Appendix 24 Aquatic Ecology Impact Assessment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2219573-REP-Marine Assessment Report AR
Appendix L – Marine Assessment GHD | Report for Hunter Water Corporation - Belmont Drought Response Desalination Plant, 2219573 Hunter Water Corporation Belmont Drought Response Desalination Plant Marine Environment Assessment Amendment Report July 2020 Table of contents 1. Introduction..................................................................................................................................... 1 1.1 Background .......................................................................................................................... 1 1.2 Purpose and structure of this report .................................................................................... 2 2. Project changes ............................................................................................................................. 4 2.1 Overview .............................................................................................................................. 4 2.2 Key features of the amended Project .................................................................................. 4 3. Methodology ................................................................................................................................... 7 3.1 Review of relevant legislation .............................................................................................. 7 3.2 Review of databases and searches ..................................................................................... 7 3.3 Review of previous marine ecology reports ........................................................................ -
SALINITY SENSITIVITY in EARLY LIFE STAGES of an AUSTRALIAN FRESHWATER FISH, MURRAY COD (Maccullochella Peelii Peelii Mitchell 1838)
i SALINITY SENSITIVITY IN EARLY LIFE STAGES OF AN AUSTRALIAN FRESHWATER FISH, MURRAY COD (Maccullochella peelii peelii Mitchell 1838) Piyapong Chotipuntu THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF THE UNIVERSITY OF CANBERRA Submitted August 2003 ii © Piyapong Chotipuntu 2003 Abstract The Murray cod (Maccullochella peelii peelii Mitchell 1838) is Australia’s largest freshwater fish. Once highly abundant in the Murray-Darling river system, populations have drastically declined in recent decades. Many causes for this decline have been proposed, including over-fishing, habitat loss and altered river flow regimes. This study hypothesised that elevated salinities have led to selective mortality in some developmental stages, which have in turn depleted stock recruitment and adult populations. The objectives of this study were to determine the optimal, threshold, upper sublethal and lethal salinities for development of eggs, yolk-sac larvae, fry and fingerlings of M. peelii peelii. Investigation the impact of salinity on fertilisation utilised gametes of trout cod (M. macquariensis, Cuvier 1829) instead of M. peelii peelii. Studies were carried out in a controlled laboratory environment using test media prepared from commercial sea salt. The results showed that the eggs of the trout cod hatched only when fertilised and incubated in freshwater, and only larvae hatched in freshwater survived through the yolk absorption period of 12 days. Yolk utilisation efficiencies were not significantly different among the salinities of 0-0.30 g/L. There was no effect of pre- or post- fertilising processes on the salinity tolerances of yolk-sac larvae. No larvae survived at salinities higher than 0.30 g/L during the yolk utilisation period. -
Diversity and Risk Patterns of Freshwater Megafauna: a Global Perspective
