February 2021 doi: 10.3389/fimmu.2021.616343 Molecular Characterization and Immunological Evaluation of Truncated Babesia microti Rhoptry Neck Protein 2 as a Vaccine Candidate † † Yu chun Cai 1,2,3 , Chun li Yang 4 , Wei Hu 1,2,3,5, Peng Song 1,2,3, Bin Xu 1,2,3, Yan Lu 1,2,3, Lin Ai 1,2,3, Yan hong Chu 1,2,3, Mu xin Chen 1,2,3, Jia xu Chen 1,2,3* and Shao hong Chen1,2,3* 1 National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China, 2 Laboratory Edited by: of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China, 3 WHO Collaborating Centre for Tropical Diseases, Wanderley De Souza, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China, Federal University of Rio de Janeiro, 4 Department of Clinical Research, The 903rd Hospital of PLA, Hangzhou, China, 5 School of Life Sciences, Fudan University, Brazil Shanghai, China Reviewed by: Junlong Zhao, Huazhong Agricultural University, Babesia microti is a protozoan that infects red blood cells. Babesiosis is becoming a new China global threat impacting human health. Rhoptry neck proteins (RONs) are proteins located Lan He, at the neck of the rhoptry and studies indicate that these proteins play an important role in Huazhong Agricultural University, China the process of red blood cell invasion. In the present study, we report on the bioinformatic *Correspondence: analysis, cloning, and recombinant gene expression of two truncated rhoptry neck Jia xu Chen proteins 2 (BmRON2), as well as their potential for incorporation in a candidate vaccine [email protected] fl Shao hong Chen for babesiosis. -
Mechanisms Affecting the Acquisition, Persistence and Transmission Of
microorganisms Review Mechanisms Affecting the Acquisition, Persistence and Transmission of Francisella tularensis in Ticks Brenden G. Tully and Jason F. Huntley * Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; [email protected] * Correspondence: [email protected] Received: 29 September 2020; Accepted: 21 October 2020; Published: 23 October 2020 Abstract: Over 600,000 vector-borne disease cases were reported in the United States (U.S.) in the past 13 years, of which more than three-quarters were tick-borne diseases. Although Lyme disease accounts for the majority of tick-borne disease cases in the U.S., tularemia cases have been increasing over the past decade, with >220 cases reported yearly. However, when comparing Borrelia burgdorferi (causative agent of Lyme disease) and Francisella tularensis (causative agent of tularemia), the low infectious dose (<10 bacteria), high morbidity and mortality rates, and potential transmission of tularemia by multiple tick vectors have raised national concerns about future tularemia outbreaks. Despite these concerns, little is known about how F. tularensis is acquired by, persists in, or is transmitted by ticks. Moreover, the role of one or more tick vectors in transmitting F. tularensis to humans remains a major question. Finally, virtually no studies have examined how F. tularensis adapts to life in the tick (vs. the mammalian host), how tick endosymbionts affect F. tularensis infections, or whether other factors (e.g., tick immunity) impact the ability of F. tularensis to infect ticks. This review will assess our current understanding of each of these issues and will offer a framework for future studies, which could help us better understand tularemia and other tick-borne diseases. -
Establishment and Optimisation of Anti-Babesia Microti Drug E Cacy