Diversity and risk patterns of freshwater megafauna: A global perspective Inaugural-Dissertation to obtain the academic degree Doctor of Philosophy (Ph.D.) in River Science Submitted to the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin By FENGZHI HE 2019 This thesis work was conducted between October 2015 and April 2019, under the supervision of Dr. Sonja C. Jähnig (Leibniz-Institute of Freshwater Ecology and Inland Fisheries), Jun.-Prof. Dr. Christiane Zarfl (Eberhard Karls Universität Tübingen), Dr. Alex Henshaw (Queen Mary University of London) and Prof. Dr. Klement Tockner (Freie Universität Berlin and Leibniz-Institute of Freshwater Ecology and Inland Fisheries). The work was carried out at Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Germany, Freie Universität Berlin, Germany and Queen Mary University of London, UK. 1st Reviewer: Dr. Sonja C. Jähnig 2nd Reviewer: Prof. Dr. Klement Tockner Date of defense: 27.06. 2019 The SMART Joint Doctorate Programme Research for this thesis was conducted with the support of the Erasmus Mundus Programme, within the framework of the Erasmus Mundus Joint Doctorate (EMJD) SMART (Science for MAnagement of Rivers and their Tidal systems). EMJDs aim to foster cooperation between higher education institutions and academic staff in Europe and third countries with a view to creating centres of excellence and providing a highly skilled 21st century workforce enabled to lead social, cultural and economic developments. All EMJDs involve mandatory mobility between the universities in the consortia and lead to the award of recognised joint, double or multiple degrees. The SMART programme represents a collaboration among the University of Trento, Queen Mary University of London and Freie Universität Berlin. -
Native Fish Strategy
MURRAY-DARLING BASIN AUTHORITY Native Fish Strategy Mesoscale movements of small- and medium-sized fish in the Murray-Darling Basin MURRAY-DARLING BASIN AUTHORITY Native Fish Strategy Mesoscale movements of small- and medium-sized fish in the Murray-Darling Basin M. Hutchison, A. Butcher, J. Kirkwood, D. Mayer, K. Chilcott and S. Backhouse Queensland Department of Primary Industries and Fisheries Published by Murray-Darling Basin Commission Postal Address GPO Box 409, Canberra ACT 2601 Office location Level 4, 51 Allara Street, Canberra City Australian Capital Territory Telephone (02) 6279 0100 international + 61 2 6279 0100 Facsimile (02) 6248 8053 international + 61 2 6248 8053 Email [email protected] Internet http://www.mdbc.gov.au For further information contact the Murray-Darling Basin Commission office on (02) 6279 0100 This report may be cited as: Hutchison, M, Butcher, A, Kirkwood, J, Mayer, D, Chikott, K and Backhouse, S. Mesoscale movements of small and medium-sized fish in the Murray-Darling Basin MDBC Publication No. 41/08 ISBN 978 1 921257 81 0 © Copyright Murray-Darling Basin Commission 2008 This work is copyright. Graphical and textual information in the work (with the exception of photographs and the MDBC logo) may be stored, retrieved and reproduced in whole or in part, provided the information is not sold or used for commercial benefit and is acknowledged. Such reproduction includes fair dealing for the purpose of private study, research, criticism or review as permitted under the Copyright Act 1968. Reproduction for other purposes is prohibited without prior permission of the Murray-Darling Basin Commission or the individual photographers and artists with whom copyright applies. -
Resistance and Resilience of Murray-Darling Basin Fishes to Drought Disturbance
Resistance and Resilience of Murray- Darling Basin Fishes to Drought Disturbance Dale McNeil1, Susan Gehrig1 and Clayton Sharpe2 SARDI Publication No. F2009/000406-1 SARDI Research Report Series No. 602 SARDI Aquatic Sciences PO Box 120 Henley Beach SA 5022 April 2013 Final Report to the Murray-Darling Basin Authority - Native Fish Strategy Project MD/1086 “Ecosystem Resilience and the Role of Refugia for Native Fish Communities & Populations” McNeil et. al. 2013 Drought and Native Fish Resilience Resistance and Resilience of Murray- Darling Basin Fishes to Drought Disturbance Final Report to the Murray-Darling Basin Authority - Native Fish Strategy Project MD/1086 “Ecosystem Resilience and the Role of Refugia for Native Fish Communities & Populations” Dale McNeil1, Susan Gehrig1 and Clayton Sharpe2 SARDI Publication No. F2009/000406-1 SARDI Research Report Series No. 602 April 2013 Page | ii McNeil et. al. 2013 Drought and Native Fish Resilience This Publication may be cited as: McNeil, D. G., Gehrig, S. L. and Sharpe, C. P. (2013). Resistance and Resilience of Murray-Darling Basin Fishes to Drought Disturbance. Final Report to the Murray-Darling Basin Authority - Native Fish Strategy Project MD/1086 ―Ecosystem Resilience and the Role of Refugia for Native Fish Communities & Populations‖. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2009/000406-1. SARDI Research Report Series No. 602. 143pp. Front Cover Images – Lake Brewster in the Lower Lachlan River catchment, Murray-Darling Basin during extended period of zero inflows, 2007. Murray cod (Maccullochella peelii peelii), olive perchlet (Ambassis agassizii) and golden perch (Macquaria ambigua) from the, lower Lachlan River near Lake Brewster, 2007 (all images - Dale McNeil). -
Protecting Eastern Freshwater Cod –Aguide of Food Andshelter
Protecting Eastern Freshwater Cod – a guide for fishers and land managers Eastern Freshwater Cod (also known as Clarence River Cod) is a threatened species under NSW and Commonwealth law. Eastern Freshwater Cod can weigh up to 41 kg but are more commonly less than 5 kg and 660 mm. These large, predatory freshwater fish are native to the Clarence and Richmond Rivers in north-eastern New South Wales. Populations of Eastern Freshwater Cod collapsed in the 1920s and 1930s and continued to decline until the 1980s, when the species was protected. Although once prolific, remnant (non-stocked) populations are now only found in parts of the Clarence River and its tributaries. No remnant populations are known to remain in the Richmond River system, however, stocked populations persist in some local tributaries. Reasons for the decline of Eastern Freshwater Cod include habitat loss and degradation, impacts from introduced Photo by Brett Vercoe species and illegal fishing. EASTERN FRESHWATER COD HABITATS STOCKING Eastern Freshwater Cod are typically found in clear, flowing streams with rocky substrate and large A stocking program for Eastern Freshwater Cod involving amounts of in-stream cover. They are generally found a commercial hatchery commenced in the 1990s and in areas that have boulders or large woody debris. Such ceased in 2003. The stocking took place at various areas provide complex habitats for each stage of the locations throughout the Clarence and Richmond River species life cycle and influence and quality and quantity systems. NSW DPI undertakes regular monitoring of of food and shelter. Eastern Freshwater Cod populations to assess the long- term effectiveness of the stocking program. -
Deficiencies in Our Understanding of the Hydro-Ecology of Several Native Australian Fish: a Rapid Evidence Synthesis
Marine and Freshwater Research, 2018, 69, 1208–1221 © CSIRO 2018 https://doi.org/10.1071/MF17241 Supplementary material Deficiencies in our understanding of the hydro-ecology of several native Australian fish: a rapid evidence synthesis Kimberly A. MillerA,D, Roser Casas-MuletB,A, Siobhan C. de LittleA, Michael J. StewardsonA, Wayne M. KosterC and J. Angus WebbA,E ADepartment of Infrastructure Engineering, The University of Melbourne, Parkville, Vic. 3010, Australia. BWater Research Institute, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK. CArthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, Heidelberg, Vic. 3084, Australia. DPresent address: Healesville Sanctuary, Badger Creek Road, Healesville, Vic. 3777, Australia. ECorresponding author. Email address: [email protected] Page 1 of 30 Marine and Freshwater Research © CSIRO 2018 https://doi.org/10.1071/MF17241 Table S1. All papers located by standardised searches and following citation trails for the two rapid evidence assessments All papers are marked as Relevant or Irrelevant based on a reading of the title and abstract. Those deemed relevant on the first screen are marked as Relevant or Irrelevant based on a full assessment of the reference.The table contains incomplete citation details for a number of irrelevant papers. The information provided is as returned from the different evidence databases. Given that these references were not relevant to our review, we have not sought out the full citation details. Source Reference Relevance Relevance (based on title (after reading and abstract) full text) Pygmy perch & carp gudgeons Search hit Anon (1998) Soy protein-based formulas: recommendations for use in infant feeding. -
Environmental Impact Statement for Traveston Crossing Dam (Mary River, Queensland): a Review with Regard for Species of Concern Under the EPBC Act 1999