Establishment and Optimisation of Anti-Babesia microti Drug Ecacy Evaluation Method Meng Yin Centers for Disease Control and Prevention Hao-bing Zhang ( [email protected] ) Centers for Disease Control and Prevention Yi Tao Centers for Disease Control and Prevention Jun-Min Yao Centers for Disease Control and Prevention Hua Liu Centers for Disease Control and Prevention Htet Htet Win Ministry of Education Jia-Xu Chen Centers for Disease Control and Prevention Le-Le Huo Centers for Disease Control and Prevention Bin Jiang Centers for Disease Control and Prevention Yu-Fen Wei Centers for Disease Control and Prevention Qi Zheng Centers for Disease Control and Prevention Cong-Shan Liu Centers for Disease Control and Prevention Jian Xue Centers for Disease Control and Prevention Qi-Qi Shi Centers for Disease Control and Prevention Methodology Page 1/20 Keywords: Babesia microti, robenidine hydrochloride, quantitative PCR, atovaquone, azithromycin, evaluation of drug ecacy Posted Date: October 15th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-90833/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/20 Abstract Background Babesiosis, an infectious zoonotic parasitic disease that occurs globally, is most commonly caused by Babesia microti. For a severe infection, a combination of exchange transfusion and support-therapy is used and, for a mild infection, single antibiotics, or a combination of antibiotics and antiprotozoal drugs, are used for 7–10 days for the treatment of babesiosis; however, as these treatments have problems, a new therapy is needed. Although aetiological and molecular biology methods are often used in drug screening, these methods have disadvantages and there is no standard anti-B. -
Human Babesiosis and Ehrlichiosis Current Status
IgeneX_v1_A4_A4_2011 27/04/2012 17:26 Page 49 Tick-borne Infectious Disease Human Babesiosis and Ehrlichiosis – Current Status Jyotsna S Shah,1 Richard Horowitz2 and Nick S Harris3 1. Vice President, IGeneX Inc., California; 2. Medical Director, Hudson Valley Healing Arts Center, New York; 3. CEO and President, IGeneX Inc., California, US Abstract Lyme disease (LD), caused by the Borrelia burgdorferi complex, is the most frequently reported arthropod-borne infection in North America and Europe. The ticks that transmit LD also carry other pathogens. The two most common co-infections in patients with LD are babesiosis and ehrlichiosis. Human babesiosis is caused by protozoan parasites of the genus Babesia including Babesia microti, Babesia duncani, Babesia divergens, Babesia divergens-like (also known as Babesia MOI), Babesia EU1 and Babesia KO1. Ehrlichiosis includes human sennetsu ehrlichiosis (HSE), human granulocytic anaplasmosis (HGA), human monocytic ehrlichiosis (HME), human ewingii ehrlichiosis (HEE) and the recently discovered human ehrlichiosis Wisconsin–Minnesota (HWME). The resulting illnesses vary from asymptomatic to severe, leading to significant morbidity and mortality, particularly in immunocompromised patients. Clinical signs and symptoms are often non-specific and require the medical provider to have a high degree of suspicion of these infections in order to be recognised. In this article, the causative agents, geographical distribution, clinical findings, diagnosis and treatment protocols are discussed for both babesiosis and ehrlichiosis. Keywords Babesia, Ehrlichia, babesiosis, ehrlichiosis, human, Borrelia Disclosure: Jyotsna Shah and Nick Harris are employees of IGeneX. Richard Horowitz is an employee of Hudson Valley Healing Arts Center. Acknowledgements: The authors would like to thank Eddie Caoili, and Sohini Stone, for providing technical assistance. -
Sequencing of the Smallest Apicomplexan Genome from The
Sequencing of the smallest apicomplexan genome from the human pathogen Babesia Microti Emmanuel Cornillot, Kamel Hadj-Kaddour, Amina Dassouli, Benjamin Noel, Vincent Ranwez, Benoit Vacherie, Yoann Augagneur, Virginie Brès, Aurelie Duclos, Sylvie Randazzo, et al. To cite this version: Emmanuel Cornillot, Kamel Hadj-Kaddour, Amina Dassouli, Benjamin Noel, Vincent Ranwez, et al.. Sequencing of the smallest apicomplexan genome from the human pathogen Babesia Microti. Nucleic Acids Research, Oxford University Press, 2012, 40 (18), pp.9102-9114. 10.1093/nar/gks700. lirmm-00818833 HAL Id: lirmm-00818833 https://hal-lirmm.ccsd.cnrs.fr/lirmm-00818833 Submitted on 29 Apr 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 9102–9114 Nucleic Acids Research, 2012, Vol. 40, No. 18 Published online 24 July 2012 doi:10.1093/nar/gks700 Sequencing of the smallest Apicomplexan genome from the human pathogen Babesia microtiy Emmanuel Cornillot1,*, Kamel Hadj-Kaddour1, Amina Dassouli1, Benjamin Noel2, Vincent Ranwez3, Benoıˆt Vacherie2, Yoann Augagneur4, Virginie Bre` s1, Aurelie Duclos2, Sylvie Randazzo1, Bernard Carcy1, Franc¸oise Debierre-Grockiego5, Ste´ phane Delbecq1, Karina Moubri-Me´ nage1, Hosam Shams-Eldin6, Sahar Usmani-Brown4, Fre´ de´ ric Bringaud7, Patrick Wincker2, Christian P. -
Canine Ehrlichiosis: Update
Canine Ehrlichiosis: Update Barbara Qurollo, MS, DVM ([email protected]) Vector-Borne Disease Diagnostic Laboratory Dep. Clinical Sciences-College of Veterinary Medicine North Carolina State University Overview Ehrlichia species are tick-transmitted, obligate intracellular bacteria that can cause granulocytic or monocytic ehrlichiosis. Ehlrichia species that have been detected in the blood and tissues of clinically ill dogs in North America include Ehrlichia canis, E. chaffeenis, E. ewingii, E. muris and Panola Mountain Ehrlichia species (Table 1). Clinicopathologic abnormalities reported in dogs with ehrlichiosis vary depending on the species of Ehrlichia, strain variances and the immune or health status of the dog. The course of disease may present as subclinical, acute, chronic or even result in death (Table 1). E. canis and E. ewingii are the most prevalent and frequently described Ehrlichia infections in dogs. E. canis: Transmitted by Rhipicephalus sanguineus, E. canis is found world-wide. Within North America, the highest seroprevalence rates have been reported in the Southern U. S.2, 12 E. canis typically infects canine mononuclear cells. Canine monocytic ehrlichiosis (CME) is characterized by 3 stages: acute, subclinical and chronic. Following an incubation period of 1-3 weeks, infected dogs may remain subclinical or present with nonspecific signs including fever, lethargy, lymphadenopathy, splenomegaly, lameness, edema, bleeding disorders and mucopurulent ocular discharge. Less commonly reported nonspecific signs include vomiting, diarrhea, coughing and dyspnea. Bleeding disorders can include epistaxis, petechiae, ecchymoses, gingival bleeding and melena. Ocular abnormalities identified in E. canis infected dogs have included anterior uveitis, corneal opacity, retinal hemorrhage, hyphema, chorioretinal lesions and tortuous retinal vessels.8 Following an acute phase (2-4 weeks), clinical signs may resolve without treatment and the dog could remain subclinically infected indefinitely or naturally clear the pathogen. -
Using Core Genome Alignments to Assign Bacterial Species 2
bioRxiv preprint doi: https://doi.org/10.1101/328021; this version posted May 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Using Core Genome Alignments to Assign Bacterial Species 2 3 Matthew Chunga,b, James B. Munroa, Julie C. Dunning Hotoppa,b,c,# 4 a Institute for Genome Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA 5 b Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 6 21201, USA 7 c Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21201, 8 USA 9 10 Running Title: Core Genome Alignments to Assign Bacterial Species 11 12 #Address correspondence to Julie C. Dunning Hotopp, [email protected]. 13 14 Word count Abstract: 371 words 15 Word count Text: 4,833 words 16 1 bioRxiv preprint doi: https://doi.org/10.1101/328021; this version posted May 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 17 ABSTRACT 18 With the exponential increase in the number of bacterial taxa with genome sequence data, a new 19 standardized method is needed to assign bacterial species designations using genomic data that is 20 consistent with the classically-obtained taxonomy.