Environmental Impact Statement for Traveston Crossing Dam (Mary River, Queensland): A Review with regard for Species of Concern under the EPBC Act 1999 Report to the Department of Environment, Water, Heritage and the Arts, Canberra KF Walker Consultant in River and Floodplain Ecology PO Box 331, YANKALILLA 5203 Adjunct Associate Professor School of Earth and Environmental Sciences, The University of Adelaide www.sunwater.com.au November 2008 ii … This report may be cited as: Walker KF. 2008. Environmental Impact Statement for Traveston Crossing Dam (Mary River, Queensland): A Review with regard for Species of Concern under the EPBC Act 1999. Report to the Department of Environment, Water, Heritage and the Arts, Canberra. November 2008. xx+84p. iii Executive Summary Queensland Water Infrastructure (QWI) proposes to construct Traveston Crossing Dam on the Mary River as part of a strategy to meet anticipated water demands in south‐ eastern Queensland. This is the last high‐yield dam site available in the region, according to QWI, but it is also an extremely sensitive site in terms of significance for conservation. An Environmental Impact Statement (EIS) has been released for public comment, and a Supplement containing responses to submissions has also been issued. This review is concerned with the implications for a number of species listed under the Environment Protection and Biodiversity Act 1999 (EPBC Act), including three ‘iconic’ species, the Australian lungfish, Mary River cod and Mary River turtle. Context Ecologically Sustainable Development In many cases, the EIS makes assumptions on the basis of scant evidence and draws conclusions about impacts with little or no justification. -
Aspects of the Biology of Juvenile Barramundi Lates Calcarifer (Bloch
ResearchOnline@JCU This file is part of the following reference: Barlow, Christopher G. (1998) Aspects of the biology of juvenile barramundi Lates calcarifer (Bloch) relevant to production for recreational fisheries and farming, with a note on the proposal to introduce Nile perch Lates niloticus (L.) to Australia. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/24097/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/24097/ Aspects of the biology of juvenile barramundi Lates calcarifer (Bloch) relevant to production for recreational fisheries and farming, with a note on the proposal to introduce Nile perch Lates niloticus (L.) to Australia Thesis submitted by Christopher G. BARLOW BSc (JCUNQ) MSc (UNSW) in January 1998 for the degree of Doctor of Philosophy in the Department of Zoology at qvR cv4.7-vee- James Cook University of North Queensland STATEMENT ON ACCESS I, the undersigned, the author of this thesis, understand that James Cook University of North Queensland will make it available for use within the University Library and, by microfilm or other means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement: `In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper written acknowledgement for any assistance which I have obtained from it.' Beyond this, I do not wish to place any restriction on access to this thesis. -
Darling River Hardyhead Population in the Hunter River Catchment As an Endangered Population
Fisheries Scientific Committee July 2012 Ref. No. PD54 File No. FSC 12/03 PROPOSED DETERMINATION Craterocephalus amniculus – Darling River hardyhead population in the Hunter River catchment as an Endangered Population. The Fisheries Scientific Committee, established under Part 7A of the Fisheries Management Act 1994 (the Act), is proposing to list the Hunter River population of Craterocephalus amniculus – Darling River hardyhead as an ENDANGERED POPULATION in Part 2 of Schedule 4 of the Act. The listing of endangered populations is provided for by Part 7A, Division 2 of the Act. The Fisheries Scientific Committee, with reference to the criteria relevant to this species, prescribed by Part 16 of the Fisheries Management (General) Regulation 2010 (the Regulation) has found that: Background 1) Darling River hardyhead – Craterocephalus amniculus (Crowley and Ivanstoff 1990) is a valid, recognised taxon and is a species as defined in the Act. 2) The species distribution includes the Border Rivers, Gwydir and Namoi catchments of the Murray-Darling Basin above 200 m and up to at least 1,030 m ASL and the Hunter catchment between 50 m and at least 330 m ASL (Battaglene 1985, Adams et al. 2011, OZCAM database, Tarmo Raadik, unpublished data, Fisheries NSW Freshwater Fish Research Database). Although its distribution extends into the Queensland portion of the Border Rivers catchment, the majority of the species distribution is in New Species Wales. 3) Although limited to only two specimens from the Hunter catchment, genetic analysis suggests little genetic divergence of the Murray-Darling Basin and Hunter populations (Adams et al. 2011). However, the population in Tenterfield Creek likely represents a unique undescribed taxon (Adams et al. -
Native Fish of MDB Card
Native Fish of the Murray-Darling Basin ) being oxygen bleached virgin pulp. bleached ) being oxygen 50% ) with the balance ( 15% post consumer and 35% pre re For further information contact the Murray-Darling Basin Commission on (02) 6279 0100 or visit the website: www.mdbc.gov.au inted on Monza Satin Recycled, a new generation premium A2+ gloss coated recycled paper. generation inted on Monza Satin Recycled, a new It is produced with 50% recycled fib r :P Recycled Paper Recycled NOTES Trout Cod – Maccullochella macquariensis. Murray Cod – Maccullochella peelii peelii. Bony Herring – Nematalosa erebi. River Blackfish – Gadopsis marmoratus. Commonly 40-50cm. Commonly 45-65cm. It has been recorded Commonly 10-20cm. Generally common Commonly 15-25cm. Once widespread but now reduced to up to 1.8m and 113.5kg, Australia's largest throughout the lower, slow-flowing rivers Also the Two-Spined Blackfish only two small breeding populations freshwater fish. of the Basin. G. bispinosus. and classified as endangered.© Gunther Schmida © Gunther Schmida © Gunther Schmida © Gunther Schmida © Gunther Schmida Top Top Top Olive Perchlet – Ambassis agassizii. Commonly Southern Purple-spotted Gudgeon – Mogurnda Australian Smelt – 4-6cm. Formally widespread in the Murray-Darling adspersa. Commonly Retropinna semoni. Commonly Basin, now largely restricted to the 6-8cm. Formerly widespread and abundant, 4-7cm. Generally recorded in larger lowland northern Basin. now only common in the northern Basin. streams. Flat-headed Gudgeon – Philypnodon grandiceps. Commonly 5-9cm. © Gunther Schmida © Gunther Schmida © Gunther Schmida Also the Dwarf Flat-headed Gudgeon. P. sp1. Another species in a related family is the Blue Bottom Bottom Spot Goby Pseudogobius olorum which is Bottom Southern Pygmy Perch – Nannoperca australis. -
Scoping Current and Future Genetic Tools, Their Limitations and Their Applications for Wild Fisheries Management
WEALTH FROM OCEANS www.csiro.au Scoping current and future genetic tools, their limitations and their applications for wild fisheries management Catherine M. Dichmont, Jennifer R. Ovenden, Oliver Berry, David J. Welch, Rik C. Buckworth FRDC 2011/035 December 2012 Scoping current and future genetic tools, their limitations and their applications for wild fisheries management C.M. D ichmont , J. R. Ovenden, O. Berry, D.J. Welch , R.C. Buckworth Project No. 2011/035 Citation Dichmont, C.M., Ovenden, J.R., Berry, O., Welch, D.J, Buckworth, R.C. 2012. Scoping current and future genetic tools, their limitations and their applications for wild fisheries management. CSIRO. Brisbane. pp. 129. Copyright and disclaimer © Fisheries Research and Development Corporation and CSIRO Marine and Atmospheric Research 2012. This work is copyright. Except as permitted under the Copyright Act 1968 (Cth), no part of this publication may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners. Information may not be stored electronically in any form whatsoever without such permission. Important disclaimer The authors do not warrant that the information in this document is free from errors or omissions. The authors do not accept any form of liability, be it contractual, tortious, or otherwise, for the contents of this document or for any consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained in this document may not relate, or be relevant, to a reader’s particular circumstances. Opinions expressed by the authors are the individual opinions expressed by those persons and are not necessarily those of the publisher, research provider or the FRDC